The design and implementation of a novel security model for HealthAgents

LIANG XIAO1, SRINANDAN DASMAHAPATRA1, PAUL LEWIS1, ANDREW PEET2, ALEX GIBB2, DAVID DUPPLAW1, BO HU1†, MADALINA CROITORU5, FRANCESÇ ESTANYOL3, JUAN MARTÍNEZ-MIRANDA3, HORACIO GONZÁLEZ-VÉLEZ6 and MAGÍ LLUCH I ARIET3

1 ECS, University of Southampton, Southampton SO17 1BJ, UK
E-mail: {lx, bh, dpd, sd, phl}@ecs.soton.ac.uk

2 University of Birmingham, Birmingham, UK
E-mail: acpeet@doctors.org.uk, a.j.gibb@bham.ac.uk

3 MicroArt, Parc Científic de Barcelona, Baldiri Reixac 4-6, 08028, Barcelona, Spain
E-mail: {rroset, mlurgi, jmartinez}@microart.eu

4 ITACA - Universidad Politècnica de Valencia, Spain
E-mail: carsaes@upvnet.upv.es

5 LIRMM, 161 rue ADA, F34392 Montpellier Cedex 5, Montpellier, France
E-mail: croitoru@lirmm.fr

6 Robert Gordon University, Aberdeen, UK
E-mail: h.gonzalez-velez@rgu.ac.uk

Abstract

In this paper, we analyse the special security requirements for software support in healthcare and the HealthAgents system in particular. Our security solution consists of a link-anonymised data scheme, a secure data transportation service, a secure data sharing and collection service, and a more advanced access control mechanism. The novel security service architecture, as part of the integrated system architecture, provides a secure healthcare infrastructure for HealthAgents and can be easily adapted for other healthcare applications.

1 Introduction

In a distributed collaborative healthcare environment, multiple clinical organisations from geographically different sites, each having its own users, resources, and access policies may be involved together in the delivery of healthcare services. Access provided to clinicians who use such systems from their own sites must be provided securely.

We take the view that security concerns, particularly in a distributed environment, must be integrated into the design stage of a system, else the integrity and usability of the system may be critically compromised. We note that there are several aspects of security challenges that need to be overcome in a distributed healthcare system. Firstly, in the scenario exemplified by our particular “HealthAgents” system, no global user repository will be available for distributed authorisation. Clinical centres may join or leave independently. The management and administration of resource access will have to be decentralised in the network, where each site maintains its own users and resources to be accessed. Secondly, although access control becomes complicated in a distributed environment, we shall bear in mind that a significant improvement in clinical decision making will be predicated upon enabling many hospitals and users to join the federated system and share their knowledge. Thirdly, in such an open environment, healthcare

∗This author is now at Royal College of Surgeons in Ireland. Email: liangxiao@rcsi.ie
†This author is now at SAP Research. Email: bo01.hu@sap.com
Security in HealthAgents

records containing sensitive private information must never be disclosed, even to collaborative centres and friendly clinicians, except for healthcare purposes, and under conditions agreed upon. Lastly, and this brings a different degree of complication, our consideration of access control shall not be restricted to users who want access nor to sites which want to be accessed. Instead, more refined access conditions such as access user type or group, individual case-based access, or even runtime access context will be taken into account. In addition all of the above security controls must be checked, not only against human users initiating interactions with the system but also software agents which perform the tasks in an autonomous way. This is an added complexity induced by the nature of agent-based systems, particularly those where the source code is made open.

The paper is structured as follows. The rest of this section analyses security needs in healthcare systems in general. Section 2 describes the particular healthcare system, HealthAgents, as our running example. Section 3 provides a literature review and analyses the weaknesses of the existing security approaches. In Section 4 an overview of our model of security layers is presented with justification for its design decisions. Implementation of various security services of the model are discussed in the next sections. Section 5 distinguishes the different resources, the attributes of which determine whether or not they are sharable in the network. The use of a link-anonymised data scheme for protecting patient privacy in the architecture is depicted, conforming to ethical regulations. Section 6 describes a secure data transportation service. Section 7 discusses a secure data sharing and collection system. Section 8 illustrates a more advanced security model including role-based access control and other powerful features and Section 9 concludes the paper.

1.1 Security and healthcare

We begin by drawing distinctions between the types of threats healthcare systems face, and the likelihood of their occurrence. Though eavesdropping or hacking is a major concern to computer network security, it is so expensive that dedicated and capable intruders may consider using a more convenient way. It is more likely that improper design or use of the system may lead to privacy being compromised and leaking of confidential information. This is often caused by pre-assumed design decisions about how the system will work and may conflict with the way in which end users work with the system in practice. It is the interaction between humans and computers that has been accredited as the root cause of the security problem, and actually, hackers pay more attention to the human link in the security chain than security designers do (Smith, 2003). If security analysis is always restricted to computers but not the human processes and users, problems will continuously occur. For example, password sharing is typical among GPs because doctors do not want to wait for the system to switch between accounts. If inappropriate privileges are bestowed on unwanted users their behaviour is not traceable by the system. This implies that, apart from the necessary education on security for end users, a system should be well-designed not only to protect the communicating sites and end users, but also to carefully authenticate and authorise users who have institutionally approved rights to have access to specific information, without exposing additional information under protection. This security need has currently not been well addressed in healthcare information systems (Zhang et al., 2002). In the following, we outline the challenges and common security requirements of healthcare systems, where privacy and confidentiality must be maintained in an open and distributed access environment.

1.2 The distributed healthcare environment

Aggregating dispersed data into large databases is expensive and practically infeasible, since geographically different healthcare centres have to have control over their datasets and at the same time maintain a globally consistent data schema. A more important reason to oppose data consolidation involves healthcare data confidentiality. In the UK, for instance, the National Health Service (NHS), attempted to build a unified electronic patient record system to enable easier
central administration and better information availability by giving access to the extended NHS community. This has been opposed (Anderson, 2001) because such a system, which collects data from existing GP systems but is out of their control, is in conflict with the ethical principle that no patient should be identifiable other than to their GPs unless consent is given (GMSC/RCGP, 1988). Results from a survey indicate that most patients are unwilling to share their information with the NHS (Hawker, 1995). Another objection arises from the overwhelming workload such a centralised system could possibly put upon a security officer responsible for managing the data sharing (Zhang et al., 2002).

A distributed healthcare service infrastructure, however, promises the ability to cope with the administrative burden and the continuous maintenance needs arising from fully functional and networked clinical centres, each of which has its own users, data, access policies, and which assumes that cross-centre access is the norm. A distributed environment and its associated dynamics bring other concerns to the information-sharing healthcare network, such as patient privacy preserving.

2 The HealthAgents project and the agent architecture

The HealthAgents project (González-Vélez et al., 2009) is creating a multi-agent distributed Decision Support System (d-DSS) to help determine the diagnosis and prognosis of brain tumours using non-invasive techniques. Brain tumours are an important cause of morbidity and mortality (Bray et al., 2002) and there is a need to improve their classification and management. Novel medical imaging techniques such as magnetic resonance spectroscopy (MRS) provide information on the spectral (metabolite) content of neural tissue and laboratory techniques such as gene expression arrays provide additional correlated information to histopathological studies of surgically extracted tissue. These techniques promise to deliver these advances but suffer from a paucity of extensive case studies to enable reliable interpretation, which has hindered their incorporation into routine clinical practice. The new techniques provide an excellent test bed for the development of a computer aided decision support system. Furthermore, the rarity of many brain tumour types requires that information must be sought from many hospitals to increase the evidence-base upon which signals from MRS can be correlated with gene-expression and histopathological validation. The use of a distributed system for data collection and management is therefore a necessity.

The HealthAgents system employs a set of distributed nodes that either store patient case data, build classifiers trained on case data and capable of classifying tumour types, or use the results of classification algorithms to aid clinical procedures for the diagnosis and prognosis of brain tumours. The magnetic resonance spectroscopy (MRS) data used by the system is built up using anonymous information from child and adult cases. Classifier agents encapsulate pattern recognition modules and are created at specialist nodes that receive requests from the clinicians to generate classifiers for particular tumours. Clinicians will employ classifiers to assist in the differential diagnosis of patients for particular tumours. The HealthAgents system consists of a variety of agents each charged with a different task. In the current state of deployment, the main sites are located at the University of Birmingham in the UK with 20 different contributing centres, and in Spain at the Universitat Autónoma de Barcelona with 6 centres, and at the Universitat de Valencia with 4 centres.

Figure 1 shows a schema of the distributed architecture of the HealthAgents d-DSS. Each clinical node, as part of the inter-networked system, can represent either a user where requests for classification of a given case are initiated, or a producer where classifiers are created or retrained based on pattern recognition techniques, or both. In any case, they all contribute their data for the training of classifiers. New classifiers may be produced or existing ones improved when new cases become available, due to the growth of data in existing centres or new centre participation. When a clinical user requests the classification of a case that resides internally, its associated GUI Agent will retrieve the patient data from the local hospital database via a
Database Agent, and local data access policies will be applicable. Alternatively, if the case under classification resides externally, then the GUI Agent will contact the local Yellow Pages Agent to find an appropriate Database Agent elsewhere on the network from which patient data is retrieved, external data access policies being applicable. One Yellow Pages Agent resides in each hospital’s local node. They synchronise with each other and together maintain a directory of available nodes and agents, as well as the classifiers for the entire HealthAgents network. Global resource and service access policies will apply when 1) cross-centre resource access is requested by an agent, and 2) global services such as the query service provided by the Yellow Pages Agent are requested.

Once a case has been loaded into the GUI application, it may be classified. The local Yellow Pages Agent has registered within it, classifiers that can discriminate among tumour classes, including descriptions of their capabilities, reputation, and the training data with which they have been produced. The clinician may ask the Yellow Pages to search for the existing classifiers which can solve various questions. These questions are related with the patient’s condition, including for example whether the tumour state is aggressive or non-aggressive, or the specific type of cancer. The Yellow Pages Agent looks up its local registry, contacts external Yellow Pages Agents, and compiles a list of appropriate classifiers. This list is returned to the clinician and the clinician can now send the list of selected classifiers which can solve questions, accompanied by the patient data for these classifiers, to the Classifier Petitioner Agent. The Classifier Petitioner Agent will invoke and provide patient data to each Classifier Agent associated with the classifiers in the list. Internal or external classifier access policies will apply, depending upon the location of classifiers. While this may involve remote classifier access which gives the system a sense of full distribution, in practice, once a classifier is produced a copy might be obtained by every node in the network for local classifier running and better performance.

After the execution of classifiers, classification results are collected by the Classifier Petitioner Agent from multiple classifiers and ranked using performance statistics and finally sent back to the
clinician. The clinician can now do the diagnosis, supported by the answers and recommendations provided by the system. Eventually, when the diagnosis is finished, the clinician evaluates the classification results produced by the selected classifiers and their reputation is updated. The above scenario assumes that classifiers exist to solve the questions. If no such classifier exists, a clinician requests the Training Petitioner Agent to create one using data from distributed sites and register the new classifier in the Yellow Pages Agent for later use.

3 Literature review of existing security approaches for healthcare information systems

Agent technology offers much promise in both the building of healthcare information systems and ensuring their security. On one hand, agents have the capabilities for representing different services required by the system, providing the framework and functionality to ensure the distribution of data, and offering intelligent answers to the demands of the users. On the other hand, their abstraction of different processes where resources are accessed, can be under security control if appropriate measures are imposed upon them. Several approaches that employ agents in healthcare domains for providing security have been investigated.

The concept of heuristic security agents has been introduced in a scheme (Keese and Motzo, 2005), in which all calls to files, networks, library modules and components, as well as other resources are intercepted. They are checked in a “sandpit” against behavioural rules before an “allow” or “deny” decision is made, preventing the entire classes of attacks to healthcare information systems.

Security concerns have also been focused upon the private patient information sharing among interconnected hospitals. Secure access of distributed electronic healthcare records (EHR) has been considered in (Gritzalis and Lambrinoudakis, 2004). A scheme is proposed that employs a security agent per site, which authenticates users and controls the access to the local resources by looking at user roles. The dedication of an agent for the full security control of each site suffices for the protection of a simple resource type of patient records from a single point of access. However this approach will expose its insufficiency in three ways: 1) when multiple resource types are available, each corresponding to a responsible party in an individual’s site, 2) when some common services are shared amongst multiple sites and 3) when the differentiated access privileges of each user is necessary at the same time.

Another approach to the similar problem of exchanging private patient records among distributed hospitals introduces a four-tier architecture, a central access control (CAC) system and multiple local access control (LAC) systems sitting between the client application and hospital information systems (Choe and Yoo, 2009). CAC and LAC are Multi-Agent Systems which use authentication agents, encryption agents, and access control agents. Multiple LACs enable hospital managers to maintain their distinct access control policies over patient records. The single CAC serves as a communication hub establishing secure communication networks with each LAC so that data access requests can be forwarded amongst LACs and actual data can be passed amongst them in a secure manner. In this architecture, the security level is determined by the weakest LAC and the central CAC may impose a performance bottleneck and a single point of failure to the entire system.

All the above methods introduce agents or multi-agent systems explicitly for the purpose of access control. Security is not being considered as part of an integrated software design by software engineers in the first place. It has been shown in the Agent.Hospital framework (Kirn et al., 2003) that it is feasible and beneficial to employ Multi-Agent Systems (MAS) as well as ontology technology for modelling and integrating existing individualised healthcare processes into distributed decision making processes. This provides improved assistance for enabling diagnosis and subsequent treatment plans for cancer patients. The addition of security-specific agents will impose extra design requirements for existing healthcare system implementations and requires a runtime communication overhead in addition to the load of maintaining the security.
components. Our hypothesis is that a Multi-Agent System will be most effective in securing a healthcare information system if its participant agents serve core clinical functions with associated security measures or policies which serve as behavioural constraints to their normal function in the clinical setting. In doing so, functionality and security are integrated into a single architecture but security policies can be separately maintained, hence improving the software design and the resultant application.

4 Design decisions for the HealthAgents security model and its service overview

In view of the various weaknesses of existing approaches, a new comprehensive security framework must be purpose-built for the HealthAgents system which embraces the security characteristics and requirements from healthcare information systems. A design decision of such a security framework needs the broad consideration of the security objectives or requirements of information systems in general as well as the specific needs of the HealthAgents system. National and international standards and recommendations defining security requirements provide the guidance we need.

First of all, the Common Criteria (CC) (CCRA, 2006), standardized as ISO/IEC 15408, is a framework in which security requirements can be specified by users, security attributes can be implemented and claimed by vendors, and such features and claims can be evaluated by a testing group. CC’s security functionality requirements include: communication/non-repudiation, cryptographic support, user data protection, identification and authentication, and privacy.

According to the IEEE Std 730.1-1995 (IEEE, 1996), a software security plan must be in place to address the way in which software and data will be protected. It has been suggested that the plan should include:

a How the data should be classified and communicated (e.g., “no trespassing” messages).

b How the users of the software access the application and how that access is to be controlled.

c Network design.

d User identifications, passwords, security logging, and auditing.

Finally, the National Institute of Standards and Technology (NIST, 2006) requires information systems to be categorised by assigning impact values to the security objectives of confidentiality, integrity, and availability. From these security objectives, a number of security areas have been identified to meet the minimum security requirements, including identification and authentication, access control, communications protection, and system and information integrity. Those security objectives are termed as CIA Triad (Pfleeger and Pfleeger, 2002). One needs to identify methods that may result in the breaking of the CIA Triad: confidentiality, being concerned about unauthorised access to private information; integrity, being concerned about the creation, change, or deletion of data without authorisation; and availability, being concerned about the loss of control over the functioning system and its security measures.

Obviously, such national and international standards agree on the security metrics to some extent and share some common characteristics. The existing HealthAgents architecture, as described in Section 2, which distributes data and services, already helps to maintain some of those objectives and metrics. First, the integrity amongst hospitals is sustainable since individual centres can retain the control over their local patient cases and the policies for sharing them, the responsibility for overall data protection being spread. In addition, the availability of the system is leveraged with some built-in fault tolerance in place. An example is an inter-connected network, when one node is down, requests for a service (e.g. classification) can still be fulfilled due to multiple copies of classifiers being available across centres. Furthermore, the shift to classifier access from patient case access, which is now usually limited to the principal treating doctor
and the classification software, should help to improve the confidentiality of individual patient privacy. Yet a complete secure framework demands very careful think through of all the use cases and identification of the potential scenarios where the security requirements and CIA Triad could be broken. Below is a table of the complete cases we have identified in HealthAgents.

<table>
<thead>
<tr>
<th>Security violation</th>
<th>Broken security requirement</th>
<th>CIA Triad</th>
<th>Consequence</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theft and disclosure of patient privacy information by a hacker due to insecure transportation network</td>
<td>Transportation and identification</td>
<td>Confidentiality</td>
<td>Patient privacy compromised</td>
<td>1) Remove the sharing of patient identifiable information if unnecessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2) Add message encryption to the transportation layer of the HealthAgents, in addition to an authentication system for user identity recognition</td>
</tr>
<tr>
<td>Abuse of system services (Yellow Pages, Classifier Training, etc.) by hackers, making them unavailable or replace them with malicious alternatives</td>
<td>Transportation and identification</td>
<td>Availability and integrity</td>
<td>System services becoming unavailable or directing wrong diagnosis</td>
<td>2) Add message encryption to the transportation layer of the HealthAgents, in addition to an authentication system for user identity recognition</td>
</tr>
<tr>
<td>Malicious users may create low quality classifiers</td>
<td>Identification</td>
<td>Integrity</td>
<td>Misleading decision support</td>
<td>2) Add message encryption to the transportation layer of the HealthAgents, in addition to an authentication system for user identity recognition</td>
</tr>
<tr>
<td>Accidentally, valid but inexperienced users may assign unreasonable reputation values to classifiers</td>
<td>Authorisation</td>
<td>Integrity</td>
<td>Misleading diagnosis results due to incorrect alteration of classifier attributes</td>
<td>3) Set up mutual access agreements between partners with regards to the access of resources by valid users</td>
</tr>
<tr>
<td>Users from one hospital access data or execute classifiers from another hospital without the proper permission</td>
<td>Authorisation and access control</td>
<td>Confidentiality and integrity</td>
<td>Patient privacy compromised and unwanted information or service disclosure</td>
<td>4) Allow resource owners to define comprehensive security policies to represent their sophisticated control policies for access to their resources across the network</td>
</tr>
</tbody>
</table>

Planning security measures and making design decisions for adding security to the system involves the avoidance of potential security breaches and placing relevant solutions outlined above. Overall, the design of such a framework takes into account the nature of the data to be exchanged, the channels by which they may be exchanged, the senders and receivers, and the more flexible policy options the data controller may hold towards sharing their data with data consumers. Clearly, each step we go further the access constraints become tighter and the system becomes more secure. According to the categories given by the international standards and our analysis of the HealthAgents security requirements, we design our security model in the following layers:

1. The first consideration is distinguishing the types of information that can possibly be made sharable in the first place, according to ethical regulations and the resources present in the architecture with their global attributes and access context. Direct case-based sharing is subject to stricter regulations while classifiers, which are trained upon cases but contain no private patient information, are the main resource shared for decision support. Cases are even distinguished between public and private ones to further constrain their access. It will be assumed, for the purpose of this paper, that the only data that is shared for classifier building cannot be used to reconstruct the patient’s identity from it. Section 5 describes this layer in details.
2. The next layer of security implementation comes in the **encryption and decryption at the transportation level** which has a global effect on all messages passing in the network, the layer aiming at preventing invalid users from any access. All messages passing across the HealthAgents network must be encrypted. Secure transportation applies to the entire network. Section 6 discusses this perspective in more details.

3. Then, **mutual access agreements** must be setup between pairs of partners, the layer aiming at preventing valid users from un-authorised access. Individual case access or data collection must respect data owners’ regulations against users from other HealthAgents sites. Basic yes/no permissions can be defined to restrict access across sites, based on user origin, request data residence, and case publicity. One user from site A may be allowed to access a data set marked as public located in site B if and only if the administrators at site B gives the user from site A such a permission, (possibly) after a request has been made. Section 7 discusses this perspective in details.

4. While simple yes/no permissions can be defined for mutually agreed access arrangement and stored in a global repository for independent but separate management, more comprehensive but generic permissions have to be defined. Such permissions need to be represented in an explicit form of **access control policies**, stored across data owners’ sites and subject to their continuous review and configuration, where full distributed control is required. Users may be grouped into certain types (according to their e.g. positions in clinical centres, clinical roles and workgroup memberships) and access policies applied to them (e.g. perform certain operations in certain contexts). Section 8 discusses this perspective in more detail.

![Figure 2](image-url)

Figure 2 Overview of the security model layers using a cross-hospital resource access scenario

In Figure 2, an overview of the layered security model is illustrated, where a clinician from hospital 1 retrieves and classifies a case from hospital 2 using a classifier from hospital 4. In this scenario, the case will be anonymised and made public before it is shared by hospital 2. The clinician must be authenticated in hospital 1 before access to the local network, after which all messages passing through for the classification purpose in the interconnected HealthAgents network will be encrypted. It must be agreed, between hospital 1 and hospital 2 that the case under discussion can be shared and between hospital 1 and hospital 4 that the classifier under discussion can be shared, prior to the case from hospital 2 being classified by the classifier from hospital 4 at hospital 1. More restricted security policies can be defined to govern the authorisation of specific resource access by specific users.

We let agents, as building blocks of the system, act as system components being capable of providing various data and services in the architecture and at the same time these same
agents control secure access to the resources. The information exchange will be encrypted and
decrypted by agents automatically at the transportation layer and agents respect the agreements
and policies handed over to them by data controllers, when the data and services are being
employed. Therefore, the architecture reduces the extra complexity added to the system and
which is present in the existing approaches described in Section 3, where security engineering
was not considered as part of the software requirements engineering. In the approach proposed,
functional and non-functional requirements will be met together by the agents, and no extra
agent layer working upon the existing system will be introduced to achieve security. In the next
sections, we discuss the layers of the security model.

5 The use of a link-anonymised data scheme for information sharing

Prior to incorporation into clinical practice, new methods must be fully tested within a clinical
trials setting, which is the context for the HealthAgents system. Such trials are subject not only
to data protection laws but also regulations governing clinical trials, including ethical approval
and informed consent of the participants. For multinational projects, ethical approval is devolved
to regional bodies without any coordinated or uniform decision making and so data gathered
from different centres may be subject to different restrictions. Allowing for flexibility within the
data security model is therefore essential.

Clinical trials are usually supported by a centralised database, the data from which personal
information (e.g. name, address, date of birth) is removed but to which a unique patient identifier
is added, often termed link-anonymised data. This allows the patients to be reassured that their
data will be afforded a high level of security and allows regulatory bodies ease of access to inspect
the processes in place. Such a scheme has the advantage of having a high chance of preserving
patient anonymity whilstallowing data from the same patient to be added at a later date. This
scheme also allows a specific patient’s data to be located and removed from the project at any
time they request, a condition usually imposed by ethics committees. Full patient records are
kept for clinical purposes within the treating hospital and with the patient’s permission may be
used to generate and periodically update the clinical trials data.

For a distributed system, similarly robust arrangements must be designed to reassure ethics
committees and patients that the data is secure. However, achieving this is a significant challenge
and here we discuss a potential model. Each data collecting centre could have an associated
link-anonymised database as approved by their appropriate ethics committee. Patient identifiers
could then be kept along with the clinical patient record in the treating hospital. These databases
need be the only databases kept within the system, giving a truly distributed data-warehouse.
The limited data required for analysis could then be subject to stringent anonymisation processes
and sent to a small number of specific sites for processing, for example the production of tumour
classifiers. In this way, the distributed nature of the system could be preserved whilst allowing
appropriate regulatory access to data repositories. Additional security measures will need to be
in place which can allow each centre to potentially limit the type of data transmitted and the
locations it is transmitted to.

Figure 3 shows such a data transmission model in a multi-layered fashion. While complete
patient records may be accessed only by hospitals and local nodes, link anonymised records
may be exchanged between a limited numbers of centres producing classifiers. Furthermore, only
limited amounts of totally anonymised data may be accessed outside the closed project network.
It is important to point out that there is no universal consensus on whether it is possible to rule
out the identify-ability of individuals from the data used to classify tumours. While this is not a
concern within the project, our layered security arrangements are designed to systematically undo
degrees of access that are switched on once decisions have been taken at a regulatory level about
the extent to which individuals can be identified using (aspects of) say, MRS or gene regulatory
data.
Figure 3 The link-anonymised data transmission model

Apart from the link-anonymised data scheme, the system turns the majority of resource sharing for decision making from direct case-based comparison to classifier production and running, which offers a further level of protection to patient privacy. In the system, cases are gathered by particular sites in order to produce tumour classifiers. Cases are only known to the classifier producer software and it is the classifiers and not the cases that are used for decision making. If no such classifier is available a new one may be produced using the available cases. Therefore, private patient data that is involved in the production of classifiers will normally not be available or accessible to clinical users. When new clinical centres join the existing collaborating centres, they can immediately start to use the classification services based on data from around the network, as well as providing new brain tumour cases from their local databases for the distributed data warehouse. New classifiers can then be produced or existing ones improved using the newly available data.

Although the use of classifiers is maximised for decision making in the HealthAgents system, direct access to patient records may be necessary in some situations and this requires some access principles. The age and the gender of patients, for example, can be associated with tumour types and so may be useful for diagnosis. Thus, a contract signed between two clinical centres working closely with each other may allow some cases to be transferred between the two, but not a third party. Also, some classifiers may be trained internally for scientific experiments upon a specific set of data and the creators may not wish them to be accessible to the general public due to their applicability and reliability. These requirements demand the differentiating attributes of HealthAgents resources and their associated access principles.

An anonymised patient case is associated with a status. The status of the patient case can be changed to, for example, validated. That is to say, the patient diagnosis has been confirmed. The case can be public, being accessible by every HealthAgents node, or could remain private, being only accessible by its owner node or for producing classifiers. A selection of the validated cases labelled as public at each site can be shared altogether to produce global classifiers which are always public. A node can also request the creation of local classifiers that are trained uniquely with its own public and private data as defined by the requesting user. Apart from the global and the local classifiers, a node may want to develop specific classifiers that are trained with all public cases available in the network in addition to its own private cases, being given a special weight to gain more accurate classification results for this particular site’s cases. Again, they can be defined by the requesting users as either public or private. Once a classifier is produced, no matter how it is produced and with what data, all the cases sent from individual databases for training purposes will be discarded. The case data will only be temporarily stored in any other site apart from its origin.

The sharing of resources of different types and attributes for different purposes and circumstances makes the system conform to legal and ethical obligations. One of them, the UK Data Protection Act 1998, which came into force in 2000 and defines a list of principles, regulates
the processing of data of individuals, including the obtaining, holding, use or disclosure of such information.

1. Personal data shall be processed fairly and lawfully (and under certain conditions).

2. Personal data shall be obtained only for one or more specified and lawful purposes, and shall not be further processed in any manner incompatible with that purpose or those purposes.

3. Personal data shall be adequate, relevant and not excessive in relation to the purpose or purposes for which they are processed.

4. Personal data shall be accurate and, where necessary, kept up to date.

5. Personal data processed for any purpose or purposes shall not be kept for longer than is necessary for that purpose or those purposes.

6. Personal data shall be processed in accordance with the rights of data subjects under this Act.

7. Appropriate technical and organisational measures shall be taken against unauthorised or unlawful processing of personal data and against accidental loss or destruction of, or damage to, personal data.

8. Personal data shall not be transferred to a country or territory outside the European Economic Area unless that country or territory ensures an adequate level of protection for the rights and freedoms of data subjects in relation to the processing of personal data.

In the HealthAgents system, patient case records are only processed for either the diagnosis of that particular patient or for training classifiers, fairly and lawfully in compliance with Principle 1. Access to a case is strictly controlled by the node where the case is stored inside the HealthAgents network, and reference to it can only be traced as metadata associated with classifiers trained on the data. Thus, cases will not be processed in any manner that conflicts with Principle 2. Clinical centres are responsible for their cases and, wherever possible, link-anonymised data is used for the preservation of patient privacy, in compliance with Principle 3 and Principle 4. All cases used for the purpose of training classifiers will be discarded when classifiers are produced and will not be kept for longer than is necessary to comply with Principle 5. Patients retain the right to withdraw their cases and if requested they will be removed from the databases immediately (via the unique patient identifier being added to the link-anonymised data), as per Principle 6. Each clinical centre enforces the described case access principles and so unauthorised or unlawful processing of personal data or damage to data will be avoided, in accordance with Principle 7. The HealthAgents project is building a network inside the EU boundary and may allow data transfer outside its network only if it is in a fully anonymised form and protected at an adequate level as being agreed upon; this is in compliance with Principle 8.

6 Secure data transportation

The secure transportation service of the HealthAgents system provides a layer of protection for the agent messaging service in the framework. The platform-independent secure message transportation service has been developed on the Java Cryptography Architecture (JCA), which provides tools for implementing a standard interface for encrypting and decrypting. In the HealthAgents system, all interaction protocols requiring secure message passing will implicitly include the security procedure in the communication between HealthAgents pairs.

In HealthAgents, the transfer of large amounts of imaging and spectral data would make asymmetric encryption computationally expensive. Hence, a symmetric encryption scheme is adopted, with asymmetric keys used for the exchange of symmetric keys between communicating
Security in HealthAgents

parties, as is standard. The agent architecture (described in a separate paper in this issue) is implemented in a layered fashion, with the necessary cryptographic functionality built into every message exchanged between agents, without requiring it to be programmed into every conversation.

A generic scenario where a sender agent, Agent1, sends a message to a receiver agent, Agent2, is shown in Figure 4. Such a procedure and JCA’s API support can be split into steps as follows.

1. Both agents must at the start-up stage, register their public keys to the system via the YellowPagesAgent and retain the private keys. JCA’s engine class KeyPairGenerator can be used for the generation of a pair of public and private keys.

2. Agent1 can now retrieve Agent2’s public key, at runtime, from a key store maintained by the YellowPagesAgent. After obtaining this public key, Agent1 generates a secret key that will be used to encrypt the plain-text message to be secured. JCA’s engine class KeyGenerator can be used to generate new secret keys, each valid only for a given conversation.

3. The secret key must be shared between two agents. This can be achieved via Agent1’s encryption of the secret key using Agent2’s public key. JCA’s engine class Cipher, once initialised with keys, can be used for encrypting and decrypting data. The symmetric algorithm of DES and asymmetric algorithm of RSA have been used in HealthAgents for the encryption and decryption of secret keys and messages respectively, but can be easily switched to other algorithms.

4. This data with the secret key encrypted is signed by Agent1’s private key. JCA’s engine class Signature, once initialised with keys, can be used to sign data and verify digital signatures. The eventual message for passing in the network will include the message encrypted by the secret key and the secret key encrypted by the public key of the receiver with the sender’s signature attached.

5. Upon receiving the message sent from Agent1, a reverse process will carry on for signature verification and message decryption. Firstly, Agent2 reads Agent1’s signed data and verifies its identity by retrieving the public key of Agent1 from the common public key store. Then, the data about the key is decrypted by Agent2 using its own private key and the secret key is revealed. Finally, the encrypted message will be decrypted using the secret key.

The secure message transportation service, called JCACryptor in the HealthAgents framework, is transparent among all communicating agents, and it has been configured in the system that:

{message-cryptor = net.healthagents.agent.crypt.JCACryptor}

This configuration item will be dynamically read by the MessagingService, and its encrypt() (step 1 to 4) and decrypt() (step 5 including the entire reverse decryption procedure) methods will be invoked by agents implicitly via message passing. Both methods are declared in the Cryptor interface according to which JCACryptor is implemented. The following depicts the procedure of using the encrypt() method of the service. It is performed in the framework rather than in the individual agent code.

Cryptor c = Configuration.getCryptor();
// Send a message
ACLMessage msg = new ACLMessage(ACLMessage.INFORM);
msg.setContent(c.encrypt(me.encode(m), m.getMessageID()));

The code above shows a swappable cryptography implementation of the transportation service is retrieved according to the current configuration. This enables us to exchange easily the message encryption module based on providers, algorithms, or other variants. Next, a new message is
constructed by the message sender and then the plain text content of the message is encrypted using the message cryptor prior to it being sent. On the other end of the message exchange, the message receiver will use the same cryptor as currently configured, to decrypt the received message and read the content. The actual cryptor construction and instantiation using the keys of the sender and the receiver are encapsulated in the specific implementation and independent from the framework level code shown here. In turn, the framework level code is separated from the individual agent level code. This means all agents joining the network for message exchange will have the encryption and decryption protocols applied to them transparently and automatically. Their implementation is subject to flexible replacement, if necessary.

7 Secure data sharing and collection

The secure message transportation service ensures someone with a valid user account for system login can send or receive messages that are protected from eavesdropping. However, ensuring the right users access the right resources relies on the fact that users will be properly authenticated; in a distributed network this brings special challenges. As authentication will be carried out at local partner sites before a valid user logs into the GUI and performs system operations, a concern is raised about how each partner site can recognise the validity of a user from another partner site, who requests access to their resources but the account of which resides outside their local databases. When a user logs in from the local site, the user should have the proper permissions, if assigned previously, to access the data distributed across the network without a second authentication by the data centre sites. This should work algorithmically, according to the aggregated permissions which are dynamically configurable and immediately accessible by the centres.

Although a global user account repository with a pool of all periodically synchronised user accounts is not considered a proper solution, a repository including all users’ cross-site permissions can address the issue. The context for setting up such a repository is that, while the majority of case-based access in the system remains at local level, users may occasionally wish to legitimately access particular cases of special interest outside their centres, if mutual agreements have been reached among the sites. More often, data collectors must be authorised to collect data from various partner sites and produce classifiers. The registry of their permissions and the allowing of
data centres to authorise the collection of their data to the data collectors instantly is therefore essential to a successful working system.

Such a global user permission repository must contain no redundant user information already included in local databases but a registry of the very essential cross-site user access agreements. The simple access agreements residing in this global registry adopt the following scheme:

\[(\text{HealthAgents unique global user ID}, \text{Data centre ID}, \text{Boolean values of permission (read/collect)})\]

Several components are involved in the secure data sharing and collection architecture.

- A client node or a producer node is connected to the HealthAgents network and requests resources from the network. This could be either clinical users who want to view cases of interest, via the main system GUI, or data collectors who require a set of relevant cases for producing classifiers.
- A data centre node is connected to the HealthAgents network and provides its data. A DatabaseAgent is deployed at every data centre for answering user query or returning data sets to producers.
- A DatabaseSecurityService is employed by every DatabaseAgent for cross-site user access permission checking prior to the main functions being carried out by the users. The module provides secure data access and collection service. It checks external user access, data collection, and provides other facility functionalities such as filtering cases being collected according to their public/private attributes.
- A global user permission repository is deployed in the entire network which stores all HealthAgents users’ permissions of cross-site data access and data collection.
- A global user permission management GUI is deployed and accessible by: a) all users or data collectors to request access permissions from data centres as well as by: b) local administrators to view such requests and approve or revoke permissions as appropriate, reflecting the current access agreements.

These components work together in the following order.

1. Being authenticated locally, a clinical user logs into the main system GUI and wants to view a case of interest but is denied permission to do so. This could also happen when a data collector wants to collect relevant cases for producing classifiers.
2. The user is re-directed to the global user repository management GUI, the identity of which is recognised by the already supplied local username and password together with the user’s originating site, from which the global user identity is mapped. The user is presented with a complete list, showing all data centres currently involved in HealthAgents. The user can then make a request to whichever centre necessary.
3. Being informed by a system generated message of the request, a local administrator, responsible for managing the data centre to which the request has been made, logs into the same GUI and can view the current user access requests, approve them or revoke existing permissions.
4. Being informed by a system generated message of the approved permission, the user can resume the previous operations via the main system GUI and now the request will be re-evaluated by the secure data access and collection service, using the re-configured global user permission repository. As the repository has now the appropriate permission settings for the user, such a request will be approved. The repository is always re-configurable at runtime and the security service always checks the current security settings dynamically against the requests made at that particular time.
Eventually the DatabaseAgent returns the requested case to the clinical user or the collection of cases to the classifier producer, the private ones being filtered out from the collection.

Figure 5 shows all the components of the architecture and the interaction protocols between them. Such a distributed permission management system has all cross-site access permissions maintained separately by individual site administrators but stored in a central repository. It is anticipated that most existing and future clinical participants of HealthAgents will agree upon a common database schema for user and clinical information storage and sharing. Nevertheless, users from new participant sites, without the implementation of such a schema, can still access the HealthAgents distributed databases via the maintenance of such a permissions repository, if appropriate access agreements have been reached. This provides an easy and quick network participation framework.

Figure 5 The secure data access and collection service architecture

A central component in the architecture is the DatabaseSecurityService. It looks up the repository and checks permissions via one of several provided methods, depending on the nature of access requested:

- The `checkLocalUser()` method provided by the service supports all access control models including in-site access; it ascertains whether a local user has permission to perform an action in the local database, prior to presenting cases or return results to the user.
- The `checkExternalUser()` method takes as input i) a global user ID which is mapped from the user’s ID at the local node and the user’s node ID, ii) a data centre ID where data is requested and iii) an action, and produces a yes/no output by determining if the user has access permission to the database in that centre, prior to the actual presentation of cases to the user.
- The `checkCollectorUser()` method takes a data collector’s global user ID, a data centre ID where data is to be collected, and evaluates if the collector user has permission to collect data from the data centre, prior to the actual data collection.
The checkCollectorUser() method takes a collector IP address, and evaluates if the collector is trusted. Only two sets of date collectors, physically running in Valencia and Leuven are currently involved in the project’s network and allowed to collect data. Their IP addresses are pre-registered in the network and when the system is running, data collectors must demonstrate ownership of the pre-agreed IP before any data collection is permitted.

The method filterCollectedData() filters the collection of relevant cases and only allows those open for building classifiers to be returned, given the data collection has already been approved. The data centre must consent cases to be delivered outside of the centre for classifier building purposes, otherwise for some reasons, e.g. patient unhappy with the sharing of their confidential data, cases will be marked as private and filtered out from any data collection process. In the architecture, the security procedure must follow three basic steps for a producer to collect data: collector agent identification and trustworthy evaluation via checkCollectorAgent(); data collector identification and permission checking via checkCollectorUser(); private data set filtering via filterCollectedData().

8 A security model for more advanced controllability

The previous section describes a secure data sharing and collection service implemented in the system, where a user will either be able to access all (public) cases from a data centre site or none. In this scheme, no refined policy can be defined to allow more fine-grained access control, e.g. based on access to individual cases.

The global user permission scheme based on the triple — (user global ID, data centre ID, type of operation) — is also a limitation. Introducing a case ID into the scheme will make the system cumbersome. Not only must a complicated synchronisation mechanism be designed to ensure the system always maintains the up-to-date cases and their IDs, the permission management of many permission items will also bring heavy maintenance burdens to local administrators. Nevertheless, the availability of the existing repository places the basic user permissions in place and building more advanced policy-based access control system on top of them for more specific control becomes easier.

The need of a case-based access control rather than site-based access control is justified by established clinical principles. It is not rational to allow a professional to have access to all patient records from a single hospital or even the entire network. Only relevant clinicians who have real life relationships with patients in clinical centres should access their records. This is documented in the British Medical Association’s security policy principles for clinical information systems (Anderson, 1996). A triangle relationship is described in (Calam, n.d.): a patient is associated with a workgroup, of which a user is a member, so that a user is permitted access via the workgroup to the patient (the patient may have been originally assigned to a clinical consultant or by referral from another, with transitive transfer of access rights). This implies that the organisation of users in groups or roles is needed for access control. Indeed, maliciously or accidentally, users may create low quality classifiers, or assign unmatched ranking values to classifiers. The abuse or misuse of classifiers could have a significant negative effect on routine clinical diagnosis. The definition of policies based on the types of users according to their, e.g. trustworthiness, organisation positions, or job functions, rather than individual identical users gives more configuration flexibility.

An established access control model that supports efficient management is the widely accepted US National Institute of Standards and Technology model of role-based access control (RBAC) (Sandhu et al., 1996). In RBAC, roles represent job functions in an organisation. Roles bring together users and permissions in one representational scheme. Permissions that describe operations upon resources are associated with roles. Users are assigned to roles to gain permissions that allow them to perform particular job functions. For example, a clinician role can be created in a hospital and permission giving access to patient data can be associated with this role. When a new clinician joins the hospital, he/she can be assigned the clinician role
and so have the permission to access patient data. A major benefit of using this type of model is that the reconfiguration of user-role, role-permission, and role-role relationships, directed by administrators, can reflect changing organisational policies. The maintenance of such a sub-system that is independent from the core application minimises the impact on the overall system of requirements changes with regard to security.

However, the classic Role-Based Access Control and its associated approaches have limitations. It is assumed that a large number of users can be grouped into several role groups requiring certain access levels in involved organisations. Within RBAC it is difficult to address the clinical requirement that information access or transfer may alter from patient to patient. In a hospital, different users with the same role as a clinician may have different permissions to particular resources. For example, one clinician that created a patient case in a hospital might have more rights than other clinicians in the same hospital. Clinicians in one hospital could have more rights to data in that hospital than clinicians from another hospital. Since permissions are not directly assignable to individual users, it is impossible to use RBAC to differentiate users with the same designated roles but with different capabilities in the system. Another insufficiency in the RBAC model is the lack of context of access provision in the way permissions are modelled. The context can constrain specific conditions that must be met before access. In the above example of clinicians accessing patient data, access permission is different depending on the different context (whether a clinician created the patient case). Finally, if there is no explicit concept of organisationally determined access rights and restrictions on defined groups it is inconvenient to grant permissions to specific collections of users except by granting permissions on an individual basis.

The design of an advanced security model, taking the advantages of RBAC and avoiding its weaknesses must also consider several unique security needs of HealthAgents and support a configurable but general purpose security system. Through the collaboration of multiple centres, which not only provide their cases but also require classifiers for their own use, the system should be able to respect the individual access control policies separately managed by each centre. In addition, there might be global constraints applicable to shared resources. All these policies and constraints could change continuously according to the system needs. For instance, new junior clinician recruits at a collaborative centre may not have the privileges required to create a new classifier, or update the reputation of existing classifiers, since this could have global impact on all diagnoses across centres. But they may be allowed to perform such operations upon building up work experience. The system may have to assign to different users or even the same user at different time or under different context, appropriate access rights to system resources distributed among the centres.

8.1 Security meta-model

RBAC has been extended to avoid its weaknesses and to meet the characteristic requirements of HealthAgents.

The fundamental access permission policies take the form of the following 5-tuple: \{Subject (Id, Role, Organisation), Access Operation (Op), Access Context (Co), Resource (Id, Type)\}, and is shown in Figure 6.

Policy rules externalise security requirements and are structured in this form for later continuous management. The meta-model has been motivated by the particular requirements of the HealthAgents project but it is generic so that other domains and applications may use it. In the HealthAgents d-DSS, a user who logs on to the system will be associated with an agent with ID and roles. Permissions are granted to agents through those directly associated (via the subject ID), roles they are assigned to (via subject-role relationships), or organisations they belong to (via clinical organisation membership). Role definitions and user-role assignment are managed locally in individual hospitals. An administrative role can be assigned to a HealthAgents project manager to manage users and roles globally. On an individual basis, a clinician may have full access rights to his/her patient while other clinicians may not. A clinician role hierarchy may
also be defined (manager, principle clinician, senior clinician, junior clinician, apprentice, etc.) so that some clinicians have more access to operations (who e.g. can add new cases to the system) than others (who, for instance, can only run a classifier).

RBAC has been extended with permissions assignable to individuals as well as organisations. It might be necessary for example to define that senior clinicians can access all instances of a particular type of resource, the classifiers. More likely, individual entities of a resource type are deemed accessible by individual subjects. Permissions can be assigned upon a set (or type) of resources or for a group of subjects with exceptions. This can be configured by a positive permission policy for the whole collection and a negative permission for individual exceptions. While this kind of reasoning with exceptions is often difficult to integrate into declarative representations, we envisage a procedural implementation within which such permission constraints are processed as outlined below (see also (Xiao, Lewis and Gibb, 2008)).

RBAC has also been extended with context to provide additional flexibility. Access context might include descriptive justification of the access operation, where/when the requested data goes, the duration of the use of the data, the pre-condition & post-condition of the access operation. Agents play roles during their interaction, context varies and agents behave differently while evaluating certain instance values populated at runtime. A clinician may have special control over data of a patient under the pre-condition (a type of context) that he/she is the principal doctor of the patient and this special identification must be checked against before a special operation is carried out. Context can also be used to enable access normally not seen through rights delegation, for example, when two hospitals (or clinicians) reach some agreements. A hospital can then delegate the use of its private classifiers to another hospital or delegate the access of its patient data to some particular external clinicians or bodies for classification, given the appropriate ethical and patient permission has been obtained. Context specification is also useful to allow special access for appointed individuals, even being outside the HealthAgents network and having no user account or role assignment. By supplying a justification of how the required data will be used and the destination of the data transmission, the access may be granted if such information is approved under appropriate contracts and with specified permissions.

Role is an important concept in Agent-oriented Software Engineering (AOSE) and tightly associated with agent behaviour. However, the role concept in the AOSE research community and that in the Role-Based Access Control community are completely distinct and no research has ever been carried out to reconcile the two definitions of the concept for security control in MAS. In our security meta-model, agent behaviour is specified in roles which not only realise functional requirements but also enforce security policy requirements. RBAC has no concept of...
duty and AOSE has no permission constraint for agents. The complementary nature prompts us to define a role interaction model as one that integrates the concept in an agent paradigm and that in RBAC. In our meta-model, we stipulate that:

a role enacts its expected behaviour if and only if its permission constraint is satisfied.

8.2 HealthAgents interaction model and security policy specifications

The security model and the associated policy rule model avoid the weaknesses of RBAC and extend it towards a seamless integration with the role playing pattern from Agent-Oriented Software Engineering. The security model sitting in MAS will not let agents fulfil regular functional requirements unless security requirements are met. A role plays its functional duty if and only if its social constraints are satisfied. This, therefore, achieves the separation of functional and non-functional requirements for easier management and maintenance but at the same time the two parts are integrated in the running system with unified agent playing behaviour according to the combined specification.

The model provides fine-grained access permission configuration based on individuals, roles, and organisations. A resource access request message can be traced to its origin and mapped to the roles that subject plays. Role based policies are easier for management but identity based policies allow customisation and exception handling. Policies can be defined in both forms. In HealthAgents, we have case records, classifiers, services (Yellow Pages, etc.), and their access must be protected by policies. Access operations should be distinguished for resources. One clinician may be able to execute a classifier but not update its reputation.

A context provides the flexibility to the model such as 1) allowing, in particular situations, certain specially delegated access in the name of a particular role; 2) providing justification of the special access; and 3) constraining the valid time period associated with the access. A comprehensive interaction model involving all of them is used to demonstrate the application of the above policy rule scheme to meet the requirements described in that section. The model includes most of the HealthAgents business functions as well as resource access flows. Briefly, the scenario is that a new hospital joins the HealthAgents network with a new MAS setup in that site, new clinician users wish to perform classifications on cases from there, and they do so by creating new classifiers for the purpose. The role interaction model (referring to Figure 7) can be described as follows, referring to Figure 1 for the HealthAgents architecture and previous sections for supporting layers of secure communication and authentication.

- The new clinician is authenticated via the local GUI Agent and his/her principal is bound with the interface for the entire interactive session (R1)
- The GUI Agent registers this new node via the YellowPagesAgent which recognises its identity (prior to this the local hospital manager may have to acknowledge the participation of the new site to the HealthAgents network administrator through conventional phone calls, R1 and R2)
- The YellowPagesAgent adds this new node to the trusted node list (R2)
- The GUI Agent at that node can start to communicate in the HealthAgents network and now it wants to perform a classification upon a local case (R3)
- The GUI Agent searches the YellowPagesAgent for available classifiers by sending questions to solve as the first message it initialises for a new conversation (R3 and R4)
- The YellowPagesAgent has its principal registered and it is in the trusted list so all ongoing communication in this conversation with all other agents will be allowed and all these messages will be signed and encrypted (R4)
- The YellowPagesAgent checks this GUI Agent against the permission of using its Yellow Pages query service and will perform the query to its registered classifiers but unfortunately no such classifier is available (R3 and R4)
The GUI Agent requires the building of a new specific classifier using distributed data sets (R5 and R6).

The TrainingPetitionerAgent applies a local policy repository and allows the request operation of building a new classifier (R6).

Relevant public cases as well as local private cases from the request site will be sent to the building site for the production of the new classifier and data access policy rules will be applied before the data is sent from each site (R6 and R7, R6 and R8).

A new classifier is produced and registered to the YellowPagesAgent, a copy becoming available to the original request site (R6 and R9).

The clinician now wants to execute the new classifier upon the case when being informed of the availability of the classifier (R9 and R10).

The local policy rules on the use of the classifier and the particular case will be applied against this specific clinician and he/she will be allowed to do the operation (R10 and R11, R10 and R12, R12 and R13).

Decision making support is received from the results of the classification and a diagnosis will be made later on (R12 and R14).

When an actual diagnosis result is known, the clinician wants to update the classifier reputation and the case he/she just diagnosed and the local policy rules on both operations will be applied against the clinician and he/she will be allowed to do so eventually (R14 and R15, R14 and R16).

The interaction model shown in Figure 7 captures the interactive behaviour of involving agents each playing their respective roles, subject to the satisfaction of associated security policy constraints. We have demonstrated this integrated role function in a separate paper (Xiao, Lewis and Gibb, 2008) where workflows punctuated by checks for satisfaction of security constraints.
has been designed in a process calculus-like language for agent interactions, the Lightweight Co-
ordination Calculus (LCC) (Robertson, 2004). The detailed interaction model in Figure 7 has
been written in LCC and parsed to demonstrate the feasibility of integrating security into a
workflow specification language for agent interactions. Not only is the functionality and security
implementable in that framework, the execution of the process model leaves behind an audit
trail of system behaviour. However, for its actual utility in software implementations such as
HealthAgents, the platform for such interactions would have to use the OpenKnowledge kernel
which supports LCC-compliant implementation of software agent choreography.

9 Conclusions

The security issues involved in healthcare domains have been discussed in this paper. The practical
solution of these security issues have been addressed to the needs of the HealthAgents project.
Our work includes the design and development of a security architecture in several levels. Various
Software Engineering techniques and security protocols have been developed to provide a secure
and maintainable healthcare infrastructure.

A link-anonymised data scheme protects the basic patient privacy. Sharing of classifiers instead
of cases in major decision support processes and controlling the travelling of cases across sites by
setting public or private attributes further supports the maintenance of patient confidentiality. A
secure transportation service protects data transmission. A secure data access and collection
service controls cross-site case access. A role-based access control mechanism enables fully
customised resource access control.

Using a security policy rule scheme and applying it in the interaction model for the
HealthAgents Multi-Agent System, security policies can be separately configured but dynamically
integrated into the running agents of the distributed network. Security policies enable easy and
separate maintenance tasks across centres since they can be independently defined and maintained
in each individual site but their application is yet under a unified access control scheme for
resources with diverse types and locations. These make our security model adaptive. When a
new hospital joins, new policy sets can be defined locally by the hospital managers. When its
resources are required from other sites these policies will be applied by responsible manager
agents residing in that site uniformly, conforming to the regulations set in that site. When its
users require access to resources from other sites, the external policies will be applied in the same
manner where users and their assigned roles determine their access privileges. Once any policy
rule is changed the effect is immediate to all roles or individuals associated with the rule. Policies
are automatically deployed and immediately available, requiring no coding and the minimum
administrative overhead.

The layered security model developed for HealthAgents has several novel features. Firstly,
the existing security solutions in agent-based systems are not adequate in the Computer Science
literature. Addressing the security issues in the agent-based clinical decision support systems is
even rarer. The approach described in the paper provides practical implementation in this area in
a rigorous manner. Secondly, a dual model of user identification and role management is embedded
in a human-agent interaction environment. Agent architectures decompose functionality, focusing
on methods. Composition occurs upon message passing or notification. The HealthAgents
agents cooperate/collaborate with human actors who play multiple roles within the constraints
of institutionally arranged access rights and privileges. Although securing messages relies on
standardised protocols, simultaneous user identification and flexible role management and
behavioural control, according to system level interaction and requirements delivery is considered
novel. Thirdly, the approach allows the security requirements to be accommodated incrementally,
in an adaptive way where security policies can be reconfigured and applied dynamically as
constraints associated with functional interaction models. RBAC has been extended for this
purpose. Fourthly and lastly, the overall interaction model with security policy model together

‡http://www.openk.org
contributes a model-driven architecture for the development of secure and adaptive healthcare applications.

Because there is no single agent for securing the system, validation is performed on whether the messaging protocols are secure and standard. There are two aspects. One, in the transportation level, whether messaging is secure syntactically and second, in the policy control level, whether the correct policies are applied in given conditions semantically. The first is defined within the messaging and message handling layers of the agent architecture. Once the handling of private and public keys is done correctly, there can be no issues because of transitive fault (insecurity) propagation, no matter what the protocol is. This assumes a correct identity management system, specifically as it intersects with the role-based access abstractions. This leaves the validation of policy rule matching and application. A way of doing this is, to encode all workflows in a rigorous language such as LCC with constraints for security checks and run a model checker for temporal properties under security breaches locally. The description of the modelling in this level is discussed in (Xiao, Lewis and Gibb, 2008) and model checking will be part of our future work.

Elsewhere in the continuous work of the project, we have described: the security policy rule scheme and their Software Engineering support (Xiao et al., 2007) as well as their full integration with functional rule model into the established Adaptive Agent Model (Xiao and Greer, 2009)(Xiao and Greer, 2007); the ontology support to the security policy representation and reasoning for consistency checking (Croitoru et al., 2008); the development of the overall model according to major Software Engineering principles to achieve software quality (Xiao, Lewis and Gibb, 2008); the extension of the security model into a layered architecture to meet closely related clinical requirements (Xiao, Lewis and Dasmahapatra, 2008). We believe this work has established a comprehensive and practically useful security model and can provide a valuable reference for other distributed healthcare systems.

Acknowledgements

This work is supported under the HealthAgents and OpenKnowledge STREP projects funded by EU Framework 6 under Grants: IST-FP6-027214 and IST-FP6-027253.

References

GMSC/RCGP (1988), GMSC and RCGP guidelines for the extraction and use of data from general practitioner computer systems by organisations external to the practice, Technical report, GMSC/RCGP Joint Computer Group.

