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and White Light Flares
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ABSTRACT

We report on the results of fifteen months of monitoring the nearby field

L1 dwarf WISEP J190648.47+401106.8 (W1906+40) with the Kepler mission.

Supporting observations with the Karl G. Jansky Very Large Array and Gemini

North telescope reveal that the L dwarf is magnetically active, with quiescent

radio and variable Hα emission. A preliminary trigonometric parallax shows

that W1906+40 is at a distance of 16.35+0.36
−0.34 pc, and all observations are con-

sistent with W1906+40 being an old disk star just above the hydrogen-burning

limit. The star shows photometric variability with a period of 8.9 hours and

an amplitude of 1.5%, with a consistent phase throughout the year. We infer

a radius of 0.92 ± 0.07RJ and sin i > 0.57 from the observed period, luminos-

ity (10−3.67±0.03L⊙), effective temperature (2300 ± 75K) , and v sin i (11.2 ± 2.2

km s−1). The light curve may be modeled with a single large, high latitude dark

spot. Unlike many L-type brown dwarfs, there is no evidence of other variations

at the & 2% level, either non-periodic or transient periodic, that mask the un-

derlying rotation period. We suggest that the long-lived surface features may

be due to starspots, but the possibility of cloud variations cannot be ruled out

without further multi-wavelength observations. During the Gemini spectroscopy,
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we observed the most powerful flare ever seen on an L dwarf, with an estimated

energy of ∼ 1.6 × 1032 ergs in white light emission. Using the Kepler data, we

identify similar flares and estimate that white light flares with optical/ultraviolet

energies of 1031 ergs or more occur on W1906+40 as often as 1-2 times per month.

Subject headings: brown dwarfs — stars: activity — stars: flare — stars: spots

— stars: individual: WISEP J190648.47+401106.8

1. Introduction

Dramatic changes in the spectra of ultracool dwarfs with Teff . 2300 K lead to their

classification as a distinct spectral type, the L dwarfs (Kirkpatrick et al. 1999; Mart́ın et al.

1999). The L dwarf field population is a mix of old hydrogen-burning stars and young

brown dwarfs. The weakening of molecular features and reddening of broad-band colors

compared to M dwarfs are explained by the formation of condensates, or dust grains (see

the review by Kirkpatrick 2005). Early observations established that chromospheric activity

weakens in this spectral type range (Gizis et al. 2000), and it is now clear that magnetic

activity changes dramatically in character (see Berger et al. 2010; McLean et al. 2012). L0-

L2 dwarfs are cooler than the M dwarfs which show optical variations due to cool magnetic

starspots (Basri et al. 2011), but warmer than the L/T transition brown dwarfs that show

mounting evidence of infrared variations due to cloud inhomogeneties (Artigau et al. 2009;

Radigan et al. 2012; Buenzli et al. 2012). These considerations suggest that L dwarfs may

show variability due to changes in the condensate distribution (such as clouds, or holes

in cloud decks) and/or magnetic starspots. Because measurements of v sin i suggest all L

dwarfs are rapid rotators (Bailer-Jones 2004; Reiners & Basri 2008), rotational modulation

is expected to have periods of hours.

Optical (I-band) variations have been detected in many L dwarfs at the few percent

level (Bailer-Jones & Mundt 2001; Clarke et al. 2002; Gelino et al. 2002; Clarke et al. 2003;

Koen 2003, 2005, 2006; Lane et al. 2007) and usually attributed to inhomogenities in the

clouds. Although a few detected I-band signals were periodic and consistent with rota-

tional modulation, others were not, and characteristics seen in one observing run may be

different in another. Bailer-Jones & Mundt (2001) suggested that surface features in early

L dwarfs evolve on timescales of hours and “mask” the underlying rotation curve in I-band:

A particularly interesting case was 2MASSW J1145572+231730 (hereafter 2M1145+23), an

L1.5 dwarf with Hα emission (Kirkpatrick et al. 1999), which showed periods that did not

match the previous year’s observations (Bailer-Jones & Mundt 1999, 2001). Gelino et al.

(2002) found that at least seven, and perhaps up to twelve, of eighteen L dwarfs were vari-
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able at I-band, but that most had non-periodic light-curves. The two observed periods

were thought to be much longer than the rotation rates. Koen (2006) reported that the

L0 dwarf 2MASS J06050196-22342270 had a consistent 2.4 hour period over three nights,

but the amplitude declined from 27 to 11 mmag. Both Bailer-Jones & Mundt (2001) and

Gelino et al. (2002) considered the balance of evidence favored cloud variations over sunspot-

like starspots, although some possible starspots have been noted in L dwarfs with Hα emission

(Bailer-Jones & Mundt 1999; Clarke et al. 2003). Lane et al. (2007) suggests that a three-

hour periodicity in the L3.5 2MASSW J0036159+182110 is due to starspots: Although this

source is not chromospherically active, it is radio active (Berger et al. 2005). These obser-

vations are all of field L dwarfs; Caballero et al. (2004) did not find statistically significant

variations in young (σ Ori) early L-type brown dwarfs, but few percent variations would

have been below the detection threshold and warmer young brown dwarfs showed evidence

of accretion.

Flares are another potential type of variability in ultra cool dwarfs, but only a few

optical flares in L dwarfs have been reported (Liebert et al. 2003; Schmidt et al. 2007;

Reiners & Basri 2008). As Schmidt et al. (2007) remark, only the Hα emission line has been

seen in these flares, and not the nearby helium emission lines seen in M dwarf flares, though

this may be a matter of sensitivity. In a study of M8-L3 dwarfs, Berger et al. (2010) placed

a limit of . 0.04 hr−1 on the rate of flares that increase the Hα line more than a factor of a

few above the quiescent chromospheric emission level. This rate is consistent with the esti-

mated L dwarf flare duty cycle of ∼ 1− 2% (Liebert et al. 2003; Schmidt et al. 2007). More

strong flares have been observed in M7-M9 dwarfs (Liebert et al. 1999; Mart́ın & Ardila

2001; Rockenfeller et al. 2006; Stelzer et al. 2006; Schmidt et al. 2007), with other atomic

emission lines and even white light continuum emission in some cases. Their Hα flare duty

cycle is also much higher, perhaps 5-7% (Gizis et al. 2000; Schmidt et al. 2007). Notably,

simultaneous radio-optical monitoring of two M8.5 dwarfs found no temporal correlation

between radio flares and Hα flares (Berger et al. 2008a,b).

The field L dwarf observations are intriguing, but the limitations of telescope scheduling

and ground-based observing make it difficult to reliably characterize L dwarf variability and

assess the relative contribution of periodic and non-periodic components. The discovery of

WISEP J190648.47+401106.8 (hereafter W1906+40, Gizis et al. 2011), a nearby L1 dwarf in

the Kepler Mission (Koch et al. 2010) field of view, has allowed us to obtain a 15 month long

time series from space. Although W1906+40 is much fainter (SDSS g, r, i = 22.4, 20.0, 17.4)

than the typical FGKM main sequence star targeted with Kepler, the achieved precision

of 7 mmags per observation compares favorably with ground-based data. We report on

the Kepler photometry and supporting multi-wavelength observations in Section 2, discuss

periodicity in Section 3, and discuss flares in Section 4.
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2. Observations

2.1. Kepler Data

W1906+40 was observed with Kepler Director’s Discretionary Time (Program GO30101)

from 28 June 2011 to 27 June 2012 and with Guest Observer time (Program GO40004) from

28 June 2012 to 03 October 2012. Its parameters are listed in Table 1. It was assigned a

new name for each quarter: KIC 100003560 (Quarter 10), KIC 100003605 (Quarter 11), KIC

100003905 (Quarter 12), KIC 100004035 (Quarter 13), and KIC 100004076 (Quarter 14). The

target was observed in long cadence mode (Jenkins et al. 2010b), providing 30 minute obser-

vations, for the full time period and also in one-minute short cadence mode (Gilliland et al.

2010) during Quarter 14. For each observation, the Kepler pipeline (Jenkins et al. 2010a)

provides the pixel data, the time (t = BJD− 2454833.0, or mission days), the aperture flux

(SAP Flux), the uncertainty, and a corrected aperture flux (PDCSAP Flux), which is meant

to correct instrumental drifts (Stumpe et al. 2012). After excluding data flagged as bad

(Quality Flag > 0), there are 18,372 long cadence measurements. The pipeline-estimated

noise levels are 0.5%. The spacecraft is rotated between quarters and the focus is a com-

promise, so W1906+40 was observed on four different detectors with considerably different

point spread functions. The Kepler pipeline therefore selects different apertures for each

quarter, which in some cases we can improve upon. For Quarters 10 and 14, we adopt the

PDCSAP Flux photometry, which used an aperture of nine pixels, because we found no

significant improvement with smaller apertures. However, the default pipeline analysis used

larger apertures for Quarters 11-13, which resulted in noisier photometry than Quarters 10

and 14. Furthermore, Quarter 13’s PDCSAP Flux is very low (< 100 counts per second),

which we found is due to two negative (bad) pixels included in the aperture. Smaller aper-

tures also reduce the possibility of contamination by nearby background stars. We therefore

adopted smaller apertures of six pixels for Quarters 11 and 12 and four pixels for Quarter 13

using the PyKE tool kepextract.1 Instrumental drifts for these three quarters were removed

with third-order polynomial fits. Kepler photometry is not calibrated in any absolute sense

since such calibration is not needed to meet the primary mission goals, so we divided each

quarter’s data by the median count rate for that quarter.

The Kepler data show a strong peak in the periodogram at a period of 0.3702 days. We

emphasize that this period is present in each quarter, and in both the pipeline photometry

and our revised (smaller aperture) photometry. This 8.9 hour period is consistent with

the rotation period distribution deduced for early L dwarfs by their v sin i measurements

1PyKE is available through the Kepler Mission contributed software webpage:

http://keplergo.arc.nasa.gov/PyKE.shtml

http://keplergo.arc.nasa.gov/PyKE.shtml
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(Reiners & Basri 2008). We fit a sine curve to all five quarters of long cadence data with

a Markov Chain Monte Carlo (MCMC) analysis and find the period is 0.370152± 0.000002

days with an amplitude of 0.00763 ± 0.00006 (8.3 mmag). The peak-to-peak variation is

twice this (1.5%, or 16 mmag). Fitting each quarter separately, then averaging, yields a

period of 0.37015 days with a standard deviation of 0.00005 days. The full phased dataset

with sine curve is shown in Figure 1. Excluding the small number of outliers, whose nature

are discussed in Section 4, the standard deviation about the fit is 0.65%, or 7 mmag. We

adopt this as the noise level of the measurements, as it is only a slight increase over the

expected value (0.5%) and there are other possible noise sources in the Kepler instrument

(Caldwell et al. 2010), though real intrinsic variations may contribute. Figure 2 shows four

days of Kepler data as an example of unphased data including a possible flare (Section 4.2);

our radio observations (Section 2.3) were in this time period. The Kepler filter response curve

is shown in Figure 3 along with the estimated relative count rate at each wavelength due to

the L1 dwarf photosphere; possible contributions from flares are discussed in Section 4.2.

2.2. Optical and Near-Infrared Observations

W1906+40 was observed with the Gemini Multi-Object Spectrograph (Hook et al. 2004)

on the Gemini North telescope (Program GN-2012A-Q-37). The R831 grating, OG515 order

blocking filter, and 1.0 arcsecond slit were used to yield wavelength coverage 6276Å to 8393

Å, with two small gaps between detectors that were interpolated over. We obtained sixteen

600-second exposures on UT Date 24 July 2012, twenty-five on 29 July 2012, and six on 8

August 2012. The flux calibration star BD+28 4211 was observed on 29 July 2012. The

data were bias-subtracted, flat-fielded, wavelength-calibrated, extracted and flux-calibrated

in the standard way using the Gemini gmos package in IRAF. A small correction was then

applied to bring the spectra in agreement with the i-band magnitude.

We compared the Gemini spectra to the spectral type standards defined by Kirkpatrick et al.

(1999) and find that W1906+40 is spectral type L1 (Figure 4.) It is not a low gravity L

dwarf (Cruz et al. 2009). We see no evidence for lithium absorption in any of the spectra.

The L1 optical spectral type agrees with the L1 near-infrared spectral type derived in the

discovery report. Hα is variable on all nights but detected in emission in all spectra. On 24

July the Hα emission equivalent width increased from 0.5Å at the beginning of observations

to 7.5Å at the end. On 29 July 2012, the Hα emission begins at 2.8Å, but is then dominated

by flares, discussed further in Section 4.1, as seen in Figure 4. On 8 August, the first five

spectra have an equivalent width of 2.5-3.0 Å, but the last increases to 6.5Å. The average

non-flare Hα equivalent width is 4Å. The flares on 29 July overwhelm the small periodic



– 6 –

signal, so we defer any attempt to identify small photospheric changes on the other nights

to a future paper when additional simultaneous ground-based and Kepler data are available.

W1906+40 was observed in clear and dry conditions on 10 September 2011 (UT) with

the Keck II NIRSPEC near-infrared echelle spectrograph (McLean et al. 2000), as part of an

ongoing search for radial velocity variables among nearby L dwarfs (Burgasser et al. 2012).

The source was observed using the high-dispersion mode, N7 filter and 0.′′432×12′′ slit to

obtain 2.00–2.39 µm spectra over orders 32–38 with λ/∆λ = 20,000 (∆v = 15 km s−1) and

dispersion of 0.315 Å pixel−1. Two 120 s exposures were obtained in two nods separated by

7′′ along the slit. We also observed the A0 V calibrator HD 192538 (V = 6.47) in the same

setup for telluric correction and flux calibration, and internal quartz flatfield and NeArXeKr

arc lamps for pixel response and wavelength calibration, respectively.

Spectral data were extracted from the images using the REDSPEC package2, and

we focused our analysis on order 33 which samples the strong CO band around 2.3 µm

(Blake et al. 2008). We used REDSPEC and associated routines to perform pixel-response

calibration, background subtraction, order identification, image rectification, and extraction

of raw counts for both target and A0 V star. We also obtained an initial linear wavelength

calibration using the arc lamp images, but performed no telluric or flux calibration. We

then used these data to perform a forward-modeling analysis similar to that described in

Blake et al. (2010). Our full methodology will be presented in a future paper, but in brief

we explored a parameterized model of the raw spectrum

S[p] = {(M [p(λ,RV )]⋆K)×T [p(λ)]α×C[p]} ⋆LSF (1)

through Markov Chain Monte Carlo (MCMC) methods. Here, M is a synthetic model chosen

from the BT-Settled set of Allard et al. (2011), spanning 1800 K ≤ Teff ≤ 2500 K in 100 K

steps and 4.5 ≤ log g ≤ 5.5 (cgs) in 0.5 dex steps, and sampled at a resolution of 300,000

(∆v = 1 km s−1); p(λ) is the conversion function from wavelength to pixel, modeled as a

third-order polynomial; RV is the barycentric radial velocity of the star; K is the rotational

broadening kernel defined by Gray (1992) which depends on v sin i; T[λ] is the telluric ab-

sorption spectrum, adopted from the solar absorption spectral atlas of Livingston & Wallace

(1991); α scales T[λ] to match the observed telluric absorption; C is the flux calibration

function, modeled as a second-order polynomial; LSF is the spectrograph line spread func-

tion, modeled as a Gaussian with width σG; and ⋆ denotes convolution. To facilitate rapid

exploration of this 11-component parameter space, we performed the rotation convolution

on all of the models in advance, sampling 5 km s−1≤ v sin i ≤ 100 km s−1in 1 km s−1steps.

2REDSPEC was developed for NIRSPEC by S. Kim, L. Prato, and I. McLean; see

http://www2.keck.hawaii.edu/inst/nirspec/redspec/index.html.

http://www2.keck.hawaii.edu/inst/nirspec/redspec/index.html
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Parameters were initiated by first fitting the A0 V observation; we then fit the W1906+40

spectrum using MCMC chains of length 1000 for each of the spectral models deployed (Teff

and log g), following standard procedures (e.g., Ford 2005) and using χ2 as our cost function

.

Figure 5 shows our best-fit model to the data, with Teff = 2300 K, log g = 5.0 dex,

heliocentric radial velocity of −22.5 km s−1(assuming a barycentric motion of −10.7 km s−1)

and v sin i = 11 km s−1. The fit is good (reduced χ2 = 2.9), and the strong blend of both

stellar and telluric absorption features provides a robust framework for constraining both

radial and rotational velocities. To determine estimates of each, we marginalized all of the

chains for each parameter p using a probability function based on the F-test statistic

〈p〉 =

all chains
∑

i

pi℘i (2)

σ2
p =

(

all chains
∑

i

p2i℘i

)

− 〈p〉2 (3)

where the probability function ℘ for each chain was determined from the F-test probability

distribution function

℘i ∝ 1− F (χ2
i /min({χ2}), ν, ν) (4)

(see Burgasser et al. 2010) with min({χ2}) being the minimum χ2 (best-fitting model), ν the

degrees of freedom (# pixels −# parameters), and enforcing
∑

℘i = 1. From this calculation

we determined RV = −22.6±0.4 km s−1 and v sin i = 11.2±2.2 km s−1 for W1906+40. The

fitted Teff is consistent with other L dwarf studies (see the reviews of Chabrier & Baraffe

2000; Kirkpatrick 2005), so we estimate the uncertainty in Teff as ±75K.

The parallax and proper motion were obtained with the ASTROCAM (Fischer et al.

2003) imager at the 1.55-m telescope of the U.S. Naval Observatory, using the astrometric

observing and reduction principles described in Vrba et al. (2004). Observations in J-band

were obtained on 27 nights over the course of 1.23 years. A reference frame employing 16

stars with a range of apparent J magnitude of 11.8-14.6 was employed. The conversion

from relative to absolute parallax was based on using both 2MASS and SDSS photometry

to determine a mean distance of the reference frame stars of 2.20 mas. We caution that this

is a preliminary parallax since, even with an excellent reference frame and a location in the

sky giving a significant parallax factor in declination, an observational time baseline of 1.23

years is not sufficient to completely separate parallax and proper motion. This object will be

on the USNO infrared parallax program for the next 2-3 years to establish a final parallax.

This distance (16.35+0.36
−0.34 pc) is in excellent agreement with that derived in the discovery

paper (16.6± 1.9 pc) assuming the object to be single. If there is a unresolved companion,
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it is therefore unlikely to contribute significantly to the Kepler photometry. As shown in the

Kirkpatrick (2005) review, an L1 dwarf like W1906+40 is most likely a hydrogen-burning

star with age & 300 Myr. The observed tangential velocity is greater than the median (30

km s−1) for L1 dwarfs (Faherty et al. 2009), supporting an old age and stellar status. Both

integrating the W1906+40 near-infrared spectrum and optical to mid-infrared photometry

and comparison to other L1 dwarfs (Golimowski et al. 2004) gives BCK = 3.22± 0.06, and

therefore logL/L⊙ = −3.67±0.03. Overall, our optical and near-infrared observations show

that W1906+40 is a typical L1 dwarf, though the Hα and rotation rate places it in the

more chromospherically active and slowly rotating half of the population. If the L dwarf

rotation-age relation suggested by Reiners & Basri (2008) is correct, W1906+40 would be

older than 5 Gyr.

2.3. Radio Observations

W1906+40 was observed with the Karl G. Jansky Very Large Array (VLA)3 for three

hours starting at 2012 Feb 23.46 UTC (Project 12A-088). The total observing bandwidth

was 2048 MHz, with two subbands centered at 5000 and 7100 MHz and divided into 512

channels each. Standard calibration observations were obtained, with 3C286 serving as the

flux density scale and bandpass calibrator and the quasar J1845+4007 (4◦ from W1906+40)

serving as the phase reference source. The total integration time on W1906+40 was 120 min-

utes.

The VLA data were reduced using standard procedures in the CASA software system

(McMullin et al. 2007). Radiofrequency interference was flagged manually. After calibration,

a deep image of 2048×2048 pixels, each 1×1 arcsec, was created. The imaging used multi-

frequency synthesis (Sault & Wieringa 1994) and CASA’s multifrequency CLEAN algorithm

with two spectral Taylor series terms for each CLEAN component; this approach models both

the flux and spectral index of each source. The rms residual of the deconvolution process

around W1906+40 was 2.9 µJy bm−1.

W1906+40 is detected at the eight-sigma level with flux density 23.0 ± 4.1 µJy at a

mean observing frequency of 6.05 GHz. This corresponds to νLν = (4.5 ± 0.9) × 1022 erg

s−1 with spectral index (Sν ∝ να) α = −2.0 ± 1.4. The mean time of the observation

is 23 Feb 2012 12:40:50 UTC which equals Kepler mission time 1148.026. To place the

radio coverage in context, the time of the radio observations is marked on the corresponding

3The VLA is operated by the National Radio Astronomy Observatory, a facility of the National Science

Foundation operated under cooperative agreement by Associated Universities, Inc.
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Kepler photometry in Figure 2; the mean time of the radio observations corresponds to phase

0.91 in Figure 1, close to the minimum in the Kepler light curve. We searched for radio

variability in W1906+40 by using the deep CLEAN component model to subtract all other

detectable sources from the visibility data, then plotting the real component of the mean

residual visibility as a function of time, rephasing the data to the location of W1906+40. No

evidence for radio variability was seen. We imaged the LL and RR polarization components

separately and found no evidence for significant circular polarization of the emission from

W1906+40. W1906+40 is just the sixth L/T dwarf detected in quiescent radio emission

(Berger 2002, 2006; Berger et al. 2009; Burgasser et al. 2013; Williams et al. 2013).

2.4. Mid-Infrared (WISE) data

The W1906+40 discovery paper was based on the Preliminary Wide Field Infrared Ex-

plorer (WISE, Wright et al. 2010) data release. It appears as source WISE J190648.47+401106.8

in the final WISE All-Sky Source Catalog. The source was scanned 28 times over 1.9 days

in April 2010 as part of the main WISE Mission and again 34 times over 4.3 days in Oc-

tober 2010 in the Post-Cryo mission. We find that in the WISE All-Sky Single Exposure

(L1b) Source Table and WISE Preliminary Post-Cryo Single Exposure (L1b) Source Tables,

W1 is consistent between and within the two epochs, but the source apparently brightened

from W2= 11.23 ± 0.02 in April 2010 to a mean W2= 11.12 ± 0.02 in October (with indi-

vidual uncertainties ±0.03 magnitudes.) The October data also shows more scatter in W2

than expected, but higher precision mid-infrared observations would be needed to confirm

variability. The WISE data are more than 680 periods before the beginning of the Kepler

data.

3. Photometric Variability

3.1. Radius and Inclination

The radius and inclination of W1906+40 are important parameters in interpreting the

Kepler light curve. We can constrain them both using our observations. First, the radius is a

function of the observed distance (and thereby the luminosity) and our effective temperature

fit:

R = 0.90± 0.03RJ

(

2300K

Teff

)2(

d

16.35pc

)

(5)
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The uncertainty of 3% includes the uncertainty in the bolometric correction and pho-

tometry but not parallax or temperature uncertainty. Second, assuming the photometric

period is the rotation period, we can also constrain the radius and inclination with our

spectroscopic v sin i:

R sin i = 0.80RJ

(

P

0.37015 d

)(

v sin i

11.2 kms−1

)

(6)

The uncertainty in this value is 20% due to the v sin i uncertainty. Combining this con-

straint with Equation 5 suggests i ≈ 60◦, but a range of inclinations are possible. Since the

period is so strongly constrained, we can infer the posterior probability using three observa-

tions for the data (luminosity, effective temperature, and v sin i) and a three parameter model

(luminosity, radius, and sin i). Our priors are flat in luminosity and radius, but proportional

to sin i on geometric grounds. Using an MCMC chain of one million steps, and discarding

a burn-in of one thousand steps, we find the posterior probability distribution shown in

Figure 6. The inferred radius is R = 0.92 ± 0.07RJ . At the 95% confidence level, we find

that sin i > 0.59, with the median value sin i = 0.83 and most likely value sin i = 0.90. The

inferred radius is consistent with theoretical predictions of 0.8 . R . 1.0RJ (Chabrier et al.

2000; Burrows et al. 2011).

3.2. Spot models

The most striking aspect of the Kepler light curve is that it has a consistent phase

for over a year. Furthermore, while we cannot rule out deviations from a sine function or

small changes in the shape, it appears that the light curve has no flat portion. The simplest

explanation is that the rotating dwarf has a single feature (darker or brighter than the

surrounding photosphere) that is always in view. To explore this possibility, we model the

first year of data using the circular spot equations of Dorren (1987), which we implemented in

Python with an MCMC code. We assumed linear limb darkening coefficients of 0.9 based on

the predictions of Claret (1998) and Claret & Bloemen (2011). Many solutions are possible,

and generally we can find single dark spot models with χ2 similar to the sine models. Some

possible solutions with completely dark spots with sin i consistent with Figure 6 and are

listed in Table 2. Solutions with i ≈ 80◦ can be found, but they require a larger spot. The

different light curve during Quarter 13 could be explained in large part in the single circular

dark spot model by increasing the spot size (to ∼ 13◦ for i = 60◦), or by lowering the

latitude (to ∼ 70◦ for i = 60◦). While attributing a long-lived feature to a single “spot” is

attractive, it could also be modeled in other ways, such as multiple large dark spots at lower
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latitudes. An intriguing alternative spot model that does not favor large circumpolar spots

was presented for active dwarfs by Alekseev & Gershberg (1996). In this “zonal model,” it

is assumed that a large number of small spots together form large dark bands symmetric

around the equator. This naturally produces sinusoidal light curve even at sin i ≈ 1 without

requiring us to be viewing polar spots.

The physical cause of the putative large spot at high latitude (or even multiple spots

at low latitudes) might be a magnetic starspot (i.e., a region of cooler photosphere due to

magnetic fields) or an cloud structure. Jupiter’s Great Red Spot would produce a strong

periodic signal at 9.9 hours even in unresolved data (Gelino & Marley 2000), though a single

spot on W1906+40 would be at much higher latitude. Gelino et al. (2002) comment that

small holes in a cloud layer would form bright (I-band) spots “similar to the ‘5 µm hot spots’

of Jupiter.” These might be distributed according to the zonal model. Harding et al. (2011)

argue for a “magnetically-driven auroral process” to produce optical variations in some ultra

cool dwarfs. We cannot determine whether the features are brighter or darker than the

photosphere with the single-band Kepler data, so all of these possibilities are plausible.

It is worth considering whether chromospheric emission line variations would explain the

Kepler periods. Varying Hα emission from zero to ten Angstroms equivalent width, even

with associated bluer Balmer lines, would only produce a signal of ∼ 0.0015%, an order of

magnitude too small to explain our data.

The stability of the period and amplitude makes a striking contrast with the L dwarf

observations discussed in the Introduction. Besides the stable 8.9 hour period, we find no

evidence of other periods, transient or not, in the data. To search for other periods of

hours to days, we have calculated periodograms for every three, five, and ten day period

and found no other significant period in any of them. The long-term drifts we removed

were typically 1%, and only reached 6% during quarter 11, and these are consistent with the

drifts in bright stars corrected by the PDC pipeline process. Although intrinsic slow changes

in W1906+40 on timescales of months might be removed, it is likely that a strong signal,

like the ∼ 30 day period M dwarf GJ 4099 (KIC 414293, Basri et al. 2011), would still be

detected. Variations on timescales less than a week that are & 1% would be detected. We

conclude that the various “masking” periods and non-periodic variations reported in other

L dwarfs at amplitudes > 2%, and attributed to condensate cloud inhomogeneties, are not

present in W1906+40. On the other hand, variations . 1% can be plausibly be attributed to

noise, but could also be due to real variations. (The data shown in Figure 2 are suggestive,

and typical.)

If the short-lived variability observed on non-active ultracool dwarfs is associated with

condensate clouds, perhaps the long-lived periodic feature on this active L dwarf is associated
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with different, possibly magnetic, phenomena. A number of studies (Berger et al. 2005;

Hallinan et al. 2006, 2008; Berger et al. 2009; McLean et al. 2011) have suggested that some

ultracool dwarfs have stable magnetic large-scale topologies, like dipoles or quadrupoles.

This could result in a large high-latitude feature. Hussain (2002) reviewed starspot lifetimes:

While starspots on single, young main-sequence stars have typical lifetimes of a month, other

types of starspots can have lifetimes of years or decades. Furthermore, an active longitude

may remain more heavily spotted for years, even as individual spots come and go on shorter

timescales. Of course, as Lane et al. (2007) remark, a cooler starspot on an L dwarf might

have different cloud properties than the normal photosphere.

4. Flare Analysis

4.1. Spectroscopy and photometry of the 29 July 2012 flares

After the first forty minutes of Gemini data on 29 July 2012 show relatively quiescent

Hα emission, the subsequent spectra are dominated by a series of flares characterized by

strong emission lines and a blue continuum. The first flare is in the ten minute exposure be-

ginning at UT 08:29:28, followed by a more powerful “main” flare at UT 10:14:15 (shown in

Figure 4. Both of these flares are detected in the Kepler short cadence photometry: the first

flare peaks at mission time 1304.8597 and the main flare peaks at mission time 1304.9353.

The first three main flare spectra, with the quiescent L dwarf photosphere subtracted, are

shown in Figure 7 showing decay of the blue continuum. The atomic emission lines as a

function of time throughout the night are shown in Figure 8 along with the simultaneous

Kepler short cadence photometry.4 The Kepler light curve is in good agreement with the

appearance of the spectroscopic white light continuum. Even with multi wavelength data

at high time resolution (see Gershberg 2005), flare spectra have proven to be challenging

to interpret. Most notably, this L1 dwarf is able to produce a white light flare that is sim-

ilar to that observed in M dwarf flare stars. Indeed, the flare spectrum is very similar to

Fuhrmeister et al. (2008)’s flare in the M6 dwarf CN Leo (Wolf 359), including the white

light, broad Hα, and atomic emission lines. The flare also resembles the most powerful ob-

4The timing gaps evident in Figure 8 should be explained. The Gemini observations were originally queue

scheduled as three blocks of three hours each, with two blocks on 29 July 2012. The main flare begins in

the 15th spectrum, the last of the first block. There is then a five minute gap before the next block of

spectra begins. After eight of these spectra, the telescope was diverted to a target of opportunity for another

program. After slightly more than one hour, the queue returned to our program to take two more spectra.

The lost observing time was made up on 8 August. The Kepler light curve stops due to a monthly data

download.
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served flares in M7 (Schmidt et al. 2007) and M9 (Liebert et al. 1999) dwarfs, demonstrating

continuity in the flare properties across the M/L transition. The white light and emission

line light curves are qualitatively very similar to the 28 March 1984 AD Leo flare described

by Houdebine (1992) as “impulsive/gradual.”

The main (1304.9395) flare shows both atomic emission lines and continuum emission

with a blue slope. The higher time resolution photometry shows that the flare began four

minutes into the Gemini UT 10:14:15 exposure, and reached its Kepler maximum in the final

two minutes. The “white light” flare continuum spectrum is consistent with an 8000±2000K

blackbody. In Allred et al. (2006)’s radiative hydrodynamic simulations, an electron beam

injected at the top of a magnetic loop heats the chromosphere, producing emission lines in

general agreement with observed flares, but does not penetrate to the denser photosphere,

and white light emission is not produced. As Kowalski et al. (2010) discuss in the case of a

flare on the M4.5 dwarf YZ CMi, evidently the W1906+40 photosphere must somehow be

heated to produce ∼ 8000K continuum emission. This is also seen in the older models of

Cram & Woods (1982), where white light continuum emission requires moving the tempera-

ture minimum deeper and heating the photosphere (see their Models 4-6). Free-free emission

from a hot (T ≈ 107 K) plasma is also consistent with our white light flare spectrum but is

disfavored by Hawley & Fisher (1992)’s analysis of M dwarf flares. The Kepler photometry

and our calibration (Section 4.2, Table 3) indicates that the total (included extrapolated to

ultraviolet) flare energy release during the Gemini 10:14:15UT exposure was ∼ 5× 1031 erg.

The photometric light curve is typical of those observed in UV Ceti (M dwarf) flare stars as

summarized by Gershberg (2005): It is asymmetric, with a rapid rise, an initial fast decrease,

and a subsequent slow decay which began when the flare was at ∼ 0.2 of the maximum. The

flare lasts 106 minutes in the Kepler photometry. Using the calibration discussed in detail in

Section 4.2, the observed flare energy through the Kepler filter during this time is 6.4× 1031

ergs, which may be extrapolated to ∼ 1.6× 1032 erg for the full ultraviolet/optical range.

The white light in the main flare is accompanied by strong, very broad Hα emission,

especially evident in the top spectrum of Figure 7. Most stellar flares do not show much

Hα broadening (Houdebine 1992). If modeled with two gaussians, as sometimes done for M

dwarf flares (Eason et al. 1992; Fuhrmeister et al. 2008), the narrower gaussian component

has Full Width at Half Maximum (FWHM) ∼ 6 Å and the broader gaussian component

has FWHM ∼ 25 Å. Very broad Hβ and bluer Balmer flare lines are usually attributed

to Stark broadening, but Eason et al. (1992) argued in the case of a UV Ceti flare that

broad Hα is better explained by turbulent motions. Fuhrmeister et al. (2008) also interpret

broad Hα flare emission in the M6 dwarf CN Leo as due to turbulent motions, in addition to

Stark broadening, possibly due to “a chromospheric prominence that is lifted during the flare

onset and then raining down during the decay phase.” (Their observations have higher time
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and spectral resolution.) This interpretation could also be applied to the W1906+40 flare.

Zirin & Tanaka (1973) noted broad (FWHM 12 Å) Hα emission from the kernels of a great

solar flare; these are also responsible for the white light emission and show turbulent motions

(Zirin 1988). Detailed modeling should be pursued, however, as very broad Hα emission

wings are caused by Stark broadening in some Cram & Woods (1982) models along with

the white light (Models 5, 6), while Kowalski et al. (2011, 2012) found broad Hα absorption

associated with a white light flare on YZ CMi reminiscent of an A-star.

As the blue continuum and broad Hα decays, the Hα line stays strong but narrows.

Atomic emission lines from He I (6678Å, 7065Å, 7281Å) and O I (7774Å) are easily visible.

These emission lines remain strong for two hours (Figure 8). One hour after the main flare

at mission times 1304.97-1304.99, Hα strengthens again, perhaps due to another flare, cre-

ating a double peaked time series profile, though only a small increase in the spectroscopic

blue continuum and Kepler photometry occur. Subtracting the quiescent photospheric spec-

trum, we also identify emission lines from neutral K and Na which fill in the core of the

photospheric absorption features. These spectra are similar to red M dwarf flare spectra

(Fuhrmeister et al. 2008), and are understood as the result of the increase in electron den-

sity and heating of the chromosphere (Fuhrmeister et al. 2010). The much longer duration

of the emission lines is not surprising, and is consistent with solar flares (Zirin 1988) and

the statistics of SDSS spectra of M dwarf flares (Kruse et al. 2010; Hilton et al. 2010). The

flare luminosity for the first hundred minutes in units of 1028 ergs is 480, 13, and 3.5 in Hα,

He I (6678 Å), and O I (7774Å). During the time period covered by the first three Gemini

spectra (Figure 7, 80% of the Kepler luminosity was emitted but only 60% of the O I, 50%

of the He I and 40% of the Hα luminosities.

The first (1304.8597) flare was also a powerful one in its own right. In the first Gemini

spectrum of the first flare, Hα strengthens to equivalent width 30Å, which we can correct

to 42Å given the timing of the Kepler photometry. In the next ten minute exposure, Hα

has increased to 55Å. When the quiescent photosphere is subtracted, a blue continuum is

present in the first exposure and the flare is clearly detected in the Kepler photometry. We are

unable to say if this flare, which would otherwise be the strongest spectroscopically observed

L dwarf flare, is a physically related to the main flare almost two hours (a fifth of a rotation

period) later. Overall, the complex time evolution, with the first flare two hours before and

a secondary flare an hour after the main flare, suggests the emergence and reconfiguration

of a complex, multi-loop magnetic structure. This may be consistent with the L dwarf flare

theory sketched out by Mohanty et al. (2002) in which flux tubes generated in the warmer

interior rise rapidly into the cooler atmosphere, but in any case the flares appear very similar

to flares on hotter stars, suggesting similar mechanisms. Although probable flares in early

L dwarfs have been noted before (Liebert et al. 2003; Schmidt et al. 2007; Reiners & Basri
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2008), they were seen in the Hα line only. The 29 July flares are both stronger in Hα than

in those flares, in addition to showing other atomic emission lines and white light.

4.2. Flare statistics from Kepler photometry

There are a total of 21 candidate white light flares in the Quarter 14 short cadence data

that peak at least 10% above the average W1906+40 count rate and are elevated for two or

more measurements (Table 4). Kepler time series photometry of these flares are shown in

Figure 9 The strongest candidate flares include data points flagged as likely cosmic rays by

the Kepler pipeline, but we believe this is incorrect. The sharp rise of the two 29 July flares

are also flagged as possible cosmic rays (see the discussion in Jenkins et al. 2010b), but the

Gemini spectroscopy proves they are flares. The centroid of the main flare peak shifts by

0.4 pixels not because it is a off-center cosmic ray, but because the positions are wavelength

dependent, and (blue) flare photons outnumber (red) photospheric photons more than three

to one. As the flare decays the centroid returns to normal. We therefore accept flare-like

light curves even if the sharp rise triggered the cosmic ray flag.

It can be useful to discuss flares in terms of energies instead of relative counts. Walkowicz et al.

(2011) and Maehara et al. (2012) have estimated the energy of white light flares on G, K

and M dwarfs observed by Kepler by approximating the flare as a 10,000K blackbody. The

Kepler Mission filter is similar to g,r, and i combined (Koch et al. 2010): As illustrated

in Figure 3, the L dwarf photosphere contributes mainly at the very reddest wavelengths,

but hot flares will contribute through the entire filter. Indeed, the effective wavelength for

the Kepler photometry for W1906+40 is 7990Å rather than ∼ 6200Å for hot sources. In

Table 3, we present energy calculations of hypothetical flares that have the same observed

count rate as W1906+40, assuming the flares radiate isotropically. We use the i magnitude,

the distance derived in Section 2.2, and the L1 dwarf spectrum shown in Figure 3 to estimate

that the L dwarf luminosity is 1.4 × 1028 erg s−1 in the wavelength range 4370Å to 8360Å.

The blackbody energies for equal count rates, 2.1× 1028 erg s−1, are 50% higher because the

average energy per photon is larger. Thus, to double the observed Kepler count rate, one

needs a flare of 1.3× 1030 erg (over that wavelength range) during a short cadence exposure

and 3.8× 1031 erg during a long cadence exposure. Most of the flare energy will be emitted

at shorter optical and ultraviolet wavelengths. The corresponding bolometric luminosities

for the blackbodies are 4.4 to 6.4× 1028 erg s−1. Real flares are not blackbodies, so we also

estimated the total luminosities by consulting Table 6 of Hawley & Pettersen (1991), which

gives energies from 1200Åto 8045Å for the impulsive and gradual phases of great flare of 12

April 1984 on AD Leo. The results are close to the blackbody approximations.
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Seven of the flares last at least an hour. Most rise to their peak value within a few

minutes, and drop to half their peak flux in 1-3 minutes. We list the rise time to the peak

in Table 4) as tr, the time to drop to half the flux as t1/2, and the total length of the flare as

tL. The flare at mission day 1298.5401 is an exception with, a 23 minute rise time and slow

decay. Overall, both the typical shape and the variety of the light curves is consistent with

stellar flares (Gershberg 2005). We also list the peak long cadence count rate in Table 4;

most short cadence flares are enhancements of 2% or less in the 30 minute data and therefore

would not be significant detections without the short-cadence data. The cosmic ray flagging

may have a significant effect on real flares in the long cadence data: The long cadence flux for

the Gemini-confirmed 1304.9353 flare is half that we obtain by integrating the short cadence

flux, and the discrepancy is due to the removal of “cosmic rays” in the long cadence pipeline.

We have searched the Quarters 10-13 data for other candidate flares; however, flares are

easily confused with cosmic rays, and we have concluded that we cannot reliably distinguish

between flares and cosmic rays using the long cadence data. We nevertheless mention two

interesting candidates. At mission time 1148.407, the target increases by 48%, decaying to

10% in the next exposure; this would represent a flare of energy ∼ 1.4× 1032 ergs. (This is

the time period also plotted in Figure 2.) These points are not flagged as cosmic rays and the

pixel data appears consistent with the stellar PSF, so it is likely to be a real flare. The most

powerful long-cadence–only flare candidate is at mission time 1039.049: W1906+40 nearly

doubles in brightness, then decays over the next 2 hours back to the normal brightness.

The pipeline, however, flags the initial increase as a possible cosmic ray strike, and if this

is correct, the following “decay” simply represents the return of the CCD’s sensitivity to

normal. Flare rates should should be viewed with caution for the lowest energy flares, since

the contribution of a long-lived tail can be lost in the noise, and flares with low peaks will be

missed altogether even in the short cadence data. There is no apparent dependence of the

flares on the rotation phase. It is also notable that four of the eight most powerful Quarter

14 flares might be related, the pair 1304.8597/1304.9353 and the pair 1336.1666/1336.1939.

In Figure 10, we plot the flare energy spectrum (Lacy et al. 1976) as the estimated

flare energy as a function of the cumulative frequency (ν̃). Additional monitoring would be

needed to improve the frequency estimates and to check if the flare rate varies. Comparison

to well studied dMe flare stars (Lacy et al. 1976; Gershberg 2005) indicates the flare energy

spectrum is similar to that observed in flare stars but shifted downwards for W1906+40:

Flares are ∼ 10 − 100 times less energetic at a given frequency, or alternatively flares of a

given energy are less frequent on W1906+40 than on dMe flare stars. On the other hand, the

white light flare rate on W1906+40 is comparable to that of the Sun (Neidig & Cliver 1983;

Gershberg 2005), despite the L dwarf’s much lower effective temperature and surface area.

The observed rate for flares with energy > 1031 ergs is 10−3 to 10−2.5 hr−1, or 1-2 per month.
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For comparison, the Berger et al. (2010) limit on Hα-only L dwarf flares is a cumulative

frequency of log ν̃((hr−1) . −1.4; those flares are too weak to be detected in the broad

Kepler filter, because a change of 10Å would change the photometry by only ∼ 0.0015%.

5. Conclusion

Our initial monitoring of W1906+40 has revealed long-lived surface features and a well-

defined periodicity due to rotation. Despite its cool photosphere, this L1 dwarf maintains

an active and variable chromosphere, emits in the radio, and produces powerful flares that

rival white light flares in the Sun. A major limiting factor in the analysis of the periodic

component is our lack of knowledge of the spot-to-star flux ratio. During our Guest Observer

Cycle 4 program, we are monitoring W1906+40 with a number of ground-based telescopes

to search for changes correlated with Kepler data and to determine if the surface features

change on multi-year timescales. These observations may be able to reveal the nature of the

surface features, and whether they are hotter or cooler than the surrounding photosphere.
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Table 1. WISEP J190648.47+401106.8

Parameter W1906+4011 Units

Sp. Type L1 optical

Sp. Type L1 near-infrareda

i 17.419± 0.006 mag a

Ks 11.77± 0.02 mag a

πabs 61.15± 1.30 mas

µ 476.2± 2.9 mas yr−1

θ 111.28± 0.17 degrees

vtan 36.9± 0.8 km s−1

vrad −22.6± 0.4 km s−1

U -5.5 km s−1 b

V -11.6 km s−1

W -41.3 km s−1

v sin i 11.2± 2.2 km s−1

Period 0.37015 days

Amplitude 1.5%

logLbol/L⊙ −3.67± 0.03

R 0.92± 0.07 RJ

sin i > 0.59

Radio νLν (4.5± 0.9)× 1022 erg s−1

Radio α −2.0± 1.4

〈Hα EW〉 4 Å

〈FHα〉 3× 10−16 erg s−1cm−2

log 〈LHα〉/Lbol -5.0

log νLν/Lbol -7.3

aFrom Gizis et al. (2011)

bU is positive towards Galactic center

Table 2. Sample Single Circular Dark Spot Models

Parameter i = 50◦ i = 60◦ i = 70◦ i = 80◦

sin i 0.77 0.87 0.94 0.98

Median Observed Flux 1.000 1.000 1.000 1.000

Unspotted Flux 1.012 1.012 1.011 1.011

Latitude (deg) 73 77 81 83

Spot Radius (deg) 8.0 9.9 13 20
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Table 3. W1906+40 Kepler Calibration

Spectrum Count Rate L (4370-8360 Å) Lbol

cnts s−1 1028 erg s−1 1028 erg s−1

L1 photosphere (W1906+40) 1 1.4 82

Flare (6000K Blackbody) 1 2.0 4.4

Flare (8000K Blackbody) 1 2.1 5.0

Flare (10000K Blackbody) 1 2.1 6.4

Flare (Scaled AD Leo Impulsive)a 1 2.1 6.8

Flare (Scaled AD Leo Gradual)a 1 2.1 5.2

aBased on Hawley & Pettersen (1991). See text

Table 4. Flares Observed in Quarter 14

Mission Time Peak Etot tL tr t1/2 PeakLC Notes

days cnts s−1 1030 erg min min min cnts s−1

1304.9353 4.27 160 106 7 5 1.35 Gemini spectra

1298.5401 1.34 48 160 23 22 1.16

1336.1666 2.42 40 37 3 2 1.17 Ended by 1336.1939

1348.8632 2.09 38 75 5 3 1.10

1358.5103 1.56 27 76 9 3 1.08

1336.1939 1.39 26 64 4 17 1.08

1302.2680 3.39 17 106 2 2 1.02

1304.8597 1.27 8.4 60 3 1 1.04 Gemini spectra, precedes 1304.9353

1287.6311 1.46 7.2 26 2 1 1.04

1340.6865 1.34 6.6 18 1 3 1.02

1362.5329 1.41 4.5 12 2 1 1.01

1357.3020 1.29 4.2 19 2 1 1.00

1299.4556 1.42 4.2 8 1 2 1.01

1352.5146 1.33 3.3 9 2 1 1.00

1286.4391 1.18 2.5 12 2 3 1.00

1314.9410 1.34 1.8 2 2 1 1.00

1288.1638 1.11 1.4 10 2 1 1.01

1331.0249 1.12 0.9 4 1 2 1.00

1366.0617 1.11 0.6 2 1 1 1.00

1323.4271 1.12 0.6 3 2 1 1.00

1318.0816 1.12 0.6 3 2 1 1.00
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Fig. 1.— Phased Kepler light curves for W1906+40 for Quarters 10-14 for a period of

0.370152 days. Phase zero is defined as Kepler Mission day 1000.0. The red curve shows

a sine function with P = 0.370152 days and amplitude 0.00763. The light curve shows

significant differences in Quarter 13, but overall the light curve has a consistent phase and

amplitude.
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Fig. 2.— Kepler light curve showing the Quarter 12 data from Mission Day 1146 to 1150.

The plotted error bars are those reported by the Kepler pipeline (0.044 for these points),

which may be underestimated. The red curve shows the model sine fit for the full year-long

dataset. Possible changes in the amplitude are evident, perhaps up to twice the model. The

time of the radio observations (Section 2.3) is marked by the vertical blue line with one hour

before and after shown as the dotted line. The flare candidate at 1148.41 is discussed in

Section 4.2.



– 28 –

4000 6000 8000 10000
Wavelength (Angstroms)

0.0

0.2

0.4

0.6

0.8

 C
ou

nt
s 

pe
r 

se
co

nd
 p

er
 A

ng
st

ro
m

Counts due to L1 Dwarf Photosphere

Kepler Filter Curve

with 8000K Flare

Fig. 3.— Predicted count rates as a function of wavelength for the Kepler photometer.

We use the L1 standard 2MASS J14392836+1929149 (Kirkpatrick et al. 1999) for λ > 6300

Åand the L0.5 dwarf 2MASS J07464256+2000321 (Reid et al. 2000) for λ ≤ 6300Å in order

to completely cover the Kepler filter sensitivity range. The counts are weighted by the average

Kepler filter response (Koch et al. 2010), which is also plotted by itself. The integrated count

rate is normalized to give 660 electrons per second, which matches the pipeline reported count

rate for Quarter 10. Also shown is a hypothetical 8,000K blackbody flare (Walkowicz et al.

2011) that contributes an equal number of counts.
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Fig. 4.— Gemini spectrum of W1906+40 (without telluric correction) in a quiescent, ap-

parently non-flaring, period and in a white light flare. The spectral type is L1 on the

Kirkpatrick et al. (1999) system.
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Fig. 5.— Keck II NIRSPEC spectrum of W1906+40 with best-fit model to the data.
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Fig. 6.— Posterior Probability Distribution for the radius and inclination (sin i) of

W1906+40 given the constraints of the observed luminosity, effective temperature, period,

and v sin i.

Wavelength (Angstroms)

f λ
 (

10
-1

7  e
rg

 s
-1

 c
m

-2
 A

ng
st

ro
m

s-1
)

      

10

100

1000
UT 10:14:15

      

10

100

1000
UT 10:31:27

6400 6600 6800 7000 7200 7400

10

100

1000
UT 10:41:56

Fig. 7.— The first three observed spectra during the main flare on UT Date 29 July 2012,

with the L dwarf photosphere (Figure 4) subtracted off. Note the strong white light contin-

uum, the broad H α that narrows, and the helium emission lines. The first spectrum has

been adjusted upwards by a factor of 1.67 based on the timing of the flare in the Kepler

photometry.
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Fig. 8.— Observations of the UT Date 29 July 2012 flares. Kepler white light and Gemini

emission line flux as a function of time. The early, main, and later flares are evident. The line

fluxes measured with Gemini at the start of the two flares (1304.86 and 1304.93) have been

adjusted upwards based on the timing of the flare start times in the Kepler photometry. The

Kepler white light flux is calculated for the wavelength range 4370-8360 Å; the ultraviolet plus

optical flux is probably two to three times higher (Table 3). The helium line at 6678Å and

the oxygen blend at 7774Å are plotted. The continuum flux observed by in the Gemini

spectra in the range 6350-6450Å after subtracting the quiescent spectrum from earlier in the

night is also shown; its time dependence is very similar to the Kepler photometry.
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Fig. 9.— Quarter 14 Kepler short cadence photometry of white light flares. Note the different

scales for the upper plots.
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Fig. 10.— Energy spectra of white light flares on W1906+40 for short cadence Quarter 14

data (solid circles). The flare energies have been calculated for the 8000K blackbody (see

Table 3); the observed energies are 2.4 times smaller. The most energetic flare is the one

observed spectroscopically (Figures 7 and 8).
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