
Stefan Wermter- Prof. Dr.
- Professor (Full) at Hamburg University
Stefan Wermter
- Prof. Dr.
- Professor (Full) at Hamburg University
Artificial Intelligence, Neural Networks, Machine Learning, Cognitive Systems, Robotics, Hybrid Knowledge Technology
About
749
Publications
142,926
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
12,820
Citations
Introduction
Stefan Wermter is Professor at the University of Hamburg, Director of Knowledge Technology and President of ENNS. He holds an MSc from the University of Massachusetts in Computer Science, and a PhD and Habilitation in Computer Science from the University of Hamburg. Research interests are in Neural Networks, Artificial Intelligence, Hybrid Knowledge Processing, Neurocognitive Robotics, Multimodal Integration, Machine Learning. Details at www.stefan-wermter.info or www.knowledge-technology.info
Current institution
Additional affiliations
April 1997 - September 1997
ICSI University of California, Berkeley
Position
- Researcher
November 1991 - January 1998
March 2010 - present
Education
July 1993 - October 1998
November 1991 - June 1993
January 1990 - October 1991
University of Dortmund
Field of study
- Computer Science
Publications
Publications (749)
Reward models trained with conventional Reinforcement Learning from AI Feedback (RLAIF) methods suffer from limited generalizability, which hinders the alignment performance of the policy model during reinforcement learning (RL). This challenge stems from various issues, including distribution shift, preference label noise, and mismatches between o...
Recent advancements in machine learning provide methods to train autonomous agents capable of handling the increasing complexity of sequential decision-making in robotics. Imitation Learning (IL) is a prominent approach, where agents learn to control robots based on human demonstrations. However, IL commonly suffers from violating the independent a...
The role of long- and short-term dynamics towards salient object detection in videos is under-researched. We present a Transformer-based approach to learn a joint representation of video frames and past saliency information. Our model embeds long- and short-term information to detect dynamically shifting saliency in video. We provide our model with...
To facilitate natural and intuitive interactions with diverse user groups in real-world settings, social robots must be capable of addressing the varying requirements and expectations of these groups while adapting their behavior based on user feedback. While previous research often focuses on specific demographics, we present a novel framework for...
Human intention-based systems enable robots to perceive and interpret user actions to interact with humans and adapt to their behavior proactively. Therefore, intention prediction is pivotal in creating a natural interaction with social robots in human-designed environments. In this paper, we examine using Large Language Models (LLMs) to infer huma...
Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on l...
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulat...
We introduce NOVIC, an innovative real-time uNcon-strained Open Vocabulary Image Classifier that uses an au-toregressive transformer to generatively output classification labels as language. Leveraging the extensive knowledge of CLIP models, NOVIC harnesses the embedding space to enable zero-shot transfer from pure text to images. Traditional CLIP...
Prosody plays a fundamental role in human speech and communication, facilitating intelligibility and conveying emotional and cognitive states. Extracting accurate prosodic information from speech is vital for building assistive technology, such as controllable speech synthesis, speaking style transfer, and speech emotion recognition (SER). However,...
With the increasing performance of text-to-speech systems and their generated voices indistinguishable from natural human speech, the use of these systems for robots raises ethical and safety concerns. A robot with a natural voice could increase trust, which might result in over-reliance despite evidence for robot unreliability. To estimate the inf...
There has been substantial progress in humanoid robots, with new skills continuously being taught, ranging from navigation to manipulation. While these abilities may seem impressive, the teaching methods often remain inefficient. To enhance the process of teaching robots, we propose leveraging a mechanism effectively used by humans: teaching by dem...
Can emergent language models faithfully model the intelligence of decision-making agents? Though modern language models already exhibit some reasoning ability, and theoretically can potentially express any probable distribution over tokens, it remains underexplored how the world knowledge these pre-trained models have memorized can be utilised to c...
Inspired by the success of the Transformer architecture in natural language processing and computer vision, we investigate the use of Transformers in Reinforcement Learning (RL), specifically in modeling the environment's dynamics using Transformer Dynamics Models (TDMs). We evaluate the capabilities of TDMs for continuous control in real-time plan...
Active speaker detection (ASD) in multimodal environments is crucial for various applications, from video conferencing to human-robot interaction. This paper introduces FabuLight-ASD, an advanced ASD model that integrates facial, audio, and body pose information to enhance detection accuracy and robustness. Our model builds upon the existing Light-...
Large Language Models (LLMs) have been recently used in robot applications for grounding LLM common-sense reasoning with the robot's perception and physical abilities. In humanoid robots, memory also plays a critical role in fostering real-world embodiment and facilitating long-term interactive capabilities, especially in multi-task setups where th...
Although there has been rapid progress in endowing robots with the ability to solve complex manipulation tasks, generating control policies for bimanual robots to solve tasks involving two hands is still challenging because of the difficulties in effective temporal and spatial coordination. With emergent abilities in terms of step-by-step reasoning...
Humanoid robots can benefit from their similarity to the human shape by learning from humans. When humans teach other humans how to perform actions, they often demonstrate the actions and the learning human imitates the demonstration to get an idea of how to perform the action. Being able to mentally transfer from a demonstration seen from a third-...
Active speaker detection (ASD) in multimodal environments is crucial for various applications, from video conferencing to human-robot interaction. This paper introduces FabuLight-ASD, an advanced ASD model that integrates facial, audio, and body pose information to enhance detection accuracy and robustness. Our model builds upon the existing Light-...
To facilitate natural and intuitive interactions with diverse user groups in real-world settings, social robots must be capable of addressing the varying requirements and expectations of these groups while adapting their behavior based on user feedback. While previous research often focuses on specific demographics, we present a novel framework for...
This paper introduces a novel zero-shot motion planning method that allows users to quickly design smooth robot motions in Cartesian space. A Bézier curve-based Cartesian plan is transformed into a joint space trajectory by our neuro-inspired inverse kinematics (IK) method CycleIK, for which we enable platform independence by scaling it to arbitrar...
The state of an object reflects its current status or condition and is important for a robot's task planning and manipulation. However , detecting an object's state and generating a state-sensitive plan for robots is challenging. Recently, pre-trained Large Language Models (LLMs) and Vision-Language Models (VLMs) have shown impressive capabilities...
Concept-based XAI (C-XAI) approaches to explaining neural vision models are a promising field of research, since explanations that refer to concepts (i.e., semantically meaningful parts in an image) are intuitive to understand and go beyond saliency-based techniques that only reveal relevant regions. Given the remarkable progress in this field in r...
We investigate the use of Large Language Models (LLMs) to equip neural robotic agents with human-like social and cognitive com-petencies, for the purpose of open-ended human-robot conversation and collaboration. We introduce a modular and extensible methodology for grounding an LLM with the sensory perceptions and capabilities of a physical robot,...
Continual Learning represents a significant challenge within the field of computer vision, primarily due to the issue of catastrophic forgetting that arises with sequential learning tasks. Among the array of strategies explored in current continual learning research, replay-based methods have shown notable effectiveness. In this paper, we introduce...
Inspired by the success of the Transformer architecture in natural language processing and computer vision, we investigate the use of Transformers in Reinforcement Learning (RL), specifically in modeling the environment's dynamics using Transformer Dynamics Models (TDMs). We evaluate the capabilities of TDMs for continuous control in real-time plan...
Published in Journal: "Neurosymbolic Artificial Intelligence".
In this paper, we review recent approaches for explaining concepts in neural networks. Concepts can act as a natural link between learning and reasoning: once the concepts are identified that a neural learning system uses, one can integrate those concepts with a reasoning system for inf...
Large Language Models (LLMs) have been recently used in robot applications for grounding LLM common-sense reasoning with the robot's perception and physical abilities. In humanoid robots, memory also plays a critical role in fostering real-world embodiment and facilitating long-term interactive capabilities, especially in multi-task setups where th...
We introduce NOVIC, an innovative uNconstrained Open Vocabulary Image Classifier that uses an autoregressive transformer to generatively output classification labels as language. Leveraging the extensive knowledge of CLIP models, NOVIC harnesses the embedding space to enable zero-shot transfer from pure text to images. Traditional CLIP models, desp...
Architectures for vision-based robot manipulation often utilize separate domain adaption models to allow sim-to-real transfer and an inverse kinematics solver to allow the actual policy to operate in Cartesian space. We present a novel end-to-end visuomotor architecture that combines domain adaption and inherent inverse kinematics in one model. Usi...
We address the Continual Learning (CL) problem, wherein a model must learn a sequence of tasks from non-stationary distributions while preserving prior knowledge upon encountering new experiences. With the advancement of foundation models, CL research has pivoted from the initial learning-from-scratch paradigm towards utilizing generic features fro...
Sensory and emotional experiences are essential for mental and physical well-being, especially within the realm of psychiatry. This article highlights recent advances in cognitive neuroscience, emphasizing the significance of pain recognition and empathic artificial intelligence (AI) in healthcare. We provide an overview of the recent development p...
We investigate the use of Large Language Models (LLMs) to equip neural robotic agents with human-like social and cognitive competencies, for the purpose of open-ended human-robot conversation and collaboration. We introduce a modular and extensible methodology for grounding an LLM with the sensory perceptions and capabilities of a physical robot, a...
Can emergent language models faithfully model the intelligence of decision-making agents? Though modern language models exhibit already some reasoning ability, and theoretically can potentially express any probable distribution over tokens, it remains underexplored how the world knowledge these pretrained models have memorized can be utilized to co...
The state of an object reflects its current status or condition and is important for a robot's task planning and manipulation. However, detecting an object's state and generating a state-sensitive plan for robots is challenging. Recently, pre-trained Large Language Models (LLMs) and Vision-Language Models (VLMs) have shown impressive capabilities i...
Imitation can allow us to quickly gain an understanding of a new task. Through a demonstration, we can gain direct knowledge about which actions need to be performed and which goals they have. In this paper, we introduce a new approach to imitation learning that tackles the challenges of a robot imitating a human, such as the change in perspective...
Endowing robots with the human ability to learn a growing set of skills over the course of a lifetime as opposed to mastering single tasks is an open problem in robot learning. While multitask learning approaches have been proposed to address this problem, they pay little attention to task inference. In order to continually learn new tasks, the rob...
Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control. A remaining challenge is to acquire a diverse set of fundamental skills. Existing approaches either manually decompose a complex task into atomic robotic actions in a top-down fashion, or bootstrap as...
Previous research on scanpath prediction has mainly focused on group models, disregarding the fact that the scanpaths and at-tentional behaviors of individuals are diverse. The disregard of these differences is especially detrimental to social human-robot interaction, whereby robots commonly emulate human gaze based on heuristics or predefined patt...
Natural language processing and vision tasks have recently seen large improvements through the rise of Transformer architectures. The high-performing large language models (LLMs) benefit from large textual datasets that are numerously available online. However, action and bidirectional action-language tasks are less developed, as these require more...
Humans can effortlessly modify various prosodic attributes, such as the placement of stress and the intensity of sentiment, to convey a specific emotion while maintaining consistent linguistic content. Motivated by this capability, we propose EmoAug, a novel style transfer model designed to enhance emotional expression and tackle the data scarcity...
Intention-based Human-Robot Interaction (HRI) systems allow robots to perceive and interpret user actions to proactively interact with humans and adapt to their behavior. Therefore, intention prediction is pivotal in creating a natural interactive collaboration between humans and robots. In this paper, we examine the use of Large Language Models (L...
Humanoid robots can benefit from their similarity to the human shape by learning from humans. When humans teach other humans how to perform actions, they often demonstrate the actions and the learning human can try to imitate the demonstration. Being able to mentally transfer from a demonstration seen from a third-person perspective to how it shoul...
Reinforcement learning (RL) is a powerful technique for training intelligent agents, but understanding why these agents make specific decisions can be quite challenging. This lack of transparency in RL models has been a long-standing problem, making it difficult for users to grasp the reasons behind an agent's behaviour. Various approaches have bee...
Although there has been rapid progress in endowing robots with the ability to solve complex manipulation tasks, generating control policies for bimanual robots to solve tasks involving two hands is still challenging because of the difficulties in effective temporal and spatial coordination. With emergent abilities in terms of step-by-step reasoning...
Recent advancements in large language models have showcased their remarkable generalizability across various domains. However, their reasoning abilities still have significant room for improvement, especially when confronted with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their reasoning of...
Message oriented and robotics middleware play an important role in facilitating robot control, abstracting complex functionality, and unifying communication patterns between sensors and devices. However, using multiple middleware frameworks presents a challenge in integrating different robots within a single system. To address this challenge, we pr...
Message oriented and robotics middleware play an important role in facilitating robot control, abstracting complex functionality, and unifying communication patterns between sensors and devices. However, using multiple middleware frameworks presents a challenge in integrating different robots within a single system. To address this challenge, we pr...
Mirroring non-verbal social cues such as affect or movement can enhance human-human and human-robot interactions in the real world. The robotic platforms and control methods also impact people's perception of human-robot interaction. However, limited studies have compared robot imitation across different platforms and control methods. Our research...
The aim of this work is to investigate the impact of crossmodal self-supervised pre-training for speech reconstruction (video-to-audio) by leveraging the natural co-occurrence of audio and visual streams in videos. We propose LipSound2 that consists of an encoder-decoder architecture and location-aware attention mechanism to map face image sequence...
Weakly supervised referring expression comprehension (REC) aims to ground target objects in images according to given referring expressions, while the mappings between image regions and referring expressions are unavailable during the model training phase. Existing models typically reconstruct the multimodal relationships to ground targets by utili...
Large language models (LLMs) have achieved significant recent success in deep learning. The remaining challenges in robotics and human-robot interaction (HRI) still need to be tackled but off-the-shelf pre-trained LLMs with advanced language and reasoning capabilities can provide solutions to problems in the field. In this work, we realise an open-...
Humans can effortlessly modify various prosodic attributes, such as the placement of stress and the intensity of sentiment, to convey a specific emotion while maintaining consistent linguistic content. Motivated by this capability, we propose EmoAug, a novel style transfer model designed to enhance emotional expression and tackle the data scarcity...
We address the Continual Learning (CL) problem, where a model has to learn a sequence of tasks from non-stationary distributions while preserving prior knowledge as it encounters new experiences. With the advancement of foundation models, CL research has shifted focus from the initial learning-from-scratch paradigm to the use of generic features fr...
A desirable trait of an artificial agent acting in the visual world is to continually learn a sequence of language-informed tasks while striking a balance between sufficiently specializing in each task and building a generalized knowledge for transfer. Selective specialization, i.e., a careful selection of model components to specialize in each tas...
Human infants learn the language while interacting with their environment in which their caregivers may describe the objects and actions they perform. Similar to human infants, artificial agents can learn the language while interacting with their environment. In this work, first, we present a neural model that bidirectionally binds robot actions an...
In recent years, Generative Adversarial Networks (GANs) have proven to be a sophisticated approach for generative tasks in image processing, especially inpainting and image synthesis While most GAN approaches feature comparatively large networks, we introduce an approach to image inpainting using progressive growing GANs, which enables significantl...
Explaining the behaviour of intelligent agents learned by reinforcement learning (RL) to humans is challenging yet crucial due to their incomprehensible proprioceptive states, variational intermediate goals, and resultant unpredictability. Moreover, one-step explanations for RL agents can be ambiguous as they fail to account for the agent's future...
Reinforcement Learning (RL) plays an important role in the robotic manipulation domain since it allows self-learning from trial-and-error interactions with the environment. Still, sample efficiency and reward specification seriously limit its potential. One possible solution involves learning from expert guidance. However, obtaining a human expert...
Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a major goal in robotics. However, many existing robotic platforms are either designed for social interaction or industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their social interaction and physical collaborati...
A desirable trait of an artificial agent acting in the visual world is to continually learn a sequence of language-informed tasks while striking a balance between sufficiently specializing in each task and building a generalized knowledge for transfer. Selective specialization, i.e., a careful selection of model components to specialize in each tas...
In this paper, we review recent approaches for explaining concepts in neural networks. Concepts can act as a natural link between learning and reasoning: once the concepts are identified that a neural learning system uses, one can integrate those concepts with a reasoning system for inference or use a reasoning system to act upon them to improve or...
Programming robot behavior in a complex world faces challenges on multiple levels, from dextrous low-level skills to high-level planning and reasoning. Recent pre-trained Large Language Models (LLMs) have shown remarkable reasoning ability in few-shot robotic planning. However, it remains challenging to ground LLMs in multimodal sensory input and c...
Model-based reinforcement learning (MBRL) with real-time planning has shown great potential in locomotion and manipulation control tasks. However, the existing planning methods, such as the Cross-Entropy Method (CEM), do not scale well to complex high-dimensional environments. One of the key reasons for underperformance is the lack of exploration,...
Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an ope...
Recent advancements in large language models have showcased their remarkable generalizability across various domains. However, their reasoning abilities still have significant room for improvement, especially when confronted with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their behavior, pa...
While Automatic Speech Recognition (ASR) models have shown significant advances with the introduction of unsupervised or self-supervised training techniques, these improvements are still only limited to a subsection of languages and speakers. Transfer learning enables the adaptation of large-scale multilingual models to not only low-resource langua...
Multimodal integration is a key component of allowing robots to perceive the world. Multimodality comes with multiple challenges that have to be considered, such as how to integrate and fuse the data. In this paper, we compare different possibilities of fusing visual, tactile and proprioceptive data. The data is directly recorded on the NICOL robot...
Neural fields are neural networks which map coordinates to a desired signal. When a neural field should jointly model multiple signals, and not memorize only one, it needs to be conditioned on a latent code which describes the signal at hand. Despite being an important aspect, there has been little research on conditioning strategies for neural fie...
In recent research, in the domain of speech processing, large End-to-End (E2E) systems for Automatic Speech Recognition (ASR) have reported state-of-the-art performance on various benchmarks. These systems intrinsically learn how to handle and remove noise conditions from speech. Previous research has shown, that it is possible to extract the denoi...
The paper introduces CycleIK, a neuro-robotic approach that wraps two novel neuro-inspired methods for the inverse kinematics (IK) task—a Generative Adversarial Network (GAN), and a Multi-Layer Perceptron architecture. These methods can be used in a standalone fashion, but we also show how embedding these into a hybrid neuro-genetic IK pipeline all...
Endowing robots with the human ability to learn a growing set of skills over the course of a lifetime as opposed to mastering single tasks is an open problem in robot learning. While multi-task learning approaches have been proposed to address this problem, they pay little attention to task inference. In order to continually learn new tasks, the ro...
In recent research, in the domain of speech processing, large End-to-End (E2E) systems for Automatic Speech Recognition (ASR) have reported state-of-the-art performance on various benchmarks. These systems intrinsically learn how to handle and remove noise conditions from speech. Previous research has shown, that it is possible to extract the denoi...
Robot facial expressions and gaze are important factors for enhancing human-robot interaction (HRI), but their effects on human collaboration and perception are not well understood, for instance, in collaborative game scenarios. In this study, we designed a collaborative triadic HRI game scenario where two participants worked together to insert obj...
Increasing anthropomorphic robot behavioral design could affect trust and cooperation positively. However, studies have shown contradicting results and suggest a task-dependent relationship between robots that display emotions and trust. Therefore, this study analyzes the effect of robots that display human-like emotions on trust, cooperation, and...
We study a class of reinforcement learning problems where the reward signals for policy learning are generated by an internal reward model that is dependent on and jointly optimized with the policy. This interdependence between the policy and the reward model leads to an unstable learning process because reward signals from an immature reward model...
Human-robot interaction relies on a noise-robust audio processing module capable of estimating target speech from audio recordings impacted by environmental noise, as well as self-induced noise, so-called ego-noise. While external ambient noise sources vary from environment to environment, ego-noise is mainly caused by the internal motors and joint...
The paper introduces CycleIK, a neuro-robotic approach that wraps two novel neuro-inspired methods for the inverse kinematics (IK) task, a Generative Adversarial Network (GAN), and a Multi-Layer Perceptron architecture. These methods can be used in a standalone fashion, but we also show how embedding these into a hybrid neuro-genetic IK pipeline al...
Knowledge about space and time is necessary to solve problems in the physical world. Spatio-temporal knowledge, however, is required beyond interacting with the physical world, and is also often transferred to the abstract world of concepts through analogies and metaphors. As spatial and temporal reasoning is ubiquitous, different attempts have bee...
As robots are expected to get more involved in people’s everyday lives, frameworks that enable intuitive user interfaces are in demand. Hand gesture recognition systems provide a natural way of communication and, thus, are an integral part of seamless human-robot interaction (HRI). Recent years have witnessed an immense evolution of computational m...
Multimodal integration is a key component of allowing robots to perceive the world. Multimodality comes with multiple challenges that have to be considered, such as how to integrate and fuse the data. In this paper, we compare different possibilities of fusing visual, tactile and proprioceptive data. The data is directly recorded on the NICOL robot...
While Automatic Speech Recognition (ASR) models have shown significant advances with the introduction of unsupervised or self-supervised training techniques, these improvements are still only limited to a subsection of languages and speakers. Transfer learning enables the adaptation of large-scale multilingual models to not only low-resource langua...
Increasing anthropomorphic robot behavioral design could affect trust and cooperation positively. However, studies have shown contradicting results and suggest a task-dependent relationship between robots that display emotions and trust. Therefore, this study analyzes the effect of robots that display human-like emotions on trust, cooperation, and...
Deep reinforcement learning (RL) agents often suffer from catastrophic forgetting, forgetting previously found solutions in parts of the input space when training new data. Replay memories are a common solution to the problem by decorrelating and shuffling old and new training samples. They naively store state transitions as they arrive, without re...
Large-scale commonsense knowledge bases empower a broad range of AI applications, where the automatic extraction of commonsense knowledge (CKE) is a fundamental and challenging problem. CKE from text is known for suffering from the inherent sparsity and reporting bias of commonsense in text. Visual perception, on the other hand, contains rich commo...
Real-time on-device continual learning applications are used on mobile phones, consumer robots, and smart appliances. Such devices have limited processing and memory storage capabilities, whereas continual learning acquires data over a long period of time. By necessity, lifelong learning algorithms have to be able to operate under such constraints...
Robotic platforms that can efficiently collaborate with humans in physical tasks constitute a major goal in robotics. However, many existing robotic platforms are either designed for social interaction or industrial object manipulation tasks. The design of collaborative robots seldom emphasizes both their social interaction and physical collaborati...
Supervised masking approaches in the time-frequency domain aim to employ deep neural networks to estimate a multiplicative mask to extract clean speech. This leads to a single estimate for each input without any guarantees or measures of reliability. In this paper, we study the benefits of modeling uncertainty in clean speech estimation. Prediction...
Deep Reinforcement Learning agents often suffer from catastrophic forgetting, forgetting previously found solutions in parts of the input space when training on new data. Replay Memories are a common solution to the problem, decorrelating and shuffling old and new training samples. They naively store state transitions as they come in, without regar...
The task of emotion recognition in conversations (ERC) benefits from the availability of multiple modalities, as provided, for example, in the video-based Multimodal EmotionLines Dataset (MELD). However, only a few research approaches use both acoustic and visual information from the MELD videos. There are two reasons for this: First, label-to-vide...
In general, a similarity threshold (i.e., a vigilance parameter) for a node learning process in Adaptive Resonance Theory (ART)-based algorithms has a significant impact on clustering performance. In addition, an edge deletion threshold in a topological clustering algorithm plays an important role in adaptively generating well-separated clusters du...
Explaining the behavior of intelligent agents such as robots to humans is challenging due to their incomprehensible proprioceptive states, variational intermediate goals, and resultant unpredictability. Moreover, one-step explanations for reinforcement learning agents can be ambiguous as they fail to account for the agent's future behavior at each...
Over the last few years, we have not seen any major developments in model-free or model-based learning methods that would make one obsolete relative to the other. In most cases, the used technique is heavily dependent on the use case scenario or other attributes, e.g. the environment. Both approaches have their own advantages, for example, sample e...