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1. Introduction 

During an internship at the VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-
GmbH from March to June 2015, an image classification and segmentation system 
developed by Shotton et al. [1] has been implemented and tested on internal and publicly 
available data sets. The goal of the internship was the creation of a framework to facilitate  
the according image classification and segmentation workflows. The resulting framework has 
been packaged into an open source library and is publicly available at 

https://github.com/vrvis/aardvark.semantictextonforests [5]. Additionally, during the 
internship libsvm.clr, a clean and fast C# wrapper for the popular Support Vector Machine 

library libsvm [3], has been created and is available at 
https://www.nuget.org/packages/libsvm.clr.vs2015.x64/ [4] . 

 
The performance of the framework is at least comparable to or better than the basic tools 

used internally at the time, either in terms of accuracy or computation time. It is modular 
and extensible, facilitating adaptation to specific problems and the implementation of 

possible future improvements (see Section 4). The operations of categorizing or segmenting 
an image are performed using the concept of Semantic Texton Forests. These Forests are 

extremely fast to evaluate and provide a very expressive feature representation of image 
data, particularly of photographs. A Forest represents a large number of very simple pixel 
features organized in a hierarchical structure, allowing it to capture not only the visual 
properties, but also a sense of the context and the semantics of image data. 
 
The system can be trained using natural photographs, removing the need for expensive 
image filtering operations otherwise often associated with the term “Texton". However, the 
feature extraction operates on the intensity values of the pixels directly, which means that 
some ramifications have to be kept in mind. Insensitivity to illumination change can not be 

guaranteed for most features, but the user has the option to select only those features with 
this property (see Section 2.2). Also, the approach is conceptually not invariant to change in 

rotation. If necessary, it is a good idea to include rotated copies of the training data into the 
training set (for example 7 copies, each rotated by 45° compared to the previous one).  

 
The scope of the internship focused on the implementation of the Image Categorization and 

Segmentation system described in the original paper [1] and the details learned from the 
according reference implementation. Beyond that, the internship necessitated the creation 

of our libsvm wrapper, which was not part of the original work (which used a different SVM 
library entirely). On the other hand, there are several combinations of evaluation methods 

described in the original work, but the internship only focused on the ones which were 
reported to produce the best results, those are described in this report. Furthermore, the 

original work cites two advanced use cases, the soft Categorization of images using the 
Classifier and unsupervised learning using the Texton Forest, both of which were not 

implemented during the internship. 
 
In Section 2, details about the implementation of the framework are discussed. Section 2.1 

goes into special detail about the generation and application of Semantic Texton Forests. 
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Section 2.2 describes the use of a Forest for the purpose of image classification. In Section 

2.3, the method is extended for use in image segmentation. In Section 3, some examples are 
presented and discussed. It also includes a quick start guide for working with the library. 

Finally, Section 4 includes a summary and some still open topics for future work. 

2. Implementation 

In order to apply classification and segmentation operations on a set of images or image 
patches, appropriate data structures with the required expressive capabilities have been 

implemented. These data structures are used to represent data elements and the 
relationships between them in the algorithms for building and running the system. 
 
The system uses lists of Class Labels to define all images' possible class memberships and 
classification outcomes within a work flow. One Class Label has an Index, which is its unique 
numeric identifier, and an optional friendly Name for better readability. Note that the Class 
Label list defines within the system every possible label that may occur, and may also 
contain Labels which are not included in the training data set (such as the “Unknown" label). 
Using one of these Class Labels each, a set of pictures is loaded into the system as Labeled 
Images, which combine the Label with a PixImage from the Aardvark library. By using data  
types from the Aardvark library, high performance and optimal memory management can be 
ensured. Currently, there is no generic method for reading images from disk and connecting 
them with a Label since this would be outside of the internship's scope. The user has to do 
this manually, for example by parsing the file name or path. Alternatively, the user can 
supply a Label Map, an image which specifies a Label for each pixel (for example by color-

coding the pixels). After loading the images, they can be split into a training set, which is 
used to train the system parameters, and a test set, using which the classification and 

segmentation performance is evaluated. 
 

To generate a feature representation of an image, a Semantic Texton Forest is created. A 
Semantic Texton Forest is a collection of binary Trees, in which each node reaches a binary 

decision by evaluating a very simple local pixel feature. When an image region is passed 
through a Tree from root to leaf, the path it takes forms a hierarchical representation of the 

local textural structure. The expressive power and computational performance of a Forest 
depends on the completeness of the training set and is determined by several parameters, 
including: 
 

 Number of Trees 

 Maximum depth of Trees 

 Training subset size per Tree 

 Sampling method of the Images 
 Feature calculation from Image samples 

 
These parameters are often correlated and the quality of the result can heavily depend on 

the correct choice. Additionally, different parameters perform variously well for different 
problems. Implementing a general heuristic for finding good parameters would be possible, 
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but would have been outside of the internship's scope. However, some generally acceptable 

default values, as well as a framework for testing parameter variations and displaying 
statistical results, are provided in the code to facilitate parameter exploration. 

 

2.1 Forest Training 

 

 

Figure 1: Example for a Semantic Texton Forest 

  

During Forest training, each tree is trained independently. To improve generalization, only a 

random subset of the training images is presented to each Tree. The Tree possesses a 
Sampling Provider, which extracts a collection of Data Points from the images. This is done 
either by dense sampling or, to reduce computation time, regular grid sampling. Each Data 
Point consists of coordinates in pixel and color channel dimensions, and the Label of its 
source image. A Tree is initialized with a root Node and all Data Points are presented to it. 
The Node has a Feature Provider, which considers a small pixel window around a Data Point 
and calculates a numeric value using arbitrarily chosen pixels within that window: 
 

 the intensity of a pixel, 

 the sum of two pixels, 

 the (absolute) difference of two pixels. 
 

These Feature Values are directly compared to the Node's threshold value, effectively 
splitting the Data Point set into left and right subsets depending on whether the feature 

value is less than or greater than the threshold. To find an appropriate threshold for this 
split, a number of random candidates is generated. The split is performed with each of the 

candidates, and the quality of each split is assessed using a score formula based on the 

resulting sets' entropy: 
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where n is the input set of Data Points and l and r are the left and right subsets generated by 
the split, and 
 

𝐸(𝑛) = − ∑ 𝑝(𝑐)log2 𝑝(𝑐)

𝑐

 

 
is a labeled set's entropy. 
 

The use of this scoring formula aims to distribute the counts of Labels as equally as possible 
across the two resulting sets. The candidate which maximizes the score value is selected as 

final threshold for the current Node. Afterward, the Node training function is called 
recursively for two new Nodes, the left and right child of the current Node, using the left and 

right subsets as training input. The process is repeated for each child. Each Node created this 
way is designated as Inner Node. The recursion stops when either the maximum depth 

(distance from the root) is reached, or the score value of the best threshold is too close to 
zero, which means that the input data set is either empty or contains only elements with the 

same Label, and no more information gain is possible by splitting. These Nodes are called 
Leaves. The training of a Tree is finished when each of its branches ends in a Leaf. The Forest 

is trained when each of its Trees is trained. An example for a Forest can be seen in Figure 1.  
 
Concerning the selection of appropriate Feature types, either every Node may use the same 
Feature, or each Node selects one at random. It is noteworthy that the “difference" Features 
are less sensitive to global illumination change than the others, which may prove 
advantageous for certain problems. However, letting the Forest work with arbitrary features 
allows it to learn the ones that provide the most information gain. 

2.2 Classification 

Due to the simplicity of Data Point Features, a trained Forest can be evaluated very quickly 
to create a very powerful and expressive feature representation of an image. This feature 

vector is called the Textonization of an image, and it consists of a histogram counting the 
occurrences of all of the Forest's Nodes. First, a set of Data Points is extracted from the 

image. This set is presented to each Tree of the Forest in turn. Starting from the root Node, a 
Data Point has its Feature value calculated, compared against the Node's threshold and 

passed on to the left or right child Node. This is done repeatedly until a Leaf is reached. 
Every time a Data Point arrives at a Node, the Node's associated histogram bin is 

incremented. The Textonization is complete after all Data Points have passed through all 
Trees. For purpose of increased access speed, each histogram bin stores not only the 

associated Node's global index, but also the index of its Tree and the depth level it is in.  
 

To predict the Label of a texonized image, an appropriate nonlinear kernel function for a 
Support Vector Machine (SVM) has been implemented. The SVM Classifier is considered 
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trained after being initialized with such a kernel. The kernel contains a value for every pair of 

training data elements representing a similarity measure between them.  
 

Over the course of the internship, the popular open source library libsvm [3] has been used 
as implementation of the Support Vector Machine model. Libsvm includes many algorithmic 

and performance related improvements as well as support for pre-computed kernel 
functions, making it ideal for use as Classifier. However, since the library is written in C++ 

and there is a lack of publicly available well-optimized C# wrappers, a new C# wrapper 
library for libsvm, called libsvm.clr [4], was developed. Libsvm.clr is designed for having 

minimal impact on the comparatively fast performance of libsvm, while staying true to the 
original interfaces and usage patterns and utilizing the state-of-the-art programming 

paradigms of C# 6.  
 

The kernel function is calculated as follows. Its values are stored in a matrix that has one row 
and one column for element of the training set. A matrix entry at the position (p,q) 
represents the similarity measure between the elements p and q. Given two Textonizations 
P and Q of two training elements, the similarity measure K(P,Q) is calculated by a modified 
Pyramid Match [2] metric: 

 

𝐾(𝑃, 𝑄) =
1

𝑇
∑

𝐾(𝑃, 𝑄)

𝑍

𝑇

𝑡=0

 

 

𝑍 = √𝐾(𝑃, 𝑃) ∗ 𝐾(𝑄, 𝑄) 

 
with 
 

𝐾(𝑃, 𝑄) = ∑
1

2𝐷−𝑑+1
∗ (𝐼𝑑 − 𝐼𝑑+1 )

𝐷

𝑑=0

 

 
where 𝐼𝑑 is the summed up histogram intersection at the depth d 
 

𝐼𝑑 = ∑ min( P[j],Q[j] )

𝑗∈𝑑

 

 
The histogram intersection used in 𝐼𝑑 operates on the parts of the histograms at depth d, 
where j is the running variable for all Bins that have Depth d. It represents the amount of 
points that can be matched across both histograms at that depth. In terms of the Forest, it is 
the number of Data Points from the respective images P and Q that have reached the Leaves 
or passed through the Nodes at that depth. The higher this number, the more similar the 
two images are at that depth. The expression 𝐼𝑑 – 𝐼𝑑+1 subtracts from the match count of 

one depth the count of the depth below. This means that at the current depth, only the 

matches are considered which are "new" at this depth and have not been already matched 
anywhere below the current one. The expression is divided by a scaling factor that has its 
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largest value at the deepest level (the most "difficult" match) and progressively becomes 

smaller at higher levels closer to the root (where the matching becomes “easier"). This 
difference is summed up over all depths. The root is at depth d = 0 and 𝐼𝐷+1 = 0. The 

resulting value is large for image pairs which are similar in the sense of the Forest, and small 
for dissimilar images. Through division by Z the value is normalized for images of different 

sizes and scaled to the range [0,1]. The average of all Trees' individual results is the final 
value for K(P,Q). 

 
The training kernel is obtained by evaluating K for all pairs of elements in the training set. 

The resulting kernel matrix is symmetric ( K(P,Q) = K(Q,P) ) and has ones in the diagonal 
(K(P,P) = 1). The SVM Classifier is considered trained after being initialized with this kernel 

matrix together with the appropriate Labels and indices (for the precise memory layout, 
please refer to the libsvm manual).  
 

To predict the Label of an image or a set of images ("test" images), a second kernel is 
presented to the Classifier. For each of these test images, the similarity value K is established 
to all of the training images used for training in the previous step and stored in the test 
kernel matrix. The SVM Classifier compares this matrix with the trained model and evaluates 
the membership of the test data to the class Labels. The resulting output is the Label that 
most likely belongs to the input image. 

2.3 Segmentation 

 

         

 

   

 

Figure 2: Some examples for segmentation results. (Colors in the visualizations are                

not consistent.) 
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In principle, image Segmentation is performed by feeding image Patches, which are small 

rectangular subregions of an image, into the Classification system defined in the previous 
Section. This Segmentation can and should be done independently of the image-level 

Classification, since it generally requires a Forest trained with different Parameters and a 
different data set. Commonly, the Forest used for Patches will be flatter and have more trees 

than the one used for Images. Also, it is worth repeating that the training Patches, which are 
textural representations of their objects' appearances (trees, grass, sky, …), may include 

rotated copies of themselves where appropriate to improve accuracy. Additionally, the 
Patches must have a Label for each pixel they cover. Should it not be uniformly the same 

Label for all pixels, the Forest training step is refined by selecting the actual Label for the 
currently considered Data Point to represent that part of a Patch. When using photographs 

with ground truth maps, the size of the Data Point sampling window can be increased to 
allow the feature representation to take the semantics, that is the context of different 

objects around the current one, into consideration where appropriate.  

 

Even more so than with entire images, the number of Patches can quickly become very high 

within a Segmentation workflow, which causes the kernel computation to take a very long 
time. Some functionality is provided in order to combat this problem. The number of 

Patches per Tree can be limited as well as the number of Data Points per training step using 
a parameter as hard constraint. These parameters also improve generalizability of a model. 

Also, it is a good idea to select only a small subset of the training data and coarsely test out 
appropriate parameters using the testing framework before committing to a training run 
with the full data set. Furthermore, some helper functions  are included to facilitate working 
with Patches. Since the ground truth Labels for Patches are often encoded in the color 
channels of a Label map, functions are included to map a color onto a Label and vice versa. 
Finally, using these mapping functions, a method is included to create a visualization of a 

Segmentation output by generating a picture the same size as the input image and coloring 
the patches according to their Labels. Some examples for Segmentation results can be seen 
in Figure 2. 

 

An extension to this segmentation method [1],  which uses a "second-level" Segmentation 
Forest that operates on the output of the original Forest in order to perform segmentation, 
has been implemented. Using this second Forest instead of the Classifier decouples the 
semantic context consideration from the original Classification workflow by admitting the 
use of a different set of parameters in an extra step, while also drastically reducing the 
computation time by not having to calculate a kernel. However, the quality of the 
segmentation heavily depends on the quality of the training set and on the parameters, 
increasing the degrees of freedom in the system. 

 

The Segmentation Forest is trained on a set of Distribution Images created by the Texton 
Forest (Section 2.1). A Distribution Image is map of Label Distributions predicted by the 

Texton Forest for each individual pixel of an image. The Distribution Image has the same 
width and height as the image, but the number of "color" channels equal to the number of 
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Labels. It is generated by presenting each pixel (faster: regular sampling) to the Texton 

Forest and following its path to a Leaf. The pixel's Label distribution is the distribution of 
Labels which arrived at that Leaf during training. Each Label in this distribution is weighted 

by the inverse of its frequency in the training set to remove the underlying bias towards the 
more frequent Labels.  

 

The Segmentation Forest is trained in a fashion similar to the Texton Forest, and its resulting 
structure is also mostly similar. However, the Data Points are extracted from Distribution 
Images instead of actual photographs and are chosen as a regular grid spanning the entire 
image. A Node's split function differs in that it has an offset value which may be very large 
(up to half the image size). By considering regions far away from the actual patch, the 
semantic information (the "surrounding") is incorporated into the model. The split function 
randomly selects one of the "color" channels in the Distribution Image and compares the 
value to its threshold directly. In case of a pixel region, the average of all pixels is computed. 

This computation uses the efficient matrix algebra of Aardvark and implements Summed 
Area Tables in order to maximize performance.  

 

After training is complete, the Label of an image can be predicted by transforming the image 
into a Distribution Image and presenting the Distribution Image to the Forest. The Forest 
splits it into patches similar as during training and returns a new Distribution Image which 
contains the prediction of Labels for each pixel. The resulting segmentation can be visualized 
using the same helper function as in the previously described in the Classifier Segmentation 
approach. Some examples can be seen in Figure 2. 

3. Usage 

The following C# code includes an example application using Semantic Texton Forests. 
 
      string workingDirectory = @"C:\Temp"; 
 
      // Parameters:  
            var parameters = new TrainingParams(6,  // Number of Trees 
    18,        // Maximum depth of Trees 
    15,        // Sampling window size 
    5,              // Sampling Frequency 
    Labels);      // Array of all Labels 
     
            // (0) Read and Prepare Data 
 
            LabeledImage[] images = HelperFunctions.GetLabeledImages(Path); 
 
            LabeledImage[] train; 
            LabeledImage[] test; 
 
            images.Split(out train, out test); 
 
            // (1) Train Forest 
 
            var forest = new Forest(ForestName, parameters); 
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            forest.Train(train, parameters); 
 
            // (2) Textonize Data 
 
            var trainTextons = train.Textonize(forest, parameters); 
            var testTextons = test.Textonize(forest, parameters);   
 
            // (3) Train Classifier 
 
            var classifier = new Classifier(workingDirectory); 
 
            classifier.Train(trainTextons, parameters); 
 
            // (4) Classify 
 
            Label[] prediction = classifier.PredictLabel(testTextons, parameters); 
 

The parameters object specifies many aspects of the Classifier system. By initializing it as 
shown here, sensible default values are chosen. First, the image set is read from disk. 
HelperFunctions contains some example functions for this task which can be copied and 

modified. Afterwards, the Forest is trained using a part of the image set. Then, both parts of 
the image set are transformed into their respective Textonizations. Finally, the classifier is 

trained using those Textonizations. The Labels of texonized images can be predicted using 
that classifier. 
 

The syntax for Classifier Segmentation looks identical, except for using LabeledPatch instead 
of LabeledImage. Similarly, the syntax for the Segmentation Forest looks the same, but uses 

 
   var trainDists = train.Distributionize(forest, parameters); 
  
  var segForest = new SegmentationForest(ForestName, segParameters); 
 
   segForest.Train(trainDists, segParameters); 
 

to compute Distribution Images and perform training. 
 

The Classifier has been tested using two datasets. The first one was the MSRC Dataset 

(which can be downloaded at [6]), which contains outdoor photographs with 21 Labels and 
about 30 images each. This dataset poses a difficult problem for classification system 

because the images are varied in quality and lighting, and there aren't particularly many 
samples available per Label. Still, during testing, the Semantic Texton Forest classifier was 
able to realistically achieve upwards of 60% precision. Figure 3 shows an example run, in 

which the precision varies with different numbers of Trees. In this example, the best overall 
accuracy was achieved at 5 Trees, more than that lead to increased overfitting.  A second 

second internal data set was also used for testing, which had two Labels and about 1000 
examples each. The Classifier reached up to 80% precision. 
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Figure 3: Precision versus the number of Trees. 
 

  
 

Figure 4: From left to right: Image, ground truth, Classifier segmentation, Segmentation 

Forest 
 

Figure 4 shows some examples for Segmentation, and in particular, the difference between 
segmentation using the Classifier, which only considers local features, and the Segmentation 
Forest, which incorporates semantic information. In general, the local segmentation leads to 
a higher precision per patch, but doesn't preserve the shape of segmented objects. 
Conversely, the Segmentation Forest leads to smooth shapes and rounded outlines, but is 
more likely introduce artifacts due to the higher degree of freedom in the model and 

potentially bad training parameters. 

 

3.1 Performance 

All of our tests were performed on a relatively modern machine with an Intel Core i5 CPU 
and 16GB of memory. Still, it can be observed that all procedures relying on a Forest are very 
quick to evaluate, and, depending on the training parameters, do not take very long to train 
either. A data set with 50 pictures at 400 x 300 pixels each and regular sampling with a 
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square sampling window 5 pixels in size produces around one million data points. Most of 

the test configurations we used resulted in around this number, and it was also a sensible 
hard limit to use for training with larger data sets. Training both a Texton Forest and the 

Segmentation Forest with 8 Trees and a maximum depth of 20 takes about ten minutes with 
a training set this large.  

 

These parameters are what we found to be acceptable for most of our problems, anything 
(much) higher than that took (significantly) longer to train, but did not increase the output 
quality by any substantial amount. The resulting Forests contain about 5000 to 10 000 nodes 
each and the processing speed is roughly equivalent to 4000 data points per second. In 
comparison, for the same set-up, a Classifier approach is slower by about a factor of ten. 
Calculation of the Support Vector Machine kernel took up to thirty minutes and longer. Even 
worse, the size of the kernel and number of calculations grow exponentially with a larger 
training set, which usually makes the Forest-based approaches preferable for large 

problems. 

 

Evaluation of the Forest only takes about one second per picture, which corresponds to 
about 100 000 data points processed per second. The actual performance bottleneck in our 
system lies in the loading and processing of images, and the reading of pixel data and 
calculating pixel features. These operations take several times as long as the actual Forest 
operations. Our system uses the naive approach of performing these actions on demand, but 
a future refactoring could be imagined in which all required pixel values and features are 
calculated as a pre-processing step and only need to be read from memory during 
segmentation. 

 

Our processing times are roughly half of the numbers reported in the original paper [1]. This 

stems largely from the fact that we use parallelization and a quad-core CPU to effectively 
multiply our performance, while the original implementation is single-threaded. We also use 

a thread-safe caching system for faster access to image data, and our fast libsvm wrapper 
library. However, the original implementation includes several algorithmic improvements 
which we do not have. Therefore, speaking comparatively, our implementation can not quite 

reach the performance of the original. 

4. Conclusion and Future Outlook 

Semantic Texton Forests provide a tool for image classification and segmentation. They 
distinguish themselves by being extremely fast to evaluate and the ability to be tuned to 
incorporate semantic information about data. On the other hand, they may suffer from 
being badly configured and there is no easy method of finding proper parameters, apart 
from trial and error.  
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Semantic Texton Forests were implemented in the course of the internship. The 

implementation aims for openness, speed and ease of use and includes many parameters to 
configure the system. Also included are tools to facilitate the image classification and 

segmentation workflows. 

 

Conversely, the system has not been optimized for memory efficiency. There are some 
algorithmic changes and re-arrangements to be done in order to reduce the memory 
overhead and fragmentation. Implementing these was outside of the internship's scope. In 
addition, the system lacks procedures to find optimal parameters. Some concepts to 
exhaustively search for, or heuristics to quickly find such parameters could be imagined. 
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