EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

Memorandum COSOR 94-22

A Branch-and-Price Algorithm for the Pickup
and Delivery Problem with Time Windows

M. Sol
M.W.P. Savelsbergh

Eindhoven, July 1994
The Netherlands

A Branch-and-Price Algorithm for the Pickup
and Delivery Problem with Time Windows

M. Sol
Department of Mathematics and Computer Science
Eindhoven University of Technology
P.O. Box 513
5600 MB Eindhoven
The Netherlands

M.W.P. Savelsbergh
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0205
US.A.

Abstract

In pickup and delivery problems vehicles have to transport loads from origins
to destinations without transshipment at intermediate locations. In this paper,
we describe an algorithm to solve such problems., The algorithm is based on a
set partitioning formulation of the problem and uses new column generation and
branching schemes.

1 Introduction

In the Pickup and Delivery Problem (PDP) a set of routes has to be constructed in
order to satisfy transportation requests. Each transportation request specifies the size
of the load to be transported, the location where it is to be picked up (the origin)
and the location where it is to be delivered (the destination). Each load has to be
transported by one vehicle from its origin to its destination without any transshipment
at other locations. A fleet of vehicles is available to operate the routes. The fleet may
consist of various vehicle types. Each type specifies a vehicle capacity and a depot where
the vehicles are stationed. In the Pickup and Delivery Problem with Time Windows
(PDPTW) a transportation request may also specify time windows on both pickup and
delivery. Furthermore there is, for each vehicle type, a time window specifying when the
vehicles of that type are available. For a recent survey on pickup and delivery problems
see Sol and Savelsbergh [10].

In this paper, we present a branch-and-price algorithm for the PDPTW that is based
on a set partitioning formulation of the problem.

In recent years, set partitioning formulations have become very popular for many
combinatorial optimization problems. There are two main reasons for this. First, for
many problems alternative formulations are not known. This is the case, for example,
in crew pairing [1] and vehicle routing [4] problems. Second, for many problems where
alternative formulations are known, the linear programming relaxation of the set par-
titioning formulation often yields a stronger bound. This is the case, for example, in
cutting stock [11] and generalized assignment [9] problems.

Branch-and-price algorithms [2] solve mixed integer programming formulations with
huge numbers of variables. In branch-and-price algorithms, sets of columns are left out
of the linear program because there are too many columns to handle efficiently and most
of them have their associated variable equal to zero in an optimal solution anyway. In
order to check the optimality of a linear programming solution, a subproblem, called
the pricing problem, is then solved in order to identify columns to enter the basis. If
such columns are found, the linear program is reoptimized. Branching occurs when no
columns price out to enter the basis and the linear programming solution is optimal
and fractional. Branch-and-price, which is a generalization of branch-and-bound with
linear programming relaxations, allows column generation to be applied throughout the
branch-and-bound tree.

Dumas, Desrosiers and Soumis [5] have developed and implemented a branch-and-
price algorithm for the pickup and delivery problem with time windows. Our branch-
and-price algorithm differs from theirs in various aspects. We apply branching rules that
focus on assignment rather than routing decisions, we develop various new algorithms for
the pricing problem, and we embed these in a column management system. Furthermore,
our algorithm has the advantage that it can be easily turned into an effective and efficient
approximation algorithm.

Many of the ideas presented in this paper are not specific to pickup and delivery
problems. In many optimization problems ‘tasks’ have to be assigned to ‘resources’.
These problems can all be formulated as a set partitioning problem, and the proposed .
branching strategy, the approximation algorithms for the pricing problem, as well as the
column management system can be adapted easily to accommodate these problems.

The paper is organized as follows. Section 2 presents the set partitioning formulation
of the PDPTW. Section 3 covers in detail the column generation scheme, the column
management system, the algorithms for the pricing problem, and the branching strategy.
Section 4 discusses the computational experiments. Finally, Section 5 presents some
conclusions.

2 The set partitioning formulation

Let N be the set of transportation requests. For each transportation request ¢ € N,
a load of size ¢; € IN has to be transported from origin i+ to destination i~. Define
N* := {it | i € N} as the set of origins and N~ := {i~ | i € N} as the set of
destinations. For each request ¢ € N the pickup time window is denoted by [e;+,{;+] and
the delivery time window by [e;-,l;~]. Furthermore, let M be the set of vehicle types.
Each vehicle of type k € M has a capacity Qi € N, is available in the interval [ey+, {x+],
and is stationed at depot kt. The number of available vehicles of type k is denoted by
my. Define Mt := {k*|k € M} as the set of depots. Let V:= NTUN-UMT,

For all ¢,j € V,k € M let d;; denote the travel distance, ifj the travel time, and
cfj the travel cost. Note that the dwell time at origins and destinations can be easily
incorporated in the travel time and therefore will not be considered explicitly.

Definition 1 A pickup and delivery route Ry, for a vehicle of type k is a directed cycle
through a subset Vi, C NY UN~ U {k*} such that:

1. Ry starts in kt not before ej+.

Forallie N, it €V ifand only if i~ € V.

If {it,i"} C Vi, then it is visited before i~.

FEach location in Vi, \ {k*} is visited exactly once.

Each location in Vi, \ {k*} is visited within its time window.

The vehicle load never exceeds Q.

NS ™ o

Ry ends in k* not after I;+.

To formulate the pickup and delivery problem as a set partitioning problem, we define

Q. := the set of all feasible pickup and delivery routes for type k,

o = 1 if i € N is served on route » € §,
T] 0 otherwise,

c* := the cost of route r € Q,

and introduce binary variables 2 (k € M,r € Q) equal to 1 if route r € € is used
and 0 otherwise. The pickup and delivery problem can now be formulated as follows:

minimize SO ckak
keM rey
subject to Y 3 éFzk =1 foralli € N, (partitioning constraints)

iror

kEM ref,

ek <my forall k € M, (availability constraints)
r€Qy
z¥ € {0,1} for all k € M,r € Q.

We denote this formulation by P and its linear programming relaxation by LP.

We will consider pickup and delivery problems where the primary objective is to
minimize the number of vehicles needed to serve all transportation requests and the
secondary objective is to minimize the total distance traveled. This is accomplished by
taking the objective function

3o ST (F+ bk,

keM refl

where L¥ denotes the length of route r for vehicle k and where F > |N| max,cq, rem L*
is a large constant. This cost structure can be achieved by defining the travel costs

ok =dij (i #£ k%), and ey, = F + dpr; (# k).

3 A branch-and-price algorithm

We have developed a branch-and-price algorithm for the PDPTW based on the formu-
lation presented in the previous section. The lower bound provided by LP is usually
excellent and often much better than the lower bounds provided by more traditional
formulations with variables 1fJ indicating whether or not a vehicle of type & travels from
location ¢ € V to location j € V.

A column generation scheme has been applied to solve LP in order to handle the
large number of variables that arises due to the size of the sets Q. Instead of explicitly
enumerating all feasible routes in order to find a variable that prices out to enter the
basis, in a column generation approach the nonbasic variable with the smallest negative
reduced cost is found by solving an optimization problem, called the pricing problem. In
this way the feasible routes are generated on the fly as needed and only a small fraction
of all feasible routes is used to solve LP.

A special branching strategy has been developed to solve P. Such a strategy is
necessary to ensure that the pricing problem can be adjusted so that at no node of the
branch-and-bound tree infeasible columns are generated.

3.1 Column generation

Suppose that for each vehicle type k € M a set). C Q. of feasible pickup and delivery
routes is explicitly known. The restricted master problem LP' is defined as follows:

minimize ST ek
keM rEQ;c
subject to Y ¥ fFak=1 forall: € N,
keM req;,
Y ozk < my forall k € M,
reQ
k>0 forallk e M, re Q)

Suppose that LP’ has a feasible solution = and let (u,v) be the associated dual so-
lution, i.e., the dual variables u; (i € N) are associated with the partitioning constraints
and the dual variables vy, (k € M) are associated with the availability constraints. From
linear programming duality we know that z is optimal with respect to LP if and only if
for each k£ € M and for each r € Q. the reduced cost d,’f is nonnegative, i.e.,

df = cf - Z 6fru,> —v, >0 forall ke M,re .
tEN
Testing the optimality of & with respect to LP can thus be done by solving the pricing
problem

minimize{c’ — Z 8Eu; — v | k€ M,r e Q).
1EN
Let z denote the value of the solution to the pricing problem and let &k, and r, denote
the corresponding vehicle type and route. If z > 0, then z is also optimal with respect

to LP, otherwise r, defines a column that can enter the basis and has to be added to
Q... This yields the following column generation scheme:

1. Find initial sets Q) containing a feasible solution z.
2. Solve the restricted master problem LP’.

3. Solve the pricing problem. If z > 0 then stop, otherwise set) := Q) U {r.} and
go to Step 2.

Due to the presence of the availability constraints, it is nontrivial to find initial sets
), C Qi containing a feasible solution to LP. However, if they exist, such sets can
always be found using a two-phase method similar in spirit to the two-phase method
incorporated in simplex algorithms to find an initial basic feasible solution. Define LP;
as

minimize Y kS opys
iEN

keM refd;
subject to Y Y ak 4y =1 forallie N
kEM rEQ
fogmk foral ke M
r€Q
zF>0 forall ke M,r € Q;
y; >0 foralli€ N

where y; (i € N) is an artificial variable and p > maxen req, ¢F is an appropriate
penalty cost. Problem LP; can be solved by the above column generation scheme by
initializing Q) = @ for each k € M.

The artificial variables y; are not deleted when they have all become nonbasic, i.e.,
when a feasible solution to problem LP has been found. Because of their high cost,
these variables will stay nonbasic and will not interfere in the optimization process.
However, during the branching process, the sets) are restricted by the branching
scheme, possibly yielding an initial infeasible LP in a node. In that case, the artificial
variables will reappear in the basis, and the first phase is automatically started in order
to find sets Q) that do contain a feasible solution for the linear program associated with
this node.

Because the route costs ¢ = F+L* are constructed such that F > |N| max,eq, rem LF,
we can improve the lower bound Z;p when the optimal LP solution 2 corresponds to
a nonintegral number of vehicles. More precisely, if m = [Y1car 2 req, z¥], then the
constraint

2 X wzm

keM reQ;

is a valid inequality that may be added to LP. Adding this constraint does not change
the pricing problems, because the dual value of this constraint appears as a constant in
their objective functions.

3.2 The pricing problem

The pricing problem decomposes into several independent problems, one for each vehicle
type. Let S; be the problem of minimizing {cf — S;en6kui —vp | 7 €), ie,
the problem of finding a minimum cost route for a vehicle of type k, using a modified
cost structure, that serves a subset of the transportation requests. To be more precise,
introduce four types of variables: z; (i € N) equal to 1 if transportation request i is
served by the vehicle and 0 otherwise, z;; ((7,7) € V xV) equal to 1if the vehicle travels
from location 7 to location j and 0 otherwise, D; (i € V'), specifying the departure time
at location 7, and y; (i € V), specifying the load of the vehicle arriving at location i.

If the route r defined by vector z is a feasible pickup and delivery route for vehicle
type k, its reduced cost can be expressed as follows:

df = Z Z csz,-j — E U2, — V. .
i€V jev i€EN

' Lk . P Lk Lo Wk T
When we define ¢y, := ¢y, —wi, €4 = ¢fy; — v and ¢j; = ¢ if i € Nt U {kt},

j
then d* = T;cv 2 jev €i;%ij. Define g+ = 0. The pricing problem §j is to

minimize). > c¢l;zi;

eV jeV
subject to
YievTit; = Djev Tjit = 2 forallie N, (1)
Yoiev Timj = 2jev Tji- = % foralli e N, (2)
Ljev Thtj = 1, (3)
Yiev T+ = 1, (4)
D;y < D;- forallie N, (5)
r;j=1=>D;+t; < D; foralli,j eV, (6)
Yt =0, (7)
ri;=1=2>y =y +q foralli,j eV, (8)
zij € {0,1} for all i, € V, (9)
z € {0,1} forall i € N, (10)
e; < D; < l; foralli €V, (11)
0<y <Qu forall i € V. (12)

By constraints (1) and (2) a vehicle visits either both the origin and the destination of a
request or it visits neither of them. Constraints (3) and (4) make sure that the vehicle
starts and ends at its depot. Constraints (5), (6), and (11) together form the time
and precedence constraints. Constraints (7), (8), and (12) together form the capacity
constraints.

Problem S can be viewed as a shortest path problem with precedence constraints,
capacity constraints and time windows, on the perturbed distance matrix ¢/. Dumas,
Desrosiers and Soumis [5] propose a dynamic programming algorithm, which uses la-
beling techniques to handle the precedence, capacity and time constraints, to solve
this shortest path problem. The state space used in this algorithm consists of labels
(I,R(S),T, D), where [is the last location visited on the path corresponding to this
label, S is the set of requests that are picked up on the path, R(S) C § is the set of
requests that has not been delivered yet, T' is the departure time at ! and D is the
reduced cost of the path. The size of this state space is exponential, due to the presence
of R(S) in the labels. Furthermore, by storing R(S) instead of S in each label, the
constraint z; € {0,1} is relaxed to z; € IN, allowing the pricing algorithm to produce
a route that serves requests more than once. Although such routes never appear in an
integral solution of P, they might decrease Zpp, the optimal value of LP, thus inducing
a weaker lower bound than would be found with the restriction z; € {0,1}.

For instances with many transportation requests and time and capacity constraints
that are not very tight, solving S to optimality becomes computationally prohibitive.

i

3.3 Column management

Observe that any column r € ; with negative reduced cost is a candidate to enter
the basis and may therefore be added to the restricted master problem. Consequently,
it is not necessary to solve the pricing problem to optimality as long as a column with
negative reduced cost can be found. Furthermore, if more than one column with negative
reduced cost is found, these columns may be added simultaneously to the restricted
master problem. :

Based on these observations, we propose a column management system that uses
approximation as well as optimization algorithms for the pricing problem. The approx-
imation algorithms try to generate many routes with negative reduced cost very fast.
These routes are then stored in a column pool. Rather than solving the pricing problem
at every iteration, we first search the column pool for columns with negative reduced
cost. If successful, one or more of these are selected and added to the restricted master
problem. If unsuccessful, we clean the column pool and invoke the pricing algorithms
in order to try to refill the pool. Note that each time the restricted master problem is
reoptimized the dual variables change. Therefore, the reduced costs of the columns in
the pool have to be updated after every reoptimization. Cleaning the pool consists of
removing all columns with reduced cost larger than some threshold D,n,x > 0. A positive
treshold value can be useful, because the reduced costs change after every reoptimiza-
tion, possibly to a negative value. If the pricing problem is not solved to optimality, LP
cannot be solved to optimality and so P cannot be solved to optimality. Therefore, as
soon as the approximation algorithms fail to find columns with negative reduced cost,
an optimization algorithm is used to solve the pricing problem to either prove optimality
or to find new columns. The column generation scheme we propose now looks as follows:

1. Find initial sets Q). containing a feasible solution z.
2. Set the column pool equal to .
3. Solve the restricted master problem LP’.

4. If the column pool contains columns with negative reduced cost, select some of
these columns, add them to the restricted master problem and go to Step 3.

5. Delete columns with reduced cost larger than Dy, from the column pool and start
the approximation algorithms for the pricing problem. If these are successful, add
the generated columns to the pool and go to Step 4.

6. Solve the pricing problem to optimality. If z > 0, then stop, otherwise add the
generated columns to the pool and go to Step 4.

There are several ways to choose columns from the column pool to add to the re-
stricted master problem. The first possibility is to select the column with the minimum
reduced cost. In this way, the linear program will not grow very rapidly, but a linear
program has to be solved for each added column. A second possibility is to select all
columns with negative reduced costs from the pool. This will reduce the number of
linear programs that have to be solved, but the linear programs will become very large.
We have chosen a more adaptive greedy selection scheme that selects partial solutions to
problem P. More precisely, we select a set of columns with negative reduced costs that
correspond to a set of routes satisfying the following requirements:

¢ Each transportation request is served on at most one route.

e The number of vehicles of a certain type assigned to the routes does not exceed
the available number of vehicles of that type.

The set of columns is constructed by successively choosing a column with minimum
negative reduced cost such that the two requirements are still satisfied. The selection
stops when no more such columns are available in the column pool.

The above column selection mechanism is motivated by two observations. First,
adding columns corresponding to partial solutions to P increases the chance of encoun-
tering integral solutions during the solution of the master problem. Second, it prevents
the addition of similar columns, which would happen if the columns would be selected
merely based on their reduced cost and the dual variables are far from being optimal.

3.4 Solving the linear program

As pointed out in the previous section, it is not necessary to solve the pricing problem by
an optimization algorithm as long as columns with negative reduced cost can be found
by an approximation algorithm. Because the optimization algorithm, which is based on
dynamic programming, is very time consuming, we discuss various strategies to solve the
linear program efficiently. Note that to prove optimality of an LP solution we need to
solve the pricing problem optimally.

Dumas, Desrosiers and Soumis [5] propose to speed up the dynamic programming
algorithm in earlier iterations of the column generation process by working on a reduced
network. Network reduction is achieved by deleting nodes corresponding to requests
with a low dual value and by deleting arcs with relatively high cost. Obviously, this
reduces the state space of the dynamic program and thus the computation times, but it
no longer guarantees that the optimal solution is found. If no more profitable routes can
be found in the reduced network, it is enlarged and the dynamic programming algorithm
is started again. Note that this approach guarantees that in the end the pricing problem
is solved to optimality.

Observe that the dynamic programming algorithm may encounter many columns
with negative reduced costs before it identifies the one with the smallest reduced cost.
Obviously all these columns could be stored in the column pool. However, since the num-
ber of columns with negative reduced cost in the first iterations of the column generation
process is huge, this would lead to an unmanageable column pool. Furthermore, only a
few of the columns generated in the first iterations of the column generation scheme will
be actually added to the restricted master problem. Therefore, in our implementation,
we have put an upper bound on the number of columns that the algorithm can create in
one run for each vehicle. The algorithm will stop as soon as the upper bound is reached,
which reduces computation times drastically. Note that this approach also guarantees
that in the end the pricing problem is solved to optimality.

A slightly different strategy is to use polynomial approximation algorithms for the
pricing problem as long as they can generate columns with negative reduced costs and
only use a dynamic programming algorithm when the approximation algorithms fail
to generate a column with negative reduced cost. The approximation algorithms we
have used are based on construction and improvement algorithms for the single-vehicle
PDPTW. In their description, we use I*(j) to denote the minimal cost of inserting

transportation request j into route r. If transportation request j cannot be inserted into
route 7, then I*(j) = oco.

Since computing the true insertion cost involves the solution of a single-vehicle pickup
and delivery problem with time windows, i.e., a traveling salesman problem with time
windows, precedence constraints and capacity constraints, we have chosen to work with
an approximate insertion cost, namely the cheapest insertion cost. If r is a route con-
sisting of n stops, our insertion algorithm first calculates 7; (1 < ¢ < n), which is the
latest possible time the vehicle may arrive at stop i in order to ensure feasibility, with
respect to the time windows of the remaining part of the route (é,i+1,...,n). Because a
request requires two stops to be inserted into a route, there are O(n?) possible insertions
for each request. By evaluating these insertions in the right order and using the values
Ti, each possible insertion can he checked for feasibility and cost in constant time. The
cheapest insertion cost of request j into route r can therefore be computed in O(n?)
time.

Construction algorithms

Construction algorithms build routes from scratch. Define the reduced insertion cost
DF(j) := I*(j) — ;. The construction algorithms initialize a route r and then repeat-
edly try to decrease the reduced cost of the route by inserting a request with D¥(5) < 0.
If D¥(j) > 0 for all requests not in the route, and d* < 0, then r is added to the column
pool. The route can be initialized as a loop from k% to k%, or as a route serving some
requests that are likely to be served by a vehicle of type k.

Improvement algorithms

Improvement algorithms modify existing routes. Note that the current LP solution pro-
vides us with a set of routes » with d¥ = 0 (at least all the routes associated with basic
variables). When such a route is used as a starting point for a local search algorithm,
we expect to find a route with negative reduced cost very fast. The following two algo-
rithms start with a route r with d* = 0 and then try to decrease the reduced cost of the
route by deleting requests from the route and replacing them by other requests. The
first algorithm performs profitable swaps until no such swap can be found. The second
algorithm performs a variable depth search. When 7 € N is served on route r, we denote
by 7\ {i} the route obtained from r by deleting request . When j € N is not served
on route r, we denote by r U {j} the route obtained from r by inserting request j in the
cheapest way.

The first algorithm works as follows:

k = mind gk i E =1 gk =
1. Let d(r\{io})u{jo} = mm{(l(r\{i})u{j} | i,j € N,é&, = 1,6}, = 0}.
2. If dfr\{io})u{jo} < d,, then set r = (r\ {i0}) U {jo} and go to Step 1.
3. If d* < 0, then add r to the column pool.

At each iteration of the variable depth search algorithm the best swap is performed,
even if this increases the reduced cost. The algorithm maintains a set F' C N of requests
that were deleted from the route in a previous iteration. These requests are not allowed
to reenter the route. The best route found over all iterations is added to the column
pool if it has negative reduced cost:

1. dl = o0, F= @
k N k P k _ k _ :
2. Let d(T\{to})U{]o} = mln{d(r\{‘})u{]} | ,] € N, (51'7. =].’ 6}7‘ = 0,] ¢ F}-
(r\ {io}) U {jo} and

3. If dfr\{io})u{jo} = o0, then go to Step 6, otherwise set r
F = FU {io}.

4. If d, < dy, then set dy = d, and r; = 7.
5. Go to Step 2.

6. If d; < 0, then add ry to the column pool.

3.5 Branching schemes

In order to obtain integral solutions, we need a branching scheme that excludes the
current fractional solution, validly partitions the solution space of the problem, and does
not complicate the pricing problem too much. The third requirement almost always
excludes the standard branching rules based on variable fixing. Fixing a variable to 1
does not complicate the pricing problem, because it just reduces the size of the problem.
However, fixing a variable to 0 corresponds to forbidding a certain solution to the pricing
problem. Deeper down the search tree this implies that a set of solutions to the pricing
problem must be excluded, which is in general very complicated, if not impossible.

In order to develop branching schemes that satisfy the requirements given above, the
structure of the pickup and delivery problem has to be exploited. The pickup and delivery
problem can be roughly divided into two parts. First, the assignment of the requests
to the available vehicles. Second, the construction of pickup and delivery routes. This
suggests two types of branching schemes, one that partitions the solution space with
respect to assignment decisions, the other with respect to routing decisions.

3.5.1 Branching on routing decisions

Dumas, Desrosiers and Soumis [5] present a branching scheme that focuses on routing
decisions. The branching scheme is based on the one proposed for the asymmetric
traveling salesman problem by Carpaneto and Toth [3]. Let z*¥ > 0 be a fractional
variable in the current LP solution. Suppose that the corresponding route r serves n
requests {iy,43,...,4,} C N in such a way that 7, is picked up before 7 if p < ¢. Binary
order variables O;; (i, € Nt U M%) are introduced, where O;; is equal to 1 if no
requests are picked up between locations 7 and 7, and 0 otherwise. The current subset of
solutions is now divided into n + 2 subsets as follows. Define ia' = i:H = k*. The first

subset is characterized by the constraints O,4+,+ = O4;4 =+ = Oi+i++1 = 1. For each
0°1 1°2 n'n
j € {0,1,...,n} another subset is characterized by O;+;+ = O3 = -+ = O it = 1
0°1 172 =12

and Oi+i++1 = 0. The dynamic programming algorithm to solve the pricing problem can
J

be easily modified such that the routes found by the algorithm satisfy the constraints on
the order variables.

10

3.5.2 Branching on assignment decisions

We present two branching schemes that focus on assignment decisions. They are both
special cases of a branching scheme proposed by Ryan and Foster [8] for pure set parti-
tioning problems, which is based on the following proposition:

Proposition 1 Let A be a 0—1 matriz of size m X n and let = be a fractional basic solu-
tionto Az = 1, x > 0. Then there exist two rows p and q such that 0 < 3°7_; Ap;Aq;z; <
1.

The set of integral solutions to Az = 1 can now be divided into two subsets, characterized
by zj =0if Ay; + Agj =1, and z; = 0if Ay; + Agj # 1, respectively. In the first subset
p and ¢ must be covered by the same column. In the second subset p and ¢ must be
covered by two distinct columns.

In our set partitioning model for the pickup and delivery problem, we have two sets
of rows, corresponding to the partitioning constraints for the clients and the availability
constraints for the vehicles. When both p and ¢ are partitioning rows, the Ryan and Fos-
ter branching scheme implies the creation of a subset in which transportation requests p
and ¢ must be served by the same vehicle, and another subset in which both requests
must be served by two different vehicles. When p is a set partitioning row and ¢ is the
availability constraint of vehicle type k, the first subset consists of solutions where trans-
portation request p is served by vehicle type &, while in the second subset transportation
request p may not be served by vehicle type k. One can easily see that it is impossible
that both p and ¢ correspond to availability constraints.

Let z be the current fractional solution to LP. Now define foreach: € N and k € M
the assignment value z* = Y req, 65af, indicating what fraction of request i is served
by vehicle type £ in the current LP solution, and define for all i,j € N the combination
value yi; = 3 rem 2oreq, 656]’?,,9;,‘5, indicating what fraction of the routes serving ¢ also
serves j. We have the following two lemmas.

Lemma 1 Suppose my =1 for all k € M. Let @ be an optimal solution of LP, and let
2F = > oreq, 68 ak (ke M,ie N). Then a is integral if and only if z is integral.

Proof If z is integral, then trivially z is integral. Now suppose z is integral. Let k € M
and ¢ € N satisfy 2¥ = 1. Because D oreq 682k =1and T,cq, z¥ < 1, we have that
6% = 1{or all » € Q. with 2% > 0. Therefore all routes r € Q;, with =¥ > 0 serve the
same requests. Because z is an optimal solution to L P, these routes all have the same
cost and so they are identical. Since all routes in Q. are distinct, this implies that z is
an integral solution. O

Note that we can always enforce the restriction my = 1 for all & € M, by duplicating
each vehicle type k& m; times. This is however a pseudopolynomial transformation.

Lemma 2 Let be an optimal solution of LP, and let yij = Y jeprdreq, 6% 6% zk

0 tr]T r
(#,7 € N). If y is integral, then x is a convex combination of integral solutions of LP.

Proof Suppose that y is integral and let y;; = 1. Then 3 car > cq, 6k6k 2k =1 =

irgror

TkeM Loreny 0528 = Yrenr Treq, 6525, This implies that 65 = 6% for all k € M

jrr:e

11

and r € Q; with ¥ > 0. Let Q; = {r € Qlz* > 0}, @ = Urerr U, and Q =
(€| ThemZ,en, 05 =1 (1€ N), T,cq, & <my (k€ M), & 2 0}. Observe,
that the restriction of z to Q, say T, is an element of . Furthermore, the constraint
matrix A defining Q is totally unimodular, since, after deletion of duplicate rows, each
column of A contains exactly two 1 entries; one in the partitioning rows and one in
the availability rows. Consequently,) is an integral polyhedron and 7, and thus z, are
convex combinations of integral solutions of LP. O

Corollary 1 Let z be an optimal extremal solution of LP. Let yi; =) iep D oreq, 6!‘,6}“,9:’,‘
(i,j € N). Then z is integral if and only if y is integral.

Note that in Lemma 1, Lemma 2 and Corrolary 1 we can replace LP by the restricted
master problem LP’. This ensures that the branching schemes that are based on these
results are also valid when LP is not solved to optimality.

The two branching schemes we propose can be summarized as follows:

Scheme 1: When 2 is fractional, there are a request i € N and a vehicle type keM
with 0 < zf < 1. Create two subsets characterized by z{" =0 and :f = 1 respectively.

Scheme 2: When z is fractional, there are two requests 7,j € N such that 0 < y;; < 1.
Create two subsets characterized by 3;; = 0 and y;; = 1 respectively.

When the number of vehicles of a single type is large, i.e. my is large, the pseudopoly-
nomial transformation that is needed in order to use scheme 1, will drastically increase
problem size. On the other hand, we will show that scheme 1 does not complicate the
pricing problem in the subsets. The restriction z¥ = 0 is easily satisfied by ignoring

[
request i when solving pricing problem §;. It is less trivial to see that the restriction

z;k = 1, i.e. requiring that request i is served by vehicle i, does not complicate the
pricing problem either. In fact, any algorithm for the pricing problem S; can be used,

as is stated by the following theorem.

Theorem 1 Let S;(1) be the problem that arises from S; by adding the constraint ziic =1,
and let A be any algorithm that solves S;. Then A also solves S;(3).

Proof The idea behind the proof is to modify the dual variables such that they still
form an optimal dual solution, but all routes r € §}; with 6;*’, = 0 will have d* > 0.

Note that request i can be forced to be in vehicle k by adding the following branching
constraint to the master problem:

Sa-dkyky Y S shab<o
TEQ keM\{k} r€C%

Let w be the dual variable associated with this branching constraint. When the restricted
master problem has been solved, the reduced costs of the columns in the restricted master
problem satisfy

df=cf - hui—v-Ew>0 ifreQ ke M\ {k}
ieN

12

and
kE_ k k k .
d,=c,—26iru;—v,~c—(l—-6;r)w20 xfreﬂ}c
iEN
Let n > 0 and consider the following alternative dual solution: ¥ := u+ ne;, 7 := v— ey,
and W := w — 1), where ¢; denotes the jth unit vector. This alternative dual solution

is feasible, since the modified reduced costs E of the columns in the current restricted
master problem satisfy

dk—c—26wu,—vk—6 W= ck Z&,ru,—vk—ékw—dk>0

iEN 1EN
ifreQ, ke M\ {k},
d=ck ST -m—(1-w=cf - fhui—v - (1-8)w=dF>0
1EN tEN

ifre Q;} and 65 =1, and

d—f=c£‘— Zég‘;m—ik—(l—-ég)ﬁ:cf— Zéﬁ.ui-—v,}—(l—ég)wﬁ-Qn
iEN ieN

=df+‘27)20

1f r € Q) and 6'” 0. Clearly, the alternative dual solution is also optimal, because
YU+ tk T = Eﬂi + 31 vk. It should be obvious that by choosing 7 large enough,

we can ensure that % > 0 for all r € Q; with 61; =0. O

Note that this result for branching scheme 1 holds for general set partitioning problems
with availability constraints. For branching scheme 2 there is no such a general result
known. For the pickup and delivery problem with time windows, however, it is not
difficult to adjust the algorithms for the pricing problem, such that they only produce
solutions that satisfy all combination restrictions.

3.6 Primal solutions

In order to keep the search tree small, we need good lower and upper bounds. To obtain
good upper bounds, we have developed a primal heuristic that, in each node of the search
tree, tries to construct a feasible solution starting from the current fractional solution
and, if successful, tries to improve this solution.

The constructive algorithm is based on the assignment values defined in the previous
section. Let z be the fractional solution to the LP. Then we define for each request i € N
and each vehicle k € M the fractional assignment value zF = doref 6k z¥. The following
algorithm now tries to construct a feasible solution:

1. No=N.
Sort the pairs (k,i) € M x N such that 4'”‘ >z ’”2 > zk3 >.
t=1.

For each vehicle £ € M set r; to be the empty route of k.

13

Class | |[N| |M| ¢™™ ¢m™ Q@ W
A30 |30 15 5 15 15 60
B30 |30 15 5 20 20 60
C30 |30 15 5 15 15 120
D30 |30 15 5 20 20 120

Table 1: Problem classes

2. If it € No or i; cannot be added to route ry,, then go to 4.

3. Add ¢, to route ry,.
Remove 7; from Ny.

4. t=t+1.
If No # 0 and t < |M]|N|, then go to 2, otherwise stop.

Checking whether i; can be added to route ry, in step 2, is done with our cheapest
insertion algorithm.

If a solution is found in this way, it is subjected to three local search algorithms. The
first algorithm considers a single route and reinserts each request. Because the routes
were constructed by sequential insertion, the cheapest insertion of a request in its route
can differ from its current positions. The other two algorithms consider two routes and
try to decrease the total cost by moving requests from one route to the other, or by
exchanging two requests between routes. The cost of both operations is approximated
by insertion and deletion algorithms.

The quality of the upper bound may be further improved by incorporating more
sophisticated iterative improvement algorithms, such as those described in [6].

4 Computational experiments

The ultimate goal of our research is the development of a high quality approximation
algorithm for the PDPTW that can solve fairly large instances in an acceptable amount of
computation time. We believe that, with the appropriate choices, the branch-and-price
algorithm described above satisfies these requirements, and the results of the various
computational experiments that we have conducted support that claim.

To be able to determine the impact of the various choices that are inherently available
in our branch-and-price algorithm, e.g., whether to use approximation or optimization al-
gorithms for the pricing problem, we have implemented several versions of our algorithm.
We start our description of these algorithms with a discussion of the implementation is-
sues that are common to all versions. .

The cheapest insertion algorithm that we developed for the approximation algorithms
for the pricing problem is also used to construct a starting solution and a first set of
columns for the set partitioning matrix.

The bound on the number of columns that the dynamic programming algorithm
can generate for each vehicle in a single execution was set to 200. We experimented

14

Problem Zopt Zrp gap | Problem Zapt Zrp gap
A30.1 104291 104263.0 0.65 | B30.1 124655 124655.0 0
A30.2 114451 114451.0 0 B30.2 94341 94332.0 0.21
A30.3 135415 135415.0 0 B30.3 124882 124872.0 0.21
A30.4 115148 115148.0 0 B30.4 104431 104431.0 O
A30.5 114535 114535.0 O B30.5 94434 94403.0 0.70
A30.6 114967 114939.8 0.55 | B30.6 104264 104264.0 0
A30.7 104247 104247.0 0 B30.7 104263 104262.0 0.02
A30.8 115154 115146.0 0.16 | B30.8 135332 135332.0 0
A30.9 114883 114883.0 0 B30.9 145466 145466.0 O
A30.10 115208 115208.0 0 B30.10 114685 114685.0 0

C30.1 84664 84604.0 1.29 | D30.1 94460 94440.5 0.44
C30.2 84674 84674.0 O D30.2 73855 73832.0 0.60
C30.3 84011 83961.7 1.23 | D30.3 84737 847370 0

C30.4 74205 74168.7 0.86 | D30.4 84765 84765.0 0
C30.5 84426 84391.2 0.79 | D30.5 84593 844985 2.06
C30.6 94547 94500.5 1.02 | D30.6 84257 842475 0.22

C30.7 84270 841874 1.93 | D30.7 84302 84278.5 0.55
C30.8 94778 94767.0 0.23 | D30.8 74293 74097.0 4.57
C30.9 84246 84231.2 0.35 | D30.9 84110 841100 O

C30.10 84230 84213.2 0.40 | D30.10 74499 74402.5 2.14

Table 2: Optimal solutions and integrality gaps

with upper bounds of 50, 200 and 1000 columns per vehicle, but the computation times
hardly varied. Because the upper bound of 200 columns per vehicle produced slightly
better results, this value was choosen. The threshold value used when the column pool
is cleaned up has been set to 10.

All versions of the algorithm use branching scheme 1, i.e., they branch on assignment
decisions of transportation requests to vehicles. The branching pair (k, ?) is chosen such
that z¥ = max{zF | 2¥ < 1,i € N,k € M}. The search tree is explored according to a
best bound search. We did not implement scheme 2, because the search trees turned out
to be fairly small and the effect of a different branching scheme would be minimal.

The first two versions of our algorithm, O; and O,, are optimization algorithms.
Both of them use the column generation scheme of Section 3.2, but O; only uses the
dynamic programming algorithm for column generation, whereas O solves the pricing
problem approximately as long as this gives profitable routes.

The second two versions of our algorithm, A; and Aj;, are approximation algorithms.
Both of them use the column generation scheme of Section 3.2, but A; never uses the
dynamic programming algorithm and therefore never solves the pricing problem to opti-
mality, whereas A; solves the pricing problem optimally in the root when the approxima-
tion algorithms fail to produce profitable columns. Note that in the root A; is equivalent
to Oz and solves the LP to optimality. Therefore it provides a valid lower bound on the
optimal solution value. In none of the other nodes A; or A; guarantee that the LPs are
solved to optimality. This implies that for these nodes the lower bounds are not always
valid, possibly resulting in the deletion of the node containing the optimal solution.

For comparison purposes, we have also included the more traditional approximation

15

algorithm, As, that circumvents the complications introduced by branching by only
generating columns at the root node and then performing standard branching based on
variable dichotomy with the given set of columns.

All versions have been implemented using MINTO, a Mixed INTeger Optimizer [7].
MINTO is a software system that solves mixed-integer linear programs by a branch-and-
bound algorithm with linear programming relaxations. It also provides automatic con-
straint classification, preprocessing, primal heuristics and constraint generation. More-
over, the user can enrich the basic algorithm by providing a variety of specialized appli-
cation routines that can customize MINTO to achieve maximum efficiency for a problem
class. All our computational experiments have been conducted with MINTO 1.6/CPLEX
2.1 and have been run on an IBM/RS6000 model 550.

4.1 Test problems

As the size of the set of all feasible solutions to an instance of the pickup and delivery
problem with time windows strongly depends on the number of transportation requests
that can be in a vehicle at the same time and the width of the pickup and delivery time
windows, and this size may have a strong relationship with the ability of our algorithms
to solve instances, we have developed a random problem generator that allows us to vary
these instance characteristics.

Instances are constructed as follows: Generate a set of 100 points randomly within a
square of size 200 x 200. The distance between two points is the Euclidean distance. The
travel time between two points is equal to the distance between these points. Origins
(17), destinations (i~) and vehicle home locations (k%) are now chosen from this set
of points. The load of a request is selected from an interval [¢™®, ¢™2%]. The capacity
of all vehicles is equal to Q. The time windows of the requests are constructed in the
following way: The planning period has length L = 600. Each window has width W. For
each request ¢ choose e;+ randomly within the interval [0, e"*¥], where e[*** = L — t;+;-.
The time windows for request i are now calculated as [e;+,e;+ + W] for the pickup and
[e;+ + ti+;-, €+ +1;4;— + W] for the delivery. A time unit can be interpreted as a minute.
In this way the length of the diagonal of the square corresponds to approximately half a
planning period. We choose the number of available vehicles |M| = |N|/2.

As indicated earlier, the objective is to minimize the number of vehicles used and the
total distance traveled. We have taken the fixed cost F' to be F = 10000.

Table 1 lists the problem classes that we have used in our experiments in order of
anticipated difficulty. We have randomly generated 10 instances in each problem class.

4.2 Quality of the lower bound

We first consider the quality of the lower bound Zyp obtained in the root of the branch
and bound tree. Note that this includes the addition of the constraint ", cps 3", eq, zk >
m (see Section 3.1). For all instances, the optimal number of vehicles equals m. We
therefore focus on the quality of the lower bound with respect to the total distance
traveled. Table 2 shows the linear programming bound at the root (Zyp), the value of
the optimal solution (Zppr), and the integrality gap with respect to distance traveled
only: (Zopr — Zrp)/(Zopr — mF). For 17 out of 40 instances this gap equals 0,

16

indicating that the problem was solved without any branching, and only for 7 out of 40

instances the gap exceeds 1%.

o)) O

Problem | CPU generated added | CPU generated added

A30.1 197 9342 216 | 145 1613 266 | 0.74
A30.2 32 5747 204 26 885 204 | 0.81
A30.3 17 2006 153 17 962 190 | 1.00
A30.4 54 4234 180 31 933 221 | 0.57
A30.5 51 5392 190 30 791 181 | 0.59
A30.6 28 3490 182 22 944 202 | 0.79
A30.7 51 5496 193 33 897 190 | 0.65
A30.8 18 3282 227 18 862 224 | 1.00
A309 23 3640 198 15 1033 215 | 0.65
A30.10 28 4215 215 21 922 193 | 0.75
B30.1 34 3474 162 21 971 165 | 0.62
B30.2 89 7097 218 53 1103 235 | 0.60
B30.3 30 3447 161 25 690 170 | 0.83
B30.4 61 7600 188 32 936 214 | 0.54
B30.5 162 9640 217 90 938 214 | 0.56
B30.6 57 5460 191 33 930 226 | 0.58
B30.7 60 5383 217 40 975 229 | 0.67
B30.8 15 2015 183 12 800 171 | 0.80
B30.9 28 4502 165 25 807 213 | 0.89
B30.10 33 5770 165 36 934 193 | 1.09
C30.1 145 10180 248 | 111 1328 290 | 0.77
C30.2 418 14781 272 | 240 1248 283 | 0.57
C30.3 719 15332 281 | 316 1421 267 | 0.44
C30.4 914 18152 340 | 469 1550 302 | 0.51
C30.5 612 13270 301 | 276 1627 286 | 0.45
C30.6 152 10812 241 99 1361 267 | 0.65
C30.7 837 11234 305 | 499 1418 298 | 0.60
C30.8 295 10453 297 | 210 1352 284 | 0.71
C30.9 487 16374 319 | 305 1647 281 | 0.63
C30.10 825 14993 301 | 702 1852 323 | 0.85
D30.1 498 12187 240 | 255 1438 257 | 0.51
D30.2 1903 14880 287 | 1159 1265 296 | 0.61
D30.3 335 10523 272 | 206 1198 244 | 0.61
D30.4 503 13332 234 | 191 1399 280 | 0.38
D30.5 269 9740 287 | 151 1143 298 | 0.56
D30.6 341 10398 275 | 209 1269 274 | 0.61
D30.7 533 12912 315 | 226 1532 289 | 0.42
D30.8 1110 16782 321 | 651 1359 268 | 0.59
D30.9 1094 14707 332 | 614 1864 306 | 0.56
D30.10 399 15041 293 | 165 1502 248 | 0.41

Table 3: Performance of optimization algorithms for Zpp

17

Class A30 B30 C30 D30
Nr | CPU nodes | CPU nodes | CPU nodes CPU nodes
11{ 1497 55 21 1| 1081 39 937 9
2 26 1 121 5 240 1 13209 37
3 17 1 74 5[4752 57 206 1
4 31 1 32 1| 9128 87 191 1
5 30 1 662 23 | 5158 77 | 12488 571
6 265 45 33 1(1436 75 955 19
7 33 1 59 3 [18391 201 840 13
8 40 5 12 1 498 9| 253549 1845
9 15 1 25 1 1490 21 614 1
10 21 1 36 1| 7143 43 6983 109

Table 4: Performance of optimization algorithm O,

4.3 Performance of the optimization algorithms

To analyze the effect of using approximation algorithms in the column generation scheme,
we have evaluated the root, i.e., solved the linear program, by both algorithm O; and
O3 for all instances in the problem classes A30, B30, C30 and D30. Table 3 shows the
CPU time, the number of columns generated, and the number of columns added by O,
and O,. The number of columns generated is the total number of columns that have
been stored in the column pool during the solution process. The last column shows the
quotient CPU(O;)/CPU(0O4).

Algorithm O, clearly outperforms O;. Over all 40 instances, we have observed an
average decrease in computation time of 35% when using the approximation algorithms
for the pricing problem. For problem class D30 the average computation time was al-
most halved. The number of columns in the optimal master problem never becomes very
large and this number does not differ drastically for O, and O;. There is however a big
difference in the number of generated columns. This is due to the fact that the dynamic
programming algorithm stores all columns with negative reduced cost it encounters (up
to 200 per vehicle per execution) in the column pool. Although this results in a larger
poolsize for O; than for O3, the larger poolsize does not cause the differences in compu-
tation times. The differences in computation times can be fully attributed to the fact
that O; only uses optimization algorithms to solve the pricing problem whereas O; also
uses approximation algorithms.

Based on the above observations, we have chosen algorithm O3 to solve all the prob-
lem instances to optimality. Table 4 shows the total CPU time and the number of nodes
evaluated in the search tree.

4.4 Performance of the approximation algorithms

Table 5 shows the CPU time, the number of evaluated nodes, and the relative error
(ZBEST — ZopPT)/(ZopT —mF) {for the approximation algorithms Ay, Az, and A3. When
a problem is solved in the root, A and A3z are equivalent to O,. This event is indicated
by an asterisk (*) in the last column.

18

Ay A, Az
Problem | CPU nodes error | CPU nodes error | CPU nodes error
A30.1 158 14 0 187 27 0 149 11 0.09
A30.2 23 4 1.37 26 1 0 26 1 0] *
A30.3 7 1 1.70 17 1 0 17 1 0| *
A30.4 13 1 1.07 31 1 0 31 1 0| *
A30.5 16 1 0.04 30 1 0 30 1 0l *
A30.6 58 29 0 66 41 0 23 17 0.46
A30.7 11 1 4.87 33 1 0 33 1 0| *
A30.8 15 2 0.3 19 3 0 19 5 0.10
A30.9 13 1 1.00 15 1 0 15 1 0| *
A30.10 17 3 031 21 1 0 21 1 0
B30.1 10 1 277 21 1 0 21 1 0
B30.2 16 1 025 61 5 0 54 5 0
B30.3 10 1 2.03 30 5 0.20 26 5 0.20
B30.4 13 1 0.14 32 1 0 32 1 0ol *
B30.5 50 11 0.07 108 13 0 93 17 0
B30.6 15 1 218 33 1 0 33 1 0| *
B30.7 20 1 265 43 3 0 41 3 0
B30.8 8 1 0.75 12 1 0 12 1 0| *
B30.9 12 3 1.50 25 1 0 25 1 0| *
B30.10 9 1 171 36 1 0 36 1 0| *
C30.1 164 41 0.90 250 69 0 114 9 0.75
C30.2 33 2 0 240 1 0 240 1 0| *
C30.3 27 1 214 380 25 0 321 13 0
C30.4 222 53 1.07 525 29 0 482 21 0.19
C30.5 64 9 034 424 67 0.18 283 25 0.54
C30.6 75 21 0 209 71 0 102 21 0
C30.7 327 102 0 804 127 0 505 15 0
C30.8 63 11 0.17 215 4 0 216 31 0.50
C30.9 48 6 031 387 19 0.02 309 9 0.12
C30.10 103 15 0 756 21 0 722 7 0
D30.1 36 3 085 267 9 0 258 3 0
D30.2 68 12 0.60 | 1214 21 0| 1190 8 0
D30.3 22 2 205 206 1 0 206 1 0
D304 23 1 3.44 191 1 0 191 1 0
D30.5 1540 596 0| 1281 465 0 166 107 0.09
D30.6 23 1 237 300 57 0.33 215 23 0.68
D30.7 26 1 0.93 243 11 0 230 3 0
D30.8 984 277 0 725 31 0 658 23 0.63
D30.9 38 1 285 614 1 0 614 1 o|*
D30.10 120 14 0 406 101 0 167 11 0.60

Table 5: Performance of approximation algorithms

4.4.1 Quality

Algorithm A; clearly outperforms the others with respect to quality of the solutions. It
solves 36 out of 40 problems to optimality. For 17 of these problems this is due to the fact
that no branching was required and for 19 problems A, found the optimal solution even
though branching was required and the pricing problems were only solved to optimality
in the root node. For the four problems that were not solved to optimality, the relative

19

Class IN[M| ¢ ¢ Qg W
A50 50 25 5 15 15 60
B50 50 25 5 20 20 60
' DAR30 |30 15 1 1 5 60

.

Table 6: Larger and less restricted problem classes

error was at most 0.33 %.

By comparing the results of A, and Aj, we conclude that it pays off to use column
generation during branch and bound. However, as the relative errors of Az are still small,
it is clear that creating a good set of columns in the root is the most important issue in
finding good approximate solutions.

4.4.2 Speed

Algorithm A;, which never solves the pricing problem to optimality, outperforms the oth-
ers with respect to speed. For all problems the optimal number of vehicles was obtained,
and though only 9 out of 40 problems are solved to optimality, the average relative error
over all 40 problems is only 1.07%. These observations indicate that A; might be a good
algorithm for practical situations where problem sizes are bigger and time and capacity
constraints are less restrictive. In fact, in such situations the other algorithms cannot be
used because of the computation times of the dynamic programming algorithm.

4.4.3 Difficult instances

In a final experiment, we have generated two sets of larger instances and one set of less
restricted instances and tested algorithms A; and A, on these sets. The characteristics
of these problem classes are shown in Table 6. The set DAR30 is a set of instances of
the dial-a-ride problem, which is a well-known special case of the pickup and delivery
problem in which loads represent people. In dial-a-ride problems the capacity restrictions
are fairly loose. Let Zggsr denote the best solution found by the algorithm. The relative
error is then approximated by (Zggst—[ZLp])/([ZLp] —mF), which is an upper bound
on the real relative error. We introduced an upper bound of 2500 on the number of nodes
that may be evaluated in the search tree. When this bound causes the algorithm to stop,
ZBEsT is the best solution found so far.

The results for classes A50 and B50 are shown in Table 7 and the results for the class
DAR30 are shown in Table 8. They indicate that the algorithms are indeed capable of
providing a high quality solution in an acceptable amount of computation time.

5 Concluding remarks

We have presented a branch-and-price algorithm based on a set partitioning formulation
that is capable of solving moderately sized pickup and delivery problems to optimality.
Furthermore, the algorithm can easily be turned into an efficient and eflective approxi-
mation algorithm to solve larger instances.

20

Al A2

Problem Zip | CPU nodes Zggsr error | CPU nodes Zggsr error
A50.1 177123.0 76 4 177136 0.18 271 1 177123 0
A50.2 177628.0 176 16 177659 0.41 642 39 177645 0.22
A50.3 167762.0 65 1 167888 1.62 129 1 167762 0
A50.4 147703.5 60 1 148040 4.36 353 5 147708 0.05
A50.5 208126.0 27 1 208160 0.42 86 1 208126 0
A50.6 156855.4 194 14 156887 0.45 | 1150 127 156867 0.16
A50.7 177035.0 249 20 177061 0.37 437 9 177061 0.37
A50.8 156875.0 98 3 156989 1.66 627 1 156875 0
A50.9 146728.0 222 9 146742 0.21 836 7 146736 0.12
A50.10 158170.0 71 1 158516 4.24 | 1424 205 158219 0.60
B50.1 147058.0 104 3 147142 1.19 484 1 147058 0
B50.2 177201.7 59 1 177211 0.12 395 37 177211 0.12
B50.3 137144.8 | 9566 2500 * - 137567 5.91 | 9671 2500 * 137330 2.59
B50.4 146634.0 64 1 146872 3.59 425 1 146634 0

B50.5 168343.7 | 4761 990 168452 1.29 | 10468 2500 * 168398 0.65
B50.6 156908.9 904 118 156996 1.26 | 4687 731 156941 0.46

B50.7 166413.3 391 33 166426 0.19 477 31 166422 0.12
B50.8 187756.0 99 6 187896 1.81 256 21 187767 0.14
B50.9 156927.5 241 15 156957 0.42 803 81 156951 0.33

B50.10 157074.0 | 12055 2500 * 157266 2.71 | 7654 2500 * 157250 2.49

Table 7: Performance of algorithms Al and A2 for the problem classes A50 and B50

A more traditional use of set partitioning formulations for routing problems has
been to generate a large set of columns heuristically and then solve the resulting set
partitioning problem over this set of columns. Our computational results, specifically
those relating to algorithm Ag (see Section 5), indicate that linear programming based
pricing provides a good way to generate a good set of columns. An additional advantage
of this approach is that the resulting set partitioning problem may be solved by more
sophisticated techniques such as branch-and-cut. As far as we know, there do not exist
methods that successfully combine column generation and cut generation techniques in
the context of set partitioning.

Many of the ideas presented are applicable to all problems that can be formulated
as a set partitioning problem with availability constraints, as is defined in Section 2.
These problems are characterized by the fact that a set of tasks has to be assigned to
a set of available resources, in such a way that all tasks assigned to a single resource
can be feasibly processed by that resource. Because all our approximation algorithms
for the pricing problem only modify the set of tasks currently assigned to a resource by
adding and deleting tasks, it is relatively straightforward to modify the branch-and-price
algorithm so that it can be used in other contexts. The problem specific characteristics
relating to the cost and feasibility of assigning a set of tasks to a resource only have impact
on the insertion function I*(j). However, a problem specific optimization algorithm for
the pricing problem has to be developed, if the problem is to be solved to optimality.

21

A1 A2
Problem Zip | CPU nodes Zggst error | CPU nodes Zpgsr error
DAR30.1 83681.0 61 7 83709 0.76 147 3 83687 0.16
DAR30.2 | 104755.0 19 1 104784 0.61 43 1 104755 0
DAR30.3 | 104189.0 8 1 104206 0.41 24 1 104189 0
DAR30.4 93988.3 54 13 93992 0.08 171 11 93999 0.25
DAR30.5 83978.0 13 1 84064 2.16 33 1 83978 0
DAR30.6 | 115235.0 16 1 115248 0.25 45 1 115235 0
DAR30.7 83668.0 14 1 83689 0.57 99 5 83673 0.14
DAR30.8 94101.0 11 1 94167 1.61 23 1 94101 0
DAR30.9 93887.0 15 1 93921 0.87 42 1 93887 0
DAR30.10 | 83724.0 16 1 83801 2.07 60 1 83724 0

Table 8: Performance of algorithms A1 and A2 for the problem class DAR30

References

(1] R. ANBIL, R. TaNGA aND E.L. Jounson, A global approach to crew-pairing opti-
mization, IBM Systems Journal 31, 71-78 (1993).

(2] C. BarRNHART, E.L. Jounson, G.L. NEMHAUSER, M.W.P. SAVELSBERGH AND P.H.
VANCE, Branch-and-Price: Column Generation for Solving Integer Programs, Re-
port COC-94-03, Computational Optimization Center, Georgia Institute of Tech-
nology, Atlanta, Georgia (1994).

[3] G. CARPANETO AND P. ToTH, Some new branching and bounding criteria for the
asymmetric travelling salesman problem, Management Science 26, 736-743 (1980).

[4] M. DESROCHERS, J. DESROSIERS AND M. SoLOMON, A new optimization algorithm for

the vehicle routing problem with time windows, Operations Research 42, 342-354
(1992).

[5] Y. Dumas, J. DesrosiErRs AND F. Soumis, The pickup and delivery problem with
time windows, Furopean Journal of Operational Research 54, 7-22 (1991).

[6] G.A.P. KINDERVATER AND M.W.P. SAVELSBERGH, Local search in physical distribu-
tion management, Memorandum COSOR 92-30, Eindhoven University of Technol-
ogy (1992).

[7] G.L. NEMHAUSER, M.W.P. SAVELSBERGH AND G.C. Sigismonnl MINTO, a Mixed
INTeger Optimizer, Operations Research Letters, to appear.

[8] D.M. RyaN AND B.A. FosTER, An integer programming approach to schedul-
ing, Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew
Scheduling, A. Wren (ed.), North-Holland, Amsterdam, 269-280 (1981).

[9] M.W.P. SAVELSBERGH, A branch-and-price algorithm for the generalized assignment
problem, Report COC-93-02, Computational Optimization Center, Georgia Institute
of Technology, Atlanta, Georgia (1993).

22

[10] M. SoL aAND M.W.P. SaveLsBeErRGH, The General Pickup and Delivery Problem,
COSOR Memorandum 92-44, Eindhoven University of Technology (1992); Trans-
portation Science, to appear.

[11] P.H. VaNcg, C. BARNHART, E.L. JoHNsON AND G.L. NEMHAUSER, Solving binary
cutting stock problems by column generation and branch and bound, Report COC-92-
09, Computational Optimization Center, Georgia Institute of Technology, Atlanta,
Georgia (1992).

23

