
Stefan RiezlerHeidelberg University · Department of Computational Linguistics
Stefan Riezler
About
129
Publications
6,263
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,720
Citations
Citations since 2017
Introduction
Research in Statistical Natural Language Processing
Skills and Expertise
Publications
Publications (129)
Reliability of machine learning evaluation -- the consistency of observed evaluation scores across replicated model training runs -- is affected by several sources of nondeterminism which can be regarded as measurement noise. Current tendencies to remove noise in order to enforce reproducibility of research results neglect inherent nondeterminism a...
Data augmentation is a technique to generate new training data based on existing data. We evaluate the simple and cost-effective method of concatenating the original data examples to build new training instances. Continued training with such augmented data is able to improve off-the-shelf Transformer and Conformer models that were optimized on the...
JoeyS2T is a JoeyNMT extension for speech-to-text tasks such as automatic speech recognition and end-to-end speech translation. It inherits the core philosophy of JoeyNMT, a minimalist NMT toolkit built on PyTorch, seeking simplicity and accessibility. JoeyS2T's workflow is self-contained, starting from data pre-processing, over model training and...
Ensembling neural networks is a long-standing technique for improving the generalization error of neural networks by combining networks with orthogonal properties via a committee decision. We show that this technique is an ideal fit for machine learning on medical data: First, ensembles are amenable to parallel and asynchronous learning, thus enabl...
Vision and language navigation (VLN) is a challenging visually-grounded language understanding task. Given a natural language navigation instruction, a visual agent interacts with a graph-based environment equipped with panorama images and tries to follow the described route. Most prior work has been conducted in indoor scenarios where best results...
End-to-end speech translation relies on data that pair source-language speech inputs with corresponding translations into a target language. Such data are notoriously scarce, making synthetic data augmentation by back-translation or knowledge distillation a necessary ingredient of end-to-end training. In this paper, we present a novel approach to d...
Abstract Background Sepsis is the leading cause of death in the intensive care unit (ICU). Expediting its diagnosis, largely determined by clinical assessment, improves survival. Predictive and explanatory modelling of sepsis in the critically ill commonly bases both outcome definition and predictions on clinical criteria for consensus definitions...
Closely related to the problem of the reliability presented in the previous chapter is the problem of determining if the difference between multiple performance evaluation measurements is statistically significant. If the interest is in the statistical significance of differences between performance evaluation scores of machine learning models, the...
Reliability is closely intertwined with validity. On the one hand, reliability is a necessary, but not a sufficient, condition for validity. On the other hand, in the pursuit of high reliability, validity tends to get lost, for example, by oversimplifying measurement procedures or by overly strict annotation instructions. More often than not, the n...
The notion of validity of a prediction has an ill-defined status in NLP, and it is not associated with a widely accepted evaluation measure such as precision as a measure of prediction quality, or recall as a measure of prediction quantity, in classification. The goal of this chapter is to give a clear definition of the concept of validity in NLP a...
Recently more attention has been given to adversarial attacks on neural networks for natural language processing (NLP). A central research topic has been the investigation of search algorithms and search constraints, accompanied by benchmark algorithms and tasks. We implement an algorithm inspired by zeroth order optimization-based attacks and comp...
Machine learning algorithms train models from patterns of input data and target outputs, with the goal of predicting correct outputs for unseen test inputs. Here we demonstrate a problem of machine learning in vital application areas such as medical informatics or patent law that consists of the inclusion of measurements on which target outputs are...
In semantic parsing of geographical queries against real-world databases such as OpenStreetMap (OSM), unique correct answers do not necessarily exist. Instead, the truth might be lying in the eye of the user, who needs to enter an interactive setup where ambiguities can be resolved and parsing mistakes can be corrected. Our work presents an approac...
We propose an on-the-fly data augmentation method for automatic speech recognition (ASR) that uses alignment information to generate effective training samples. Our method, called Aligned Data Augmentation (ADA) for ASR, replaces transcribed tokens and the speech representations in an aligned manner to generate previously unseen training pairs. The...
Car-focused navigation services are based on turns and distances of named streets, whereas navigation instructions naturally used by humans are centered around physical objects called landmarks. We present a neural model that takes OpenStreetMap representations as input and learns to generate navigation instructions that contain visible and salient...
Large volumes of interaction logs can be collected from NLP systems that are deployed in the real world. How can this wealth of information be leveraged? Using such interaction logs in an offline reinforcement learning (RL) setting is a promising approach. However, due to the nature of NLP tasks and the constraints of production systems, a series o...
Neural approaches to learning term embeddings have led to improved computation of similarity and ranking in information retrieval (IR). So far neural representation learning has not been extended to meta-textual information that is readily available for many IR tasks, for example, patent classes in prior-art retrieval, topical information in Wikipe...
Direct speech translation describes a scenario where only speech inputs and corresponding translations are available. Such data are notoriously limited. We present a technique that allows cascades of automatic speech recognition (ASR) and machine translation (MT) to exploit in-domain direct speech translation data in addition to out-of-domain MT an...
Interest in stochastic zeroth-order (SZO) methods has recently been revived in black-box optimization scenarios such as adversarial black-box attacks to deep neural networks. SZO methods only require the ability to evaluate the objective function at random input points, however, their weakness is the dependency of their convergence speed on the dim...
Sequence-to-sequence learning involves a trade-off between signal strength and annotation cost of training data. For example, machine translation data range from costly expert-generated translations that enable supervised learning, to weak quality-judgment feedback that facilitate reinforcement learning. We present the first user study on annotatio...
Interest in stochastic zeroth-order (SZO) methods has recently been revived in black-box optimization scenarios such as adversarial black-box attacks to deep neural networks. SZO methods only require the ability to evaluate the objective function at random input points, however, their weakness is the dependency of their convergence speed on the dim...
We present a corpus of sentence-aligned triples of German audio, German text, and English translation, based on German audio books. The corpus consists of over 100 hours of audio material and over 50k parallel sentences. The audio data is read speech and thus low in disfluencies. The quality of audio and sentence alignments has been checked by a ma...
Sepsis is the leading cause of death in non-coronary intensive care units. Moreover, a delay of antibiotic treatment of patients with severe sepsis by only few hours is associated with increased mortality. This insight makes accurate models for early prediction of sepsis a key task in machine learning for healthcare. Previous approaches have achiev...
Sepsis is the leading cause of death in non-coronary intensive care units. Moreover, a delay of antibiotic treatment of patients with severe sepsis by only few hours is associated with increased mortality. This insight makes accurate models for early prediction of sepsis a key task in machine learning for healthcare. Previous approaches have achiev...
We present Joey NMT, a minimalist neural machine translation toolkit based on PyTorch that is specifically designed for novices. Joey NMT provides many popular NMT features in a small and simple code base, so that novices can easily and quickly learn to use it and adapt it to their needs. Despite its focus on simplicity, Joey NMT supports classic a...
Not all types of supervision signals are created equal: Different types of feedback have different costs and effects on learning. We show how self-regulation strategies that decide when to ask for which kind of feedback from a teacher (or from oneself) can be cast as a learning-to-learn problem leading to improved cost-aware sequence-to-sequence le...
In many machine learning scenarios, supervision by gold labels is not available and consequently neural models cannot be trained directly by maximum likelihood estimation (MLE). In a weak supervision scenario, metric-augmented objectives can be employed to assign feedback to model outputs, which can be used to extract a supervision signal for train...
We propose an interactive-predictive neural machine translation framework for easier model personalization using reinforcement and imitation learning. During the interactive translation process, the user is asked for feedback on uncertain locations identified by the system. Responses are weak feedback in the form of "keep" and "delete" edits, and e...
In many machine learning scenarios, supervision by gold labels is not available and conse quently neural models cannot be trained directly by maximum likelihood estimation. In a weak supervision scenario, metric-augmented objectives can be employed to assign feedback to model outputs, which can be used to extract a supervision signal for training....
In semantic parsing for question-answering, it is often too expensive to collect gold parses or even gold answers as supervision signals. We propose to convert model outputs into a set of human-understandable statements which allow non-expert users to act as proofreaders, providing error markings as learning signals to the parser. Because model out...
Stochastic zeroth-order (SZO), or gradient-free, optimization allows to optimize arbitrary functions by relying only on function evaluations under parameter perturbations, however, the iteration complexity of SZO methods suffers a factor proportional to the dimensionality of the perturbed function. We show that in scenarios with natural sparsity pa...
We present a study on reinforcement learning (RL) from human bandit feedback for sequence-to-sequence learning, exemplified by the task of bandit neural machine translation (NMT). We investigate the reliability of human bandit feedback, and analyze the influence of reliability on the learnability of a reward estimator, and the effect of the quality...
Counterfactual learning from human bandit feedback describes a scenario where user feedback on the quality of outputs of a historic system is logged and used to improve a target system. We show how to apply this learning framework to neural semantic parsing. From a machine learning perspective, the key challenge lies in a proper reweighting of the...
We present an approach to interactive-predictive neural machine translation that attempts to reduce human effort from three directions: Firstly, instead of requiring humans to select, correct, or delete segments, we employ the idea of learning from human reinforcements in form of judgments on the quality of partial translations. Secondly, human eff...
We present the first real-world application of methods for improving neural machine translation (NMT) with human reinforcement, based on explicit and implicit user feedback collected on the eBay e-commerce platform. Previous work has been confined to simulation experiments, whereas in this paper we work with real logged feedback for offline bandit...
Counterfactual learning is a natural scenario to improve web-based machine translation services by offline learning from feedback logged during user interactions. In order to avoid the risk of showing inferior translations to users, in such scenarios mostly exploration-free deterministic logging policies are in place. We analyze possible degeneraci...
The goal of counterfactual learning for statistical machine translation (SMT) is to optimize a target SMT system from logged data that consist of user feedback to translations that were predicted by another, historic SMT system. A challenge arises by the fact that risk-averse commercial SMT systems deterministically log the most probable translatio...
We introduce and describe the results of a novel shared task on bandit learning for machine translation. The task was organized jointly by Amazon and Heidelberg University for the first time at the Second Conference on Machine Translation (WMT 2017). The goal of the task is to encourage research on learning machine translation from weak user feedba...
Bandit structured prediction describes a stochastic optimization framework where learning is performed from partial feedback. This feedback is received in the form of a task loss evaluation to a predicted output structure, without having access to gold standard structures. We advance this framework by lifting linear bandit learning to neural sequen...
We present Otedama, a fast, open-source tool for rule-based syntactic pre-ordering, a well established technique in statistical machine translation. Otedama implements both a learner for pre-ordering rules, as well as a component for applying these rules to parsed sentences. Our system is compatible with several external parsers and capable of acco...
Stochastic structured prediction under bandit feedback follows a learning protocol where on each of a sequence of iterations, the learner receives an input, predicts an output structure, and receives partial feedback in form of a task loss evaluation of the predicted structure. We introduce stochastic approximation algorithms that apply this learni...
We present a dataset for learning to rank in the medical domain, consisting of thousands of full-text queries that are linked to thousands of research articles. The queries are taken from health topics described in layman’s English on the non-commercial www. NutritionFacts. org website; relevance links are extracted at 3 levels from direct and indi...
We present an approach to structured prediction from bandit feedback, called
Bandit Structured Prediction, where only the value of a task loss function at a
single predicted point, instead of a correct structure, is observed in
learning. We present an application to discriminative reranking in Statistical
Machine Translation (SMT) where the learnin...
We present an approach to improve statistical machine translation of image descriptions by multimodal pivots defined in visual space. The key idea is to disambiguate and ground the translation of an image desription by involving the image as a pivot into the translation process. We compute image similarity by a convolutional neural network, and use...
System combination is an effective strategy to boost retrieval performance, especially in complex applications such as cross-language information retrieval (CLIR) where the aspects of translation and retrieval have to be optimized jointly. We focus on machine learning-based approaches to CLIR that need large sets of relevance-ranked data to train h...
We present a theoretical analysis of online parameter tuning in statistical machine translation (SMT) from a coactive learning view. This perspective allows us to give regret and generalization bounds for latent perceptron algorithms that are common in SMT, but fall outside of the standard convex optimization scenario. Coactive learning also introd...
This paper describes the system submitted by the University of Heidelberg to the Shared Task on Word-level Quality Estimation at the 2015 Workshop on Statistical Machine Translation. The submitted system combines a continuous space deep neural network, that learns a bilingual feature representation from scratch, with a linear combination of the man...
Recent research has shown that accuracy and speed of human translators can benefit from post-editing output of machine translation systems, with larger benefits for higher quality output. We present an efficient online learning framework for adapting all modules of a phrase-based statistical machine translation system to post-edited translations. W...
The statistical machine translation (SMT) component of cross-lingual information retrieval (CLIR) systems is often regarded as black box that is optimized for translation quality independent from the retrieval task. In recent work [10], SMT has been tuned for retrieval by training a reranker on $k$-best translations ordered according to their retri...
We propose a novel learning approach for statistical machine translation (SMT) that allows to extract supervision signals for structured learning from an extrinsic response to a translation input. We show how to generate responses by grounding SMT in the task of executing a semantic parse of a translated query against a database. Experiments on the...
Philosophy of science has pointed out a problem of theoretical terms in empirical sciences. This problem arises if all known measuring procedures for a quantity of a theory presuppose the validity of this very theory, because then statements containing theoretical terms are circular. We argue that a similar circularity can happen in empirical compu...
We present an approach to mine comparable data for parallel sentences using translation-based cross-lingual information retrieval (CLIR). By iteratively alternating between the tasks of retrieval and translation, an initial general-domain model is allowed to adapt to in-domain data. Adaptation is done by training the translation system on a few tho...
We present a semi-supervised, language- and domain-independent approach to high precision sentence alignment. The key idea is to bootstrap a supervised discriminative learner from wood-standard alignments, i.e. alignments that have been automatically generated by state-of-the-art sentence alignment tools. We deploy 3 different unsupervised sentence...
We present an approach to learning bilingual n-gram correspondences from relevance rankings of English documents for Japanese queries. We show that directly optimizing cross-lingual rankings rivals and complements machine translation-based cross-language information retrieval (CLIR). We propose an efficient boosting algorithm that deals with very l...
With a few exceptions, discriminative training in statistical machine translation (SMT) has been content with tuning weights for large feature sets on small development data. Evidence from machine learning indicates that increasing the training sample size results in better prediction. The goal of this paper is to show that this common wisdom can a...
Statistical machine translation of patents requires large amounts of sentence-parallel data. Translations of patent text often exist for parts of the patent document, namely title, abstract and claims. However, there are no direct translations of the largest part of the document, the description or background of the invention. We document a twofold...
Microblogging services such as Twitter have become popular media for real-time usercreated news reporting. Such communication often happens in parallel in different languages, e.g., microblog posts related to the same events of the Arab spring were written in Arabic and in English. The goal of this paper is to exploit this parallelism in order to e...
Community QA portals provide an important resource for non-factoid question-answering. The inherent noisiness of user-generated data makes the identification of high-quality content challenging but all the more important. We present an approach to answer ranking and show the usefulness of features that explicitly model answer quality. Furthermore,...
Multi-Task Minimum Error Rate Training for SMT
We present experiments on multi-task learning for discriminative training in statistical machine translation (SMT), extending standard minimum-error-rate training (MERT) by techniques that take advantage of the similarity of related tasks. We apply our techniques to German-to-English translation of pat...
The goal of this work is to integrate query similarity metrics as features into a dense model that can be trained on large amounts of query log data, in order to rank query rewrites. We propose features that incorpo- rate various notions of syntactic and semantic similarity in a generalized edit distance frame- work. We use the implicit feedback of...
We present a novel approach to query reformulation which combines syntactic and semantic information by means of generalized Levenshtein distance algorithms where the substitution operation costs are based on probabilistic term rewrite functions. We investigate unsupervised, compact and efficient models, and provide empirical evidence of their effe...
Long queries often suffer from low recall in web search due to conjunctive term matching. The chances of matching words in relevant documents can be increased by rewriting query terms into new terms with similar statistical properties. We present a comparison of approaches that deploy user query logs to learn rewrites of query terms into terms from...
A number of researchers have recently conducted experiments comparing deep hand-crafted wide-coverage with shallow treebank- and machine-learning-based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit such experiments, this...
User logs of search engines have recently been applied successfully to improve var- ious aspects of web search quality. In this paper, we will apply pairs of user queries and snippets of clicked results to train a machine translation model to bridge the "lexical gap" between query and document space. We show that the combination of a query-to-snipp...
We present an approach to query expan- sion in answer retrieval that uses Statisti- cal Machine Translation (SMT) techniques to bridge the lexical gap between ques- tions and answers. SMT-based query ex- pansion is done by i) using a full-sentence paraphraser to introduce synonyms in con- text of the entire query, and ii) by trans- lating query ter...
Since the Web by far represents the largest public repository of natural language texts, recent experiments, methods, and tools in the area of corpus linguistics often use the Web as a corpus. For applications where high accuracy is crucial, the problem ...
We present an approach to statistical machine translation that combines ideas from phrase-based SMT and traditional grammar-based MT. Our system incorporates the concept of multi-word translation units into transfer of dependency structure snippets, and models and trains statistical components according to state-of-the-art SMT systems. Compliant wi...
We investigate some pitfalls regarding the discriminatory power of MT evaluation metrics and the accuracy of statistical sig- nificance tests. In a discriminative rerank- ing experiment for phrase-based SMT we show that the NIST metric is more sensi- tive than BLEU or F-score despite their in- corporation of aspects of fluency or mean- ing adequacy...
We present an application of ambiguity packing and stochastic disambiguation techniques for Lexical-Functional Grammars (LFG) to the domain of sentence condensation. Our system incorporates a linguistic parser/generator for LFG, a transfer component for parse reduction operating on packed parse forests, and a maximum-entropy model for stochastic ou...
This paper reports some experiments that com- pare the accuracy and performance of two stochastic parsing systems. The currently pop- ular Collins parser is a shallow parser whose output contains more detailed semantically- relevant information than other such parsers. The XLE parser is a deep-parsing system that couples a Lexical Functional Gramma...