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The pathway of sulfate assimilation, which provides plants with the essential nutrient
sulfur, is tightly regulated and coordinated with the demand for reduced sulfur. The
responses of metabolite concentrations, enzyme activities and mRNA levels to various
signals and environmental conditions have been well described for the pathway. However,
only little is known about the molecular mechanisms of this regulation. To date, nine
transcription factors have been described to control transcription of genes of sulfate
uptake and assimilation. In addition, other levels of regulation contribute to the control of
sulfur metabolism. Post-transcriptional regulation has been shown for sulfate transporters,
adenosine 5′phosphosulfate reductase, and cysteine synthase. Several genes of the
pathway are targets of microRNA miR395. In addition, protein–protein interaction is
increasingly found in the center of various regulatory circuits. On top of the mechanisms of
regulation of single genes, we are starting to learn more about mechanisms of adaptation,
due to analyses of natural variation. In this article, the summary of different mechanisms
of regulation will be accompanied by identification of the major gaps in knowledge and
proposition of possible ways of filling them.
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INTRODUCTION
Sulfur is an essential nutrient for all organisms, found in the amino
acids cysteine and methionine, in a large number of cofactors
and prosthetic groups, such as FeS centers, thiamine, or S-
adenosylmethionine, and in a plethora of primary and secondary
metabolites. Plants are able to take up inorganic sulfate from soil,
reduce it to sulfide and incorporate into bioorganic compounds. In
the pathway of sulfate assimilation sulfate is first activated by ATP
sulfurylase (ATPS) to adenosine 5′-phosphosulfate (APS). APS is
a branching point in sulfate assimilation, which can proceed by
reduction to sulfite catalyzed by APS reductase or by phosphory-
lation to 3′-phosphoadenosine 5′-phosphosulfate (PAPS) by APS
kinase. Sulfite is further reduced to sulfide by sulfite reductase
(SiR), followed by incorporation into the amino acid skeleton
of O-acetylserine (OAS) to make cysteine, which is the donor
of reduced sulfur for all further metabolites (Figure 1). PAPS
is the donor of activated sulfate for sulfation of peptides and
small metabolites primarily in secondary metabolism [reviewed
in (Takahashi et al., 2011)].

The biochemistry and physiology of sulfate assimilation and
its regulation is well understood (Takahashi et al., 1997; Kopriva
et al., 1999,2001; Koprivova et al., 2000; Vauclare et al., 2002; Yoshi-
moto et al., 2002; Wirtz et al., 2004, 2012; Kawashima et al., 2005;
Maruyama-Nakashita et al., 2006; Heeg et al., 2008; Mugford et al.,
2009; Khan et al., 2010; Cao et al., 2013; Yarmolinsky et al., 2013).
The pathway is regulated by the demand for reduced sulfur, by
sulfur availability, by various environmental factors, or phytohor-
mones, and coordinated with assimilation of carbon and nitrogen
(Takahashi et al., 1997; Koprivova et al., 2000, 2008; Kopriva et al.,

2002; Hesse et al., 2003; Jost et al., 2005). However, the knowledge
of molecular mechanisms of the regulation, transcription factors
controlling transcription of sulfate assimilation genes, and further
levels of post-transcriptional regulation is still far from sufficient.
Therefore, here we will shortly summarize the current knowledge
of mechanisms of control of sulfate assimilation and identify the
most significant gaps.

CONTROL OF FLUX THROUGH THE SULFATE ASSIMILATION
PATHWAY
The quest of finding the mechanisms of control of sulfate assim-
ilation has to start by identification of the steps controlling the
flux of sulfur through the pathway. Determination of the flux is
(relatively) easily possible by incubating the plants with radioac-
tively labeled sulfate and measuring the label in various sulfur
pools (Neuenschwander et al., 1991; Kopriva et al., 1999; Vauclare
et al., 2002; Scheerer et al., 2010; Mugford et al., 2011). The flux
data can be then used for a control flux analysis to calculate the
contribution of individual enzymes to the control of the path-
way. In a simple approach, exploiting the feedback inhibition of
sulfate assimilation by thiols, two major control points were iden-
tified, APS reductase and sulfate transport (Vauclare et al., 2002).
When sulfate reduction and incorporation to thiols and protein
was analyzed in isolation, i.e., considering internal sulfate as the
starting point, APS reductase was responsible for ca. 90% of the
control. When the transport of external sulfate was taken into
account, it contributed about 50% of the total control (Vauclare
et al., 2002). However, it was shown later by a similar control anal-
ysis that APS reductase is mainly, but not always the main control
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FIGURE 1 | Scheme of sulfate assimilation.

point and contribution of other enzymes was postulated (Scheerer
et al., 2010). The flux analysis results thus corroborated the gen-
erally accepted view of APS reductase as the key enzyme of the
pathway, as demonstrated, e.g., by its strong regulation by envi-
ronmental factors (Brunold, 1978; Nussbaum et al., 1988; Farago
and Brunold, 1990; Neuenschwander et al., 1991; Koprivova et al.,
2000). On the other hand, the results were confirmed by analy-
sis of plants with modulated expression of APS reductase, i.e., the
accumulation of reduced sulfur compounds in plants overexpress-
ing the genes and reduced flux and reduced tolerance to selenate
in mutants of APR2 isoform of APS reductase (Tsakraklides et al.,
2002; Grant et al., 2011). In addition, natural variation in APR2
gene has been shown to cause a variation in sulfate and total sulfur
content in several Arabidopsis ecotypes (Loudet et al., 2007; Chao
et al., 2014).

Analysis of further mutants in the pathway, however, pointed
out other genes contributing significantly to the control of flux
through sulfate assimilation. Among these genes, three seem
to have the highest importance for the reductive part of the
pathway. Silencing of mitochondrial isoform of serine acetyl-
transferase (SAT), the enzyme synthesizing the cysteine precursor
OAS, showed a clear correlation between the level of the tran-
script for this gene and size of the plants (Haas et al., 2008). The
same was true for T-DNA insertion mutants in SiR, two knock-
down lines showed strong growth inhibition (Khan et al., 2010).
In both cases, reduction of cysteine and glutathione (GSH) syn-
thesis rate was observed, but due to use of [3H]serine for the
SAT experiments the flux of sulfur was not assessed in these
plants (Haas et al., 2008). On the other hand, reduced expres-
sion of ATPS1 isoform of ATP sulfurylase (ATPS) leads to reduced
flux without growth penalty (Kawashima et al., 2011; Koprivova
et al., 2013). The atps1 mutants of Arabidopsis, instead, show
an increased accumulation of sulfate in the leaves. While no
major alterations of sulfur metabolism in plants overexpress-
ing ATPS1 have been reported, such plants are more tolerant
to Se and As and show increased capacity for reduction of
selenate (Pilon-Smits et al., 1999; Wangeline et al., 2004). Inter-
estingly, as with APR2, natural variation in ATPS1 contributes
to control of variation in sulfate levels in Arabidopsis accessions

(Koprivova et al., 2013; Herrmann et al., 2014). The flux through
reductive sulfate assimilation is, however, altered also due to
manipulation of enzymes not directly participating in the path-
way. Reduced APS kinase activity in apk1 apk2 mutants leads
to an increased flux through the pathway to cysteine and GSH
and to accumulation of reduced sulfur compounds, primar-
ily GSH (Mugford et al., 2009, 2011). In addition, these plants
possess low levels of sulfated secondary compounds glucosi-
nolates and are also affected in growth (Mugford et al., 2009,
2010).

The analysis of sulfur fluxes, showing the key role of sulfate
transport, APS reductase, and to some extent ATPS and APS kinase
in the flux control, thus point to these genes as primary targets for
investigations of the molecular mechanisms of regulation of the
pathway. Accordingly, promoters of sulfate transporter SULTR1;2
and APR3 isoform of APS reductase were used as tools to dis-
sect the regulation of the pathway in several genetic approaches
(Maruyama-Nakashita et al., 2006; Koprivova et al., 2010; Lee et al.,
2011). However, it is obvious from these results that other mecha-
nisms of the regulation targeting other components of the pathway
exist and are important at least for fine tuning of the control. The
ways to understand the control of sulfur fluxes is discussed in
another contribution to this research topic.

TRANSCRIPTIONAL REGULATION
In the search for molecular mechanisms of regulation of sulfate
assimilation, the attention was first focused on the transcriptional
regulation (Awazuhara et al., 2002; Maruyama-Nakashita et al.,
2004b, 2005, 2006; Falkenberg et al., 2008; Yatusevich et al., 2010;
Lee et al., 2011). Indeed, large number of studies showed a clear
regulation between the transcript levels of high affinity sulfate
transporters and sulfate uptake or between mRNA levels of APS
reductase and its protein accumulation, enzyme activity and flux
through the pathway suggesting that transcriptional regulation is
the main mechanism of control of the pathway (Takahashi et al.,
1997, 2000; Kopriva et al., 1999, 2002; Lappartient et al., 1999;
Koprivova et al., 2000; Vauclare et al., 2002; Yoshimoto et al., 2002;
Hesse et al., 2003; Hartmann et al., 2004; Maruyama-Nakashita
et al., 2004b, 2006; Rouached et al., 2008). Transcript levels of
the high affinity sulfate transporters SULTR1;1 and SULTR1;2
are strongly and specifically upregulated by sulfate starvation and
plants expressing GFP under control of promoters of these genes
were therefore used in search for factors affecting such regula-
tion. Alternatively, the reporters were expressed under control of
synthetic promoter, containing repeats of a 235-bp fragment of
a β-conglycinin promoter that confer sulfur starvation response
(Awazuhara et al., 2002).

TRANSCRIPTIONAL REGULATION OF SULFATE STARVATION RESPONSE
Increase of sulfate uptake capacity is a characteristic response to
sulfate limitation. This increase is primarily triggered by transcrip-
tional regulation of two high affinity sulfate transporters expressed
in roots, SULTR1;1 and SULTR1;2 (Takahashi et al., 1997; Yoshi-
moto et al., 2002). Upon resupply of sulfur, the transcript levels
of these transporters are rapidly repressed. Because of robustness
of this response, the SULTR1;1 and SULTR1;2 genes were used as
tools to study the mechanisms of this regulation.
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The first gene shown to affect the regulation of SULTR1;2 by
sulfate starvation was the cytokinin receptor CRE1 (Maruyama-
Nakashita et al., 2004b). In a search for factors affecting the
sulfate deficiency response of SULTR1;2 the cytokinin zeatin was
found to rapidly repress the induction of the reporter gene. This
repression was alleviated in cre1-1 mutants demonstrating the
function of cytokinins as signals in regulating sulfate transport
(Maruyama-Nakashita et al., 2004b). However, although a role of
cytokinins in the regulatory circuit of sulfate limitation response
has been confirmed using the synthetic promoter (Ohkama et al.,
2002), CRE1 is not directly involved in control of the tran-
scription of sulfur metabolism genes, and the search thus went
further. Using the alternative promoter of SULTR1;1, a need
for a so far unknown phosphatase in the regulatory circuit has
been demonstrated (Maruyama-Nakashita et al., 2004a). The next
report got a little closer to the real transcription factors, as a sulfur-
responsive SURE cis element has been identified in the SULTR1;1
promoter (Maruyama-Nakashita et al., 2005). Interestingly, the
16 bp element contains an auxin response factor (ARF) binding
sequence, which overlaps with the core element GAGAC, as deter-
mined by base substitution analysis (Maruyama-Nakashita et al.,
2005).

The major breakthrough in the dissection of molecular mecha-
nisms of regulation of sulfur metabolism was made when SULFUR
LIMITATION1 (SLIM1) transcription factor has been identified
(Maruyama-Nakashita et al., 2006). SLIM1 belongs to the ETHY-
LENE INSENSITIVE3-LIKE (EIL) family and is also annotated as
EIL3. Loss of function of SLIM1 prevents or strongly attenuates
sulfate starvation response of most, but not all, transcripts regu-
lated by these conditions, such as sulfate transporters, miR395,
or genes involved in glucosinolate synthesis. The exception is
the induction of APS reductase, which is SLIM1-independent
(Figure 2; Maruyama-Nakashita et al., 2006). Somewhat surpris-
ingly, despite the importance of SLIM1 in the regulation of sulfate
starvation response, there are many open questions about this
factor: primarily the exact binding sequence and the mechanism
of action, as SLIM1 mRNA is not affected by sulfate starva-
tion. A thorough summary of the current knowledge of SLIM1
is provided within this research topic (Wawrzyńska and Sirko,
2014).

Sulfate starvation response has been investigated on many
levels, by further genetic screens as well as by systems biology
approaches. Interestingly, both lines of research led to pointing
out auxin related genes as being involved in regulation of the
response. The next gene coming from a genetic screen of altered
sulfur limitation response, using the synthetic β-glycinin pro-
moter, was the BIG gene, which encodes a protein necessary for
the polar transport of auxin (Kasajima et al., 2007). Mutants in the
BIG gene showed a constitutive upregulation of the reporter gene
as well as of some genes upregulated by sulfate deficiency, most
interestingly the SLIM1-independent APR1. However, since the
defect in BIG resulted in increase of auxin levels, and auxin itself
induces APR1 and the β-conglycinin expression, this gene is most
probably only indirectly related to the sulfate starvation response
(Kasajima et al., 2007). At the same time, transcriptomics approach
identified several auxin related transcription factors among the
genes rapidly responding to sulfate deficiency (Falkenberg et al.,

FIGURE 2 | Summary of regulatory mechanisms of response to sulfate

starvation and resupply. Green text and arrows depict activation, while
red text, arrows and lines represent repression. The interrupted lines
symbolise the putative mechanisms of sensing of internal sulfate and
transceptor function of SULTR1;2. CK abbreviates cytokinins, X represents
xylem, and P phloem.

2008). This has been of special interest also due to the presence of
ARF-binding sequence within the SURE cis element (Maruyama-
Nakashita et al., 2005). Also in the case of these factors, IAA13,
IAA28, and ARF-2, however, their effects on sulfur metabolism
seems to be indirect, due to general alteration of auxin signaling
(Falkenberg et al., 2008).

Further pieces of the jigsaw have been obtained from stud-
ies of tobacco UP9 gene, homologous to Arabidopsis RESPONSE
TO LOW SULFUR (LSU) genes (Lewandowska et al., 2010;
Wawrzynska et al., 2010). The gene of unknown function is
highly upregulated by sulfate deficiency and so a prime subject
of detailed studies. In the promoter of this gene a new sulfur
deficiency-responsive motif, named UPE-box, has been identified
(Wawrzynska et al., 2010). The UPE-box has no overlap with the
SURE motif. It has been found only in eight Arabidopsis genes
upregulated by sulfate starvation, such as three out of four LSU
genes and APR1 and APR3 isoforms of APS reductase, in many of
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these together with the SURE element (Wawrzynska et al., 2010). A
new transcription factor binding the UPE-box has been character-
ized as EIL2, belonging to the same family as SLIM1. Interestingly,
also SLIM1 was able to drive transcription of a reporter gene from
a minimal promoter containing the UPE-box (Wawrzynska et al.,
2010). However, since UPE-box is present in only a small subset
of genes regulated by sulfate starvation and among them there are
promoters of two APR genes that are SLIM1-independent, it is not
possible to assign the UPE-box as the prime binding sequence of
SLIM1.

TRANSCRIPTIONAL REGULATION OF SULFATE ASSIMILATION GENES
While regulation of sulfate starvation response is an important
aspect of sulfur homeostasis, it is by far not the only condition
important for control of sulfur metabolism. The transcripts of
many sulfate assimilation genes, above all the APS reductase, are
upregulated by light, carbohydrates, jasmonic acid, or heavy metals
and repressed by nitrogen limitation and reduced sulfur com-
pounds (Kopriva et al., 1999; Koprivova et al., 2000; Vauclare et al.,
2002; Hesse et al., 2003; Jost et al., 2005). However, none of these
conditions has been reported so far as a basis of genetic screen
to find the regulatory factors. The only transcription factor par-
ticipating in such regulation has been found by a rather indirect
approach (Lee et al., 2011). In a genetic screen for defects in GSH
homeostasis, using the reduction of root growth by incubation
with inhibitor of GSH synthesis buthionine sulfoximine (BSO),
the LONG HYPOCOTYL5 (HY5) transcription factor was iden-
tified (Lee et al., 2011). The bZIP transcription factor HY5 has
been known as a central regulator of photomorphogenesis and is
directly binding to promoters of more than 1000 light-inducible
genes (Chattopadhyay et al., 1998; Lee et al., 2007). Therefore, the
attenuated induction of APS reductase by light in hy5 mutant was
not entirely surprising (Lee et al., 2011). The loss of function of
HY5 has, however, further consequences for regulation of the path-
way, as the induction of APS reductase by OAS and repression by
nitrogen limitation are also attenuated in the mutant (Figure 3).
The disrupted transcriptional regulation is reflected in altered flux
through the pathway and also sulfate uptake. Importantly, HY5 is
the only transcription factor for which evidence of direct bind-
ing on the corresponding promoters has been obtained and a
direct transcriptional regulation can be unequivocally confirmed
(Lee et al., 2011). Chromatin immunoprecipitation experiments
showed clearly that HY5 binds promoters of APR1 and APR2
and also of SULTR1;2. This together with HY5’s involvement in
regulation by light, OAS, and nitrogen limitation positions this
factor to a central place in the sulfate assimilation regulatory
circuit.

The next transcription factors regulating APS reductase expres-
sion have also been found indirectly. The two groups of MYB
factors, MYB28, MYB29, and MYB76 controlling synthesis of
aliphatic glucosinolates, and MYB51, MYB34, and MYB122 con-
trolling indolic glucosinolates (Gigolashvili et al., 2007a,b, 2008;
Hirai et al., 2007; Sonderby et al., 2007; Malitsky et al., 2008), were
initially linked to regulation of sulfate assimilation because of the
importance of PAPS for glucosinolate synthesis (Mugford et al.,
2009; Yatusevich et al., 2010). In the apk1 apk2 plants, in which
PAPS synthesis is low, the reduced levels of glucosinolates trigger

FIGURE 3 | Schematic summary of regulation of APS reductase.

Factors known to control APR transcription are boxed. Light affects APR
through HY5, PFT1, and independent from both factors. PFT1 acts as
activator for APR2 but repressor for APR1 and APR3 isoforms.

a coordinated upregulation of genes involved in synthesis of these
metabolites (Mugford et al., 2009). The upregulation is probably
controlled by the 6 MYB factors, as their mRNA levels are also
elevated. Since (1) the genes of glucosinolate synthesis form a
single regulatory network and (2) sufficient PAPS availability is
important for glucosinolate synthesis, it was hypothesized that
also PAPS synthesis might be part of the network (Yatusevich
et al., 2010). Indeed, transactivation assays, in which a reporter
gene under control of investigated promoter is co-expressed with
transcription factor, demonstrated that APK1, APK2, and partly
APK3 isoforms of APS kinase and ATPS1 and ATPS3 isoforms
of ATPS are under the control of all six glucosinolate connected
MYB factors (Yatusevich et al., 2010). Interestingly, genes of the
dedicated reductive part of sulfate assimilation, APS reductase
and SiR were also positive in the transactivation assays and
thus regulated by the MYB factors. The results of transactiva-
tion assays were confirmed in transgenic plants overexpressing
the MYB factors, as in all of them the steady state levels of
the ATPS; APK, APR, and SiR genes were elevated. The link of
APS reductase with glucosinolate synthesis, although belonging
to different pathways, can be explained by the need of reduced
sulfur for the thioglucoside bond in the core structure of the glu-
cosinolates as well as the origin of aliphatic glucosinolates from
sulfur containing amino acid methionine. It seems, however, that
the MYB factors contribute to only part of the regulatory cir-
cuits of sulfate assimilation, mainly to those connected to biotic
stress in which glucosinolate synthesis is induced. With notable
exception of APR and indolic MYBs, the steady state levels of
the genes of primary assimilation are not affected in mutants
of the 6 MYB factors. The increase transcript levels of APS
reductase in, e.g., myb51 mutant corresponded with increased
enzyme activity and accumulation of GSH. This might be an
adaptation to low accumulation of indolic glucosinolates in this
mutant to increase GSH content as an alternative defense com-
pound (Yatusevich et al., 2010). Function of the MYB factors
in general regulation of sulfur homeostasis thus remains rather
elusive.
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POST-TRANSCRIPTIONAL REGULATION
Although many reports showed a clear correlation between the
regulation of transcript levels and activities of the gene products,
several exceptions of this pattern have been observed (Bick et al.,
2001; Yoshimoto et al., 2007; Koprivova et al., 2008; Kawashima
et al., 2011). The more detailed the search for molecular mecha-
nisms has become, the more frequently such post-transcriptional
regulation has been observed. It is evident, that without taking
post-transcriptional and post-translational regulation of sulfate
assimilation into account, the understanding of the pathway
control would never be complete. Many different levels of
such regulation have been described, but only a few have been
sufficiently functionally analyzed to understand the molecular
mechanisms.

miR395 IN CONTROL OF SULFATE HOMEOSTASIS
Probably the best understood post-transcriptional regulation of
sulfate assimilation pathway is the action of microRNA miR395
(Jones-Rhoades and Bartel, 2004; Kawashima et al., 2009, 2011;
Pant et al., 2009; Liang et al., 2010; Matthewman et al., 2012).
MicroRNAs are short non-coding molecules that regulate the
expression of protein coding genes. Among the first miRNAs to
be characterized was the miR395, presumably because its target
genes have been easily recognized as genes involved in sulfate
assimilation: a low affinity sulfate transporter SULTR2;1 and
three out of four members of the ATPS gene family (ATPS1,
3, and 4; Jones-Rhoades and Bartel, 2004; Allen et al., 2005).
MiR395 is strongly induced by sulfate deficiency, and in turn
it cleaves mRNAs of its target genes (Jones-Rhoades and Bartel,
2004; Allen et al., 2005; Kawashima et al., 2009). Indeed, three
of the targets were confirmed experimentally in both shoots and
roots of Arabidopsis thaliana, whereas the cleavage of ATPS3
seems to be restricted to the shoot only (Kawashima et al., 2009).
Overexpression of miR395 causes accumulation of sulfate in the
leaves, due to increased translocation from the roots (Liang et al.,
2010; Kawashima et al., 2011). The increased sulfate transloca-
tion seems to be the main mechanism of miR395 function as
revealed by analyses of plants with higher and lower miR395
levels because of overexpression or target mimicry, respectively
(Kawashima et al., 2011). The higher root-to-shoot transport is
achieved through increased translocation rate and reduced flux
through sulfate reduction specifically in the roots (Kawashima
et al., 2011).

The effects of miR395 on its targets follow different mecha-
nisms. Only the ATPS4 isoform of ATPS undergoes the canonical
regulation, where its transcript levels strongly decrease with
increased miR395 accumulation (Jones-Rhoades and Bartel, 2004;
Kawashima et al., 2009, 2011; Liang et al., 2010). The ATPS1
mRNA levels have been reported either to decrease slightly (Jones-
Rhoades and Bartel, 2004; Liang et al., 2010) or not to be affected
by sulfate deficiency (Hirai et al., 2003; Kawashima et al., 2011).
The unexpected response of this miR395 target can be explained
by a simultaneous increase in ATPS1 transcription, as demon-
strated by comparison of GFP expression in plants expressing
GFP under control of ATPS1 promoter directly or after fusion
with ATPS1 coding region, and thus targeted for miR395 cleav-
age (Kawashima et al., 2011). Interestingly, the transcript levels

of SULTR2;1 are actually higher in sulfate deficient roots than in
control roots (Kawashima et al., 2009, 2011). The miR395 function
is, however, enabled by a non-overlapping cell-specific expression
pattern for SULTR2;1 and the miRNA, which is expressed specif-
ically in phloem companion cells and allows SULTR2;1 in xylem
parenchyma cells to remain functional for xylem loading of sulfate
(Kawashima et al., 2009). The placement of miR395 in the sul-
fate deficiency regulatory network was strongly corroborated by
showing that the induction of miR395 accumulation is dependent
on SLIM1 (Kawashima et al., 2009, 2011) and that miR395 levels
are affected by OAS, cysteine, and cadmium (Matthewman et al.,
2012; Zhang et al., 2013). Interestingly, miR395 has been found in
phloem of S-starved plants pointing to its role as a long-distance
signal (Pant et al., 2009). However, the analysis of plants expressing
GFP under control of promoters of the six miR395 genes revealed
that the expression of miRNA is strongly induced both in shoots
and roots, so the significance of the phloem transport is not known
(Kawashima et al., 2009).

PROTEIN–PROTEIN INTERACTIONS
Multienzyme complexes often form control points of metabolic
pathways as they allow substrate channeling and allosteric modu-
lation of activity. The same is true for sulfate assimilation, where
the last enzymatic step, incorporation of sulfide into cysteine, is
catalyzed by cysteine synthase (Wirtz and Hell, 2006; Wirtz et al.,
2010). The complex is formed by two enzymes, the SAT, which
synthesizes OAS, and OAS-(thiol)lyase (OASTL), which uses the
OAS and sulfide for synthesis of cysteine. However, the assembly
of the two consecutive enzymes does not serve a better channeling
of OAS between the two enzymes, but rather strongly modulates
their activity, at least in in vitro experiments (Droux et al., 1998;
Hell et al., 2002; Wirtz et al., 2010). SAT activity is greatly increased
in the complex, which also attenuates its feedback inhibition by
cysteine. On the other hand, OASTL is inactive in the complex
and cysteine is formed by the excess free enzyme only. The stabil-
ity of the complex is influenced by the substrates OAS and sulfide:
whereas sulfide stabilizes the complex, OAS promotes the disso-
ciation of the subunits, as it competes with SAT for the binding
site (Berkowitz et al., 2002; Francois et al., 2006; Wirtz et al., 2010).
This modulation of complex stability and consequently activity by
the two pathway intermediates points to a function in regulating
the pathway, particularly during sulfate limitation. In these condi-
tions sulfide availability decreases and OAS accumulates, which
leads to dissociation of the complex and reduced synthesis of
OAS (Droux et al., 1998; Wirtz and Hell, 2006). The concentra-
tion of OAS needed for half-maximal dissociation of the complex
is 77 μM and thus within the physiological range in plant cells,
which confirms the relevance of this regulation for the control of
sulfate assimilation pathway (Berkowitz et al., 2002).

OAS, and OAS-(thiol)lyase take part in another example of
protein–protein interactions affecting sulfur metabolism. The
cytosolic isoform OASTL-A interacts with a STAS domain of
SULTR1;2 transporter and reduces the sulfate uptake rate in yeast
heterologous system (Shibagaki and Grossman, 2010). The OASTL
is also affected by the interaction and its activity is increased.
Interestingly, this modulation of OASTL activity is specific for
SULTR1;2, as the same domain from a closely related SULTR1;1
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has no effect, despite binding the enzyme (Shibagaki and Gross-
man, 2010). The repression of sulfate uptake by OASTL-A is more
pronounced at high sulfate supply than during sulfate limitation,
suggesting a regulatory function of this interaction. The physio-
logical function of this regulation is, however, not very clear and
requires further investigation.

An interesting addition to protein–protein interaction in sul-
fate assimilation has been finding of modulation of chloroplastic
SAT activity by interaction with cyclophilin 20-3 (Dominguez-
Solis et al., 2008). The cyclophilin has been postulated as a signal
in response to oxidative stress, since in wild type plants SAT activ-
ity was elevated upon stress treatment, but this activation was
strongly attenuated in cyc20-3 mutants. The increase in SAT activ-
ity causes elevated thiol content to combat the oxidative stress
(Dominguez-Solis et al., 2008). It has been shown recently, how-
ever, that the CYP-SAT interaction is a part of a signaling pathway
of the phytohormone (+)-12-oxo-phytodienoic acid (OPDA; Park
et al., 2013). OPDA binds to CYP20-3, which increases its affinity
for SAT. The CYP-SAT complex facilitates formation of cysteine
synthase complex and so increases synthesis of OAS and cysteine,
with subsequent alterations of redox potential. The redox changes
then modulate expression of at least some OPDA-responsive genes
(Park et al., 2013). How far such mechanism contributes to control
of sulfate assimilation is currently unclear, but the CYP20-3 does
not seem to be necessary for the normal formation of cysteine
synthase complex.

REDOX REGULATION
Several enzymes of sulfate assimilation undergo redox regula-
tion. In fact, redox regulation of APS reductase has been the first
reported example of post-transcriptional regulatory mechanism
of the pathway (Bick et al., 2001). An uncoupling of the regulation
of APR transcript levels and enzyme activity was observed in plants
under oxidative stress. This could be explained by a redox regu-
lation of the enzyme, which is activated in oxidizing conditions
(Bick et al., 2001). This observation in vivo agrees with in vitro
results, which demonstrated inhibition of APS reductase activity
by reductants (Kopriva and Koprivova, 2004). Two mechanisms
for the regulation have been proposed, a redox-regulated switch
between an active protein dimer and inactive monomer or a reg-
ulatory cysteine pair (Bick et al., 2001; Kopriva and Koprivova,
2004). Both have been supported by experimental evidence, so it
seems that the jury is out until the structure of APS reductase is
solved.

However, APS reductase is not the only enzyme of the path-
way regulated by changes in redox environment. It has been
long known that the first enzyme of GSH synthesis, the γ-
glutamylcysteine synthetase (γECS), is feedback regulated by GSH
(Hell and Bergmann, 1990). The plant enzyme contains one or two
(in Brassicaceae) redox active cysteine pairs and after incubation
with reductants, such as GSH, changes its topology from dimer to
monomer and loses activity (Jez et al., 2004; Hothorn et al., 2006).
The redox regulation thus allows rapid adjustment of the activity
and GSH synthesis rate to the redox environment and actual GSH
concentration in the cell.

Another enzyme of the pathway regulated by changes in redox
potential is APS kinase. The redox control has been unexpectedly

discovered after solving the crystal structure of the Arabidopsis
APK1 isoform (Ravilious et al., 2012). The enzyme contains a
redox active disulfide bond within each subunit. Interestingly, in
contrast to APS reductase and γECS, this enzyme is activated by the
reductants and the reduction also alleviates the otherwise strong
substrate inhibition (Ravilious et al., 2012). The opposite redox
regulation of APS kinase and APS reductase is particularly rele-
vant as the enzymes use the same substrate. It offers, therefore,
an interesting possibility that the partitioning of sulfur between
these two enzymes, and so between primary and secondary sulfur
metabolism, is at least partly under redox control.

OTHER POST-TRANSCRIPTIONAL REGULATION
Apart of these clearly defined examples of post-transcriptional
regulation, other, less well understood observations have been
made. The regulation of sulfate transporters by sulfate defi-
ciency includes a post-transcriptional component (Yoshimoto
et al., 2007). When sultr1;1 sultr1;2 mutant was complemented by
tagged transporters under control of constitutive 35S promoter,
not only the localization in root epidermis was reconstituted, the
protein accumulation and sulfate uptake were upregulated by sul-
fate deficiency. This represent a completely new mechanism of
control of sulfate transport (Yoshimoto et al., 2007). However, its
relevance in vivo remains to be demonstrated, since this mech-
anism could not complement the loss of SLIM1. It is, however,
possible that the components of this post-transcriptional regu-
lation are under SLIM1 control and that SLIM1 is responsible
for both transcriptional and post-transcriptional regulation of the
transporters.

Another component of the regulatory network affecting sul-
fate assimilation is PHYTOCHROME AND FLOWERING TIME1
(PFT1). Loss of PFT1 results in altered transcriptional regulation
of APR by light, in an isoform specific pattern (Koprivova et al.,
2014a). While APR2 is induced by light to a lesser degree in pft1
mutants than in wild type, the induction is significantly bigger
for APR1 and APR3. This increased response to light is accom-
panied by increased flux through the pathway (Koprivova et al.,
2014a). However, as it is not a transcription factor the effect of
PFT1 on APR transcription must be indirect. Indeed, PFT1 is
MED25 subunit of the Mediator complex, which facilitates gene
transcription by bridging transcription factors with RNA poly-
merase II complex (Conaway and Conaway, 2011). As part of
the Mediator, PFT1 interacts with a number of transcription fac-
tors and modulates so their activity (Ou et al., 2011). Mediator,
and specifically PFT1 have been shown to affect a large number
of processes and may represent the mechanism for integration
of various signals into a single response and so for fine tuning
of gene expression (Kidd et al., 2009; Elfving et al., 2011; Kim
et al., 2011; Inigo et al., 2012). The contribution of Mediator and
its individual subunits to control of sulfate assimilation is thus
of utmost importance for a deep and full understanding of the
processes.

The summary of post-transcriptional regulation of sulfate
assimilation would not be complete without mentioning the
attempts to dissect the regulation of APS reductase by salt
(Koprivova et al., 2008). While in most reports on regulation of
the pathway an uncoupling of mRNA and activity was very rare,
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this study showed a large number of such phenomena. Thus, treat-
ment of Arabidopsis with ABA led to a strong decrease of APS
reductase enzyme activity without affecting transcript levels of
its three isoforms (Koprivova et al., 2008). The largest number of
“exceptions” has been observed in the analysis of mutants in sig-
nal transduction pathways. For example, in npr1, etr1, and jar1,
deficient in salicylate, ethylene, and jasmonate signaling, respec-
tively, salt induced mRNA of all three APR isoforms but not the
enzyme activity, whereas in the gibberellin insensitive mutant gai,
the mRNA was not affected but activity increased (Koprivova et al.,
2008). These results imply, that the regulatory network of sul-
fate assimilation is very complex and well balanced, so that the
full extent of the regulation might be seen only after disturbance
of the system by multiple factors simultaneously (Koprivova and
Kopriva, 2008).

SENSING AND SIGNALING
Regulatory networks are formed not only by transcription fac-
tors, miRNAs, or other post-transcriptional mechanisms, another
important components are sensors detecting changes in exter-
nal or internal environment and signaling cascades that transmit
the information from sensors to nucleus and trigger the tran-
scriptional response. In higher plants, surprisingly little is known
about the sensing mechanisms, how plants recognize sulfur defi-
ciency, what is the sensor of refilled sulfur pools or of excess
reduced sulfur. There are two major theories on the sensing of
sulfur deficiency/sufficiency, either a receptor monitoring external
(or possible apoplastic/vacuolar) sulfate or levels of downstream
product(s) of sulfate assimilation. The dissociation of cysteine
synthase complex described above might be part of the lat-
ter response (Wirtz and Hell, 2006). On the other hand, two
observations indicate that sulfate levels are monitored by plants.
Firstly, analysis of gene expression in different mutants of sulfur
metabolism showed that reduced sulfate content, e.g., in sultr1;2
and fry1, but not low GSH concentration in cad2 and rax1, causes
similar changes in gene expression as sulfate deficiency even at
normal external sulfate supply (Maruyama-Nakashita et al., 2003;
Matthewman et al., 2012). These results thus pointed to internal
sulfate being the sensed metabolite. This hypothesis that sulfate
is the measure of sulfur status of the plant was corroborated
by analysis of new alleles of sultr1;2 (Zhang et al., 2014). Under
normal sulfate supply these mutants showed strongly reduced
sulfate levels and activation of genes involved in sulfate limita-
tion response. When the mutants were incubated in high sulfate
and the sulfate levels were restored, the expression of sulfate
starvation marker genes remained high. These results are best
explained by postulating an additional function of SULTR1;2 as
sensor of sulfate status (Zhang et al., 2014). When confirmed
and mechanistically explained, SULTR1;2 could be considered a
transceptor similar to the nitrate transporter NRT1;1 (Ho et al.,
2009). Interestingly, in the green alga Chlamydomonas, in which
the mechanisms of sulfate limitation response are much bet-
ter understood, a sulfate sensor SAC1 has been identified as a
member of sulfate transporter family SLC13 (Davies et al., 1996).
It seems, therefore, evident that sulfate is the metabolite used
for establishing sulfur status of the plant, but contribution of
other systems, such as the cysteine synthase complex, cannot be

excluded and may be important for specific parts of the regulatory
networks.

Apart of sulfate, other small molecules seem to be integral
components of sulfate assimilation regulatory networks. Many
metabolites affect individual components of the pathway, such as
pathway intermediates OAS, cysteine, glutathione, sugars, or the
phytohormones jasmonate, salicylate, ABA, ethylene, nitric oxide,
and cytokinins. All these metabolites and many others can poten-
tially be signals in the regulation of the pathway, but on the other
hand, their effects may be only indirect and pleiotrophic. Still, sev-
eral of these metabolites can be considered true signals. The role
of cytokinins in repressing the expression of sulfate assimilation
genes at sufficient sulfur availability seems to be well established
(Maruyama-Nakashita et al., 2004b) and is similar to the role of
these hormones in regulation of nitrate assimilation (Sakakibara
et al., 2006), making them a good candidate for a true signal.

However, the one compound that immediately comes to mind,
when signals are mentioned, is OAS. OAS has been discussed as
signal for decades but this role has often been met with con-
troversy. OAS induces transcript levels and activity of sulfate
transporters and APS reductase (Neuenschwander et al., 1991;
Smith et al., 1997; Koprivova et al., 2000). Incubation with OAS
triggers a global response of gene expression, similar to sulfate
deficiency (Hirai et al., 2003), including induction of the miR395
(Matthewman et al., 2012). As OAS accumulates during sulfate
limitation, it was a logical conclusion to consider OAS as the
signal of sulfate starvation, which triggers the changes in gene
transcription (Hirai et al., 2003). However, this conclusion has
been seriously questioned when a time course experiment shown
that the changes in gene expression in sulfur starved plants actu-
ally precede the accumulation of OAS (Hopkins et al., 2005). This
controversy seems to be resolved by elegant experiments which
identified a cluster of genes directly regulated by OAS (Hubberten
et al., 2012). The genes were found in a combination of stringent
analyses of available -omics datasets, finding correlation between
OAS accumulation and gene expression, with analysis of plants
with inducible SAT and thus producing a pulse of OAS without
changes in other metabolites. The cluster is formed from six genes,
which are highly upregulated by sulfate deficiency (Hubberten
et al., 2012). Interestingly, it includes both SLIM1-dependent and
SLIM1-independent genes (APR3). The independent verification
of the gene cluster by three methods/datasets establishes OAS as
a signal and a direct component of the regulatory network, but
the mechanism of its action is still left open (Hubberten et al.,
2012). The role of OAS in control of transcription is, however,
independent from its effect on the stability of cysteine synthase
complex.

Another signal is necessary to transmit the information of suf-
ficient or elevated concentration of reduced sulfur compounds.
There are three candidates, H2S, cysteine, and GSH. Since these
metabolites are highly interconnected, feeding of one compound
results in increased levels of others, it is not easy to identify the real
signal. H2S is a specific case, since it was recognized as a gaseous
signal in human and animal world (Kimura and Kimura, 2004)
there are increasing numbers of reports of H2S being a signal in
plants as well, protecting against a large range of stresses and even
promoting growth (Lisjak et al., 2010; Dooley et al., 2013; Sun
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et al., 2013). The story of H2S and its signaling function is compli-
cated and controversial and is discussed in several recent reviews
(Garcia-Mata and Lamattina, 2013; Lisjak et al., 2013; Calderwood
and Kopriva, 2014). Both cysteine and GSH have the same effect
on gene expression, i.e., repression of sulfate transporters and APS
reductase, but since this effect can be attenuated by inhibition
of GSH synthesis BSO, GSH is the better candidate for the sig-
nal (Lappartient et al., 1999; Vauclare et al., 2002; Hartmann et al.,
2004). This seems to be confirmed by the substantial alterations
in gene expression in mutants in GSH synthesis (Ball et al., 2004),
although in the mutant Cys concentration also differs from wild
type. Again, the mechanism of action of GSH as signal is not
known, it may be simple redox regulation, glutathionylation of
specific transcription factors, or non-covalent binding to a factor
and modulation of its function.

CONCLUSIONS AND OPEN QUESTIONS
It is obvious that our knowledge of molecular mechanisms of reg-
ulation of sulfate assimilation has been improved. But in many
aspects this knowledge is still patchy. We know that SLIM1 is a
central regulator of sulfate deficiency response, but do not know
the DNA sequence and the complement of promoters it binds. We
know that there must be at least one other factor controlling the
induction of APR by sulfate limitation, but not the nature of this
factor. We know that sulfate assimilation is preferentially localized
in bundle sheath cells surrounding the veins in Arabidopsis (Aubry
et al., 2014), but we do not know the mechanisms and the biolog-
ical significance. Several signaling molecules have been identified,
but we do not know how they transmit the signal. We know that
many genes of the pathway are regulated by multiple environmen-
tal and metabolic conditions, but we do not know the transcription
factors and transduction pathways. We got a first hint of a possible
modulation of the transcriptional response by the Mediator com-
plex, but know almost nothing about the contribution of other
subunits than PFT1. There are several miRNAs affected by sul-
fate deficiency (Buhtz et al., 2010), but apart of miR395 nothing
is known about their targets and functions. There are many genes
highly induced by sulfate limitation, but the functions of most
of them are not known. The list of similar questions could be
much longer and all of them are important to answer, in order
to understand the regulatory networks of the pathway. Or are
they?

Many reports applying quantitative genetics and exploiting
natural variation to dissect a control of complex traits iden-
tified metabolic genes underlying the variation (Loudet et al.,
2007; Baxter et al., 2010; Chan et al., 2011; Chao et al., 2012;
Koprivova et al., 2013). In QTL analysis of sulfate content APR2
and ATPS1 have been found to affect the levels of foliar sulfate.
For both genes, substantial variation in amino acid sequence
has been found, including those that strongly diminished the
enzyme activities (Loudet et al., 2007; Herrmann et al., 2014). Two
more independent alleles of APR2 were found among Arabidopsis
accessions, associated with high sulfate and total sulfur content
(Chao et al., 2014). Genome wide approaches led to identifica-
tion of gene variants responsible for the large variation in types
and amount of glucosinolates (Chan et al., 2011). These natural
haplotypes represent sources of alleles that can be directly used

for improvement of complex metabolic traits. They also suggest
evolutionary adaptations of sulfur metabolism to environment.
Whereas for glucosinolates there is a link between the variation of
their composition and herbivory (Bidart-Bouzat and Kliebenstein,
2008), such links are not obvious for the APR2 or ATPS1 alleles.
There does not seem to be much common between the origins of
the three APR2 haplotypes: Middle Asian mountains (Sha), south
of Czech Republic (Hod) and northern Sweden (Loudet et al.,
2007; Chao et al., 2014). It is, however, possible to speculate that at
least for Sha and the Swedish accessions, growth might be restricted
due to harsh conditions and the reduction of sulfate assimila-
tion would prevent accumulation of reduced sulfur compound
and increasingly reducing cellular environment. The analysis is
not limited to Arabidopsis, similar approaches have been made
directly with crops and similar haplotypes have been identified
(Harper et al., 2012; Koprivova et al., 2014b). Thus, modulation
of, e.g., sulfate levels, seems to be possible without knowing the
regulatory networks, transcription factors, cis elements, or signals
controlling sulfate homeostasis. The two approaches and amounts
of detail are, however, complementary and together will bring our
understanding of sulfur metabolism on the level to know how it is
regulated and how we can exploit the knowledge.
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