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a b s t r a c t

In the present note, we develop a nonparametric testing procedure for testing equality
of cumulative incidence functions of competing risks models using quantile functions.
Asymptotic properties of the test statistic are discussed. Simulation studies and real data
examples illustrate the practical utility of the procedure.
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1. Introduction

Quantile function, as an alternative to the distribution function can be employed for modeling and analysis of statistical
data. The role of quantile function and other concepts derived from it is well established in exploratory data analysis and in
different areas of applied statistics (see Parzen (1979) and Gilchrist (2000)). In survival studies, with heavy tailed lifetime
models, a single long term survivor can have a marked effect on reliability measures based on a distribution function. It is
therefore more convenient to work with quantile functions that are less influenced by extreme observations. One can refer
to Reid (1981), Slud et al. (1984), Su and Wei (1993), Nair et al. (2008), Nair and Sankaran (2009) and Sankaran and Nair
(2009) for modeling and analysis of lifetime data using the quantile based reliability measures.
Recently, Peng and Fine (2007) and Jeong and Fine (2009) have studied nonparametric quantile inference for competing

risks models. In the present work, we consider the problem of testing equality of k cumulative incidence functions using
quantile functions.
The text is organized as follows. In Section 2,we present the basic concepts of competing risksmodels in terms of quantile

functions. A test statistic based on quantile functions is proposed in Section 3. The asymptotic distribution of the test statistic
is shown to be chi-square. A small simulation study is carried out in Section 4, to assess the performance of the test statistic.
Section 5 illustrates the practical utility of the procedure using a real life data set. Finally, in Section 6, we provide a brief
conclusion of the study.

2. Quantile functions

Let T be a random variable representing the lifetime of a subject (or an individual) having an absolutely continuous
distribution function F(t). The failure of the subjectmay be attributed tomore than one cause or factor. Let C ∈ {1, 2, . . . , k}
be the possible causes of failure. Let S(t) be the survivor function of T . The cumulative incidence function Fj(t) is defined as

Fj (t) = P (T ≤ t, C = j) j = 1, 2, . . . , k. (2.1)
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Note that the probability of failure F(t) is

F (t) =
k∑
j=1

Fj (t) . (2.2)

Recently attention has been paid to the problem of studying possible differences in mortality from different causes. This
problem can be studied by comparing cumulative incidence functions. Accordingly, we consider the problem of testing the
null hypothesis

H0 : F1 (t) = F2 (t) = · · · = Fk (t) for all t > 0. (2.3)

For various approaches for testing (2.3), one can refer to Aras andDeshpande (1992), Aly et al. (1994), Carriere and Kochar
(2000), Kochar et al. (2002) and El-Barmi et al. (2006) and references there in. In the present work, we study the problem of
testing (2.3) using quantile functions.
Define the quantile functions

Qj (u) = inf
t
{t|Fj (t) ≥ u} j = 1, 2, . . . , k. (2.4)

Then (2.4) is the smallest time for which the probability of failure due to cause j having occurred exceeds u, in the presence
of other risks, which prevent the occurrence of cause j.
Now, the hypothesis (2.3) can be represented as

H0 : Q1 (u) = Q2 (u) = · · · = Qk (u) for all 0 < u < 1. (2.5)

From (2.2) and (2.3), we obtain

H0 : Fj (t) =
1
k
F (t) j = 1, 2, . . . , k; t > 0. (2.6)

Now, using (2.6), the hypothesis (2.5) can be written as

H0 : Qj
(u
k

)
= Q (u) j = 1, 2, . . . , k; 0 < u < 1 (2.7)

where Q (u) = inft {t|F(t) ≥ u}.

3. A test statistic

Let T be the lifetime random variable and C ∈ {1, 2, . . . , k} be the possible causes of failure as defined in Section 2.
Suppose that the lifetime variable T is randomly right censored by the censoring variable Z . Assume that T and Z are
independent. Let G be the distribution function of Z . Under right censoring, we observe n independent and identically
distributed samples (Xi, Ci), i = 1, 2, . . . , n of (X, C) where X = min(T , Z), and C is observed only when X = T . With
usual counting process notation, let Nij(t) = I(Xi ≤ t, Ci = j). Denote Nj(t) =

∑n
i=1 Nij(t), Yi(t) = I(Xi ≥ t) and

Y (t) =
∑n
i=1 Yi(t). A nonparametric estimator of Fj(t) is obtained as

F̂j (t) =
∫ t

0

Ŝ (x)
Y (x)

I (Y (x) > 0) dNj (x) , j = 1, 2, . . . , k (3.1)

where Ŝ(t) is the Kaplan–Meier estimate of S(t).
Let γ = minj

{
P(C = j) ∧ Fj(τj)

}
, where τj = supt

{
t|Fj(t) < 1

}
and a ∧ b is the minimum of a and b. For fixed u,

0 < u < γ a nonparametric estimate of Qj(u) is given by

Q̂j (u) = inf
t

{
t|F̂j (t) ≥ u

}
, j = 1, 2, . . . , k. (3.2)

We can obtain the estimate of Q (u) as

Q̂ (u) = inf
t

{
t|F̂j (t) ≥ u

}
(3.3)

where F̂(t) = 1− Ŝ(t). Now we consider the quantity

Zj (u) =
√
n
(
Q̂j
(u
k

)
− Q̂ (u)

)
, j = 1, 2, . . . , k. (3.4)

Then a test statistic for testing (2.5) is given by

χ2 (u) = Z ′ (u) Σ̂ (u)− Z (u) (3.5)
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where Z(u) = (Z1(u), . . . , Zk(u))′ and Σ̂(u)− is the generalized inverse of Σ̂(u) with Σ̂(u) as a consistent estimator of
variance–covariance matrix Σ(u) of Z(u). We show in Appendix that under H0, χ2(u) follows χ2 distribution with k − 1
degrees of freedom. In practice, we reject H0 if χ2 > χ2α,k−1, where χ

2
= sup0<u<γ χ2(u) and χ2α,k−1 is the ordinate value

of chi-square distribution with k− 1 degrees of freedom at α level.
Note that Σ̂(u) has maximum rank k− 1. If we delete, for instance, the last row and last column of Σ̂(u), to give Σ̂0(u),

say and let Z0(u) = (Z1(u), . . . , Zk−1(u))′, then (3.5) may be obtained as

χ2 (u) = Z ′0 (u) Σ̂
−1
0 (u) Z0 (u)

where Σ̂−10 (u) is the ordinary inverse of Σ̂0(u).
As shown in Appendix, the expression forΣ is complex and it involves the cause specific hazard rates. The estimation of

Σ , thus, generally requires smoothing. To obtain the approximate value of Σ̂(u), we can employ the method given in Peng
and Fine (2007). Note that the elements of Σ̂(u) include variances of

_
Q l(u) and

_
Q (u) and covariance between

_
Q l(u) and

_
Q m(u) and that between.

_
Q l(u) and

_
Q (u); l,m = 1, 2, . . . , k; l 6= m. To estimate these elements, let y(t) = P(X > t). Let

η(l) be the solution of Fl(η(l)) = min(max{0,−n−1
∑n
i=1

_ι il(
_
Q l(u))ξi}, 1), where _ι il is obtained as ιil with

ιil(t) =
∫ t

0

S(u)
y(u)

dNil(u)−
∫ t

0

Yi(u)S(u)
y(u)

λl(u)du+
∫ t

0
{−S(u)}

{∫ u

0

dNil(v)
y(v)

−

∫ t

0

Yi(v)λl(v)
y(v)

dv
}
du

and S(t), y(t) and λl(t)dt are replaced by corresponding empirical quantities and ξi’s are independent standard normal
variables; i = 1, 2, . . . , n and l = 1, 2, . . . , k. The estimate of the variance of

_
Q l(u) l = 1, 2, . . . , k; is obtained with the

empirical variance of η(l) calculated by repeatedly generating (ξ1, ξ2, . . . ξn) while fixing the data at their observed points,
after omitting infinite values l = 1, 2, . . . , k. In a similar fashion, one can estimate the variance of

_
Q (u). The estimate of

the covariance between
_
Q l(u) and

_
Q m(u) is obtained with the empirical covariance between η(l) and η(m) calculated by

generating (ξ1, ξ2, . . . ξn) again while fixing the data at their observed values l,m = 1, 2, . . . , k; l 6= m. The same technique
can be used to estimate the covariance between

_
Q l(u) and

_
Q (u).

4. Simulation study

We carry out a simulation study to assess the performance of the test statistic. We consider two causes of failure. The
variables (X, Y ) are generated based on Block and Basu’s (1974) absolutely continuous bivariate exponential distribution
with density

f (x1, x2) =


λλ1 (λ2 + λ0)

λ1 + λ2
exp (−λ1x1 − (λ2 + λ0) x2) if x1 < x2,

λλ2 (λ1 + λ0)

λ1 + λ2
exp (−λ2x2 − (λ1 + λ0) x1) if x1 > x2,

where (λ0, λ1, λ2) are the parameters and λ = λ0 + λ1 + λ2. Then the failure time is T = min(X1, X2) and cause specific
hazard rate functions hj(t) =

λjλ

λ1+λ2
; j = 1, 2 are proportional. λ1 = λ2 is equivalent to Q1(u) = Q2(u) for all u. When

λ1 6= λ2, then Q1(u) 6= Q2(u). In particular, λ1 < λ2 is equivalent to Q1(u) > Q2(u) for all u.We fix λ1 = 1. We set
λ0 = 0 and 1 and consider different values for λ2. Now, λ0 = 0 controls the degree of dependence between X1 and X2.
We consider uncensored, mild censored (20% censoring) and heavy censored (40% censoring) situations. In the censored
situations, observations are censored by a uniform random variable over (0, a), where a is chosen in such a way that 20% or
40% of the observations are censored. We generate random sample of size n = 50, 100 and 250. We use asymptotic critical
values at 5% level. Empirical type I errors and empirical powers of the test are calculated by generating 1000 repeated
samples. For each sample, 1000 bootstrap samples are selected to compute the estimate of the variance–covariance matrix
Σ̂(u).
Table 1 gives the empirical type I errors and powers (both in percent) of the quantile based χ2-test statistic. Table 1

show that, the proposed statistic has empirical type I error values close to 0.05 when the null hypothesis is true. Note that,
empirical type I error doesn’t showmuch effect on censoring percentage,when the sample size is large. By varying the values
of parameter λ2, we estimate the empirical power of the test statistic. From Table 1, it is clear that, increase in censoring
percentage doesn’t havemuch effect on the power of the quantile based test statistic when sample size is large. The power of
the test increases, as sample size increases. When the degree of departure from null hypothesis increases, empirical power
of the test increases. The proposed method can be compared with the simulation studies conducted by Aly et al. (1994, p.
997), for λ1 ≤ λ2. When sample size is small the performance of our test is much better than the test by Aly et al. (1994).
For large samples our test is equally powerful with the test by Aly et al. (1994).

5. Data analysis

We illustrate the utility of the method with a real life data set. We consider a competing risks data from a laboratory
experiment on pneumatic tires given in Davis and Lawrence (1989). The failures were classified into six modes. 1. open joint
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Table 1
Empirical type I errors and powers of the proposed text statistic at an asymptotic level of 5%.

λ2 n = 50 n = 100 n = 250
λ0 = 0 λ0 = 1 λ0 = 0 λ0 = 1 λ0 = 0 λ0 = 1

No censoring

0.5 90.8 91.2 94.3 94.4 99.7 99.7
1.0 5.2 4.8 4.9 5.1 4.9 4.9
1.5 80.9 76.5 84.3 83.2 99.7 98.4
2.0 94.1 94.7 96.3 96.1 99.8 99.8
2.5 96.5 96.4 99.3 99.5 100 100

Mild (20%) censoring

0.5 86.5 87.1 90.4 90.8 98.6 98.8
1.0 5.4 4.7 4.7 4.8 4.8 4.8
1.5 78.7 75.3 82.8 82.2 98.9 98.2
2.0 86.8 84.1 88.0 87.8 99.9 99.9
2.5 94.3 93.2 95.4 93.2 100 100

Heavy (40%) censoring

0.5 80.2 81.1 84.5 86.5 98.7 98.7
1.0 3.8 3.9 4.0 4.1 4.5 4.6
1.5 76.5 73.3 81.2 81.0 97.6 95.4
2.0 83.2 79.1 84.4 85.9 99.3 99.6
2.5 92.1 93.1 93.6 94.2 100 100

on the inner liner, 2. rubber chunking on the shoulder, 3. loose casing low on the side wall, 4. cracking on the tread rubber,
5. cracking on the side wall, 6. all other causes. In the present study, first we consider the data with three modes of failure,
by merging the modes of failure 1, 2 and 3 into a single failure mode andmodes of failure 5 and 6 into another failure mode,
while keeping themode of failure 4 as such. There are 172 failure times including 22 censoring times. The test statistic value
Q = 37.8244 with P-value <0.001, indicates that the cumulative incidence functions are significantly different for all the
causes. The plots of Q̂j(u), j = 1, 2 are given separately in Fig. 1. In Fig. 1, the solid line represents the subquantile function
due to failure from cause 1, the dotted line denotes the subquantile function due to failures from cause 2 and the dashed
line represents the same due to failure from cause 3.
Fig. 1 shows that, the subquantile functions due to the different causes of failure are different each other. Q̂1(u) is smaller

than Q̂2(u) for the values of u value less than 0.22 and vice versa for u greater than 0.22. Initially Q̂3(u) has a very low value,
but dominates Q̂1(u) immediately and it dominates Q̂2(u) near to the u value 0.15. The probability of failure due to cause 1
is higher than probability of failure due to cause 3 for all time points. The probability of failure due to cause 2 is smaller than
probability of failure due to the other two causes up to time point 200. However, the probability of failure due to cause 2, is
larger than the probability of failure due to the other two causes after time point 220.
Next, we consider the above data set as a two risks problem to comparewith the test statistic by Aly et al. (1994). Failures

due to cause 4, cracking on the tread rubber seems to be the major cause of failure. So we merge all other modes of failure
into a single mode of failure, while keeping the failures due to mode 4 as such. For the two risks problem, we compare our
statistic with the one proposed by Aly et al. (1994). The test statistic Q = 212.62 with P-value <0.00001, which indicates
that the cumulative incidence functions due to the two causes are significantly different. Using the test procedure by Aly
et al. (1994), we obtain D∗ = 8.432, where D∗ =

√
nD3n and D3n is the statistic proposed by Aly et al. (1994), which also

infer the same conclusion. Fig. 2 gives the plot of Q̂j(u) against u for two different causes. In Fig. 2, the solid line represents
the subquantile function due to failure from cause 1, and the dotted line denotes the subquantile function due to failures
from cause 2. Fig. 2 shows that Q̂2(u) have higher values than Q̂1(u) for all u values. Thus, the probability of failure due to
cause 2 is clearly less than probability of failure due to cause 1 for all time points.

6. Conclusion

In the present study, we developed quantile based test procedure for testing equality of cumulative incidence functions
of competing risks models. The performance of the procedure was studied using simulated examples. We demonstrated
the practical utility of the method using a real life data. There are several advantages for the proposed procedure over the
existing techniques using distribution functions. Firstly, there exist simple quantile functions that are highly flexible than
distribution functions. Further, quantile functions are very good approximations to lifetime distributions, so that it canwork
well in many practical situations. Secondly, the proposed procedure would be more suitable to work with data, for which
distribution functions do not have simple closed forms. Apart from this, simulation studies show that, the quantile based
test statistic seems to be robust in censored situations, than the existing ones.
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Fig. 1. Plot of Q̂j(u); j = 1, 2, 3 against u for pneumatic tire data set.

Fig. 2. Plot of Q̂j(u); j = 1, 2 against u for pneumatic tire data set.

In the present work, the Kaplan and Meier (1958) estimator of the survivor function is employed to find out quantile
estimators. When Q is a continuous function, it may be more suitable to use a smoothed estimator, rather than the step
function F̂−1, since smoothing reduces the random variation in the data and allows a better display of interesting features
of the lifetime distribution. Smoothed estimator of the quantile function using kernel function given in Padgett (1986) can
be employed in such contexts. The work in this direction will be reported elsewhere.
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Appendix

Theorem. Assume that, Fj(t) is continuous, twice differentiable and the density fj(t) is uniformly bounded below by a positive
constant for t ∈ [p, q], 0 ≤ p < q < γ ∗, j = 1, 2, . . . , k, where γ ∗ = minj τj, where τj = supt{t|Fj(t) < 1}. Then for fixed u,
0 < u < γ , χ2(u) follows chi-square distribution with k− 1 degrees of freedom.

Proof. Consider

Zj (u) =
√
n
(
Q̂j
(u
k

)
− Q̂ (u)

)
which can be written as

Zj (u) =
√
n
(
Q̂j
(u
k

)
− Qj

(u
k

))
+
√
n
(
Qj
(u
k

)
− Q (u)

)
+
√
n
(
Q (u)− Q̂ (u)

)
. (A.1)

Under H0, since Qj( uk ) = Q (u) for all u(0 < u < γ ), (A.1) becomes

Zj (u) =
√
n
(
Q̂j
(u
k

)
− Qj

(u
k

))
+
√
n
(
Q (u)− Q̂ (u)

)
. (A.2)
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From Andersen et al. (1993) and Peng and Fine (2007), we can obtain that for fixed u, (0 < u < γ ),
√
n(Q̂j( uk ) − Qj(

u
k )) is

asymptotically normal with mean 0 and variance σ 2j (u), where

σ 2j (u) =
(1− (u/k))2

f 2j
(
Qj (u/k)

) ∫ Qj(u/k)

0

dFj (x)(
1− Fj (x)

) j = 1, 2, . . . , k. (A.3)

Similarly, we can prove that for 0 < u < γ ,
√
n(Q̂ (u) − Q (u)) is asymptotically normal with mean 0 and variance σ 2(u),

where

σ 2 (u) =
(1− u)2

f ∗2 (Q (u))

∫ Q (u)

0

dF (x)
(1− F (x))

(A.4)

where f ∗(t) is the density corresponding to F(t). Thus Zj(u) asymptotically normalwithmean 0 and variance σ 2(j)(u), where

σ 2(j) (u) = σ 2j (u)+ σ
2 (u)− 2E

[
Q̂j (u)− Qj (u)

] [
Q̂ ∗ (u)− Q ∗ (u)

]
. (A.5)

This implies that, for fixed u, 0 < u < γ , Z(u) = (Z1(u), . . . , Zk(u))′ is asymptotically a k-variate normal with mean zero
vector and variance covariance matrix, Σ(u). Thus the quadratic form χ2(u) follows chi-square distribution with k − 1
degrees of freedom. �
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