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Abstract—The proliferation of real-time monitoring systems 
and the advent of Industrial Internet of Things (IIoT) over the 
past few years necessitates the development of scalable and 
parallel algorithms that help predict mechanical failures and 
remaining useful life of a manufacturing system or system 
components. Classical model-based prognostics require an in-
depth physical understanding of the system of interest and 
oftentimes assume certain stochastic or random processes. To 
overcome the limitations of model-based methods, data-driven 
methods such as machine learning have been increasingly 
applied to prognostics and health management (PHM). While 
machine learning algorithms are able to build accurate 
predictive models, large volumes of training data are required. 
Consequently, machine learning techniques are not 
computationally efficient for data-driven PHM. The objective of 
this research is to create a novel approach for machinery 
prognostics using a cloud-based parallel machine learning 
algorithm. Specifically, one of the most popular machine 
learning algorithms (i.e., random forest) is applied to predict 
tool wear in dry milling operations. In addition, a parallel 
random forest algorithm is developed using the MapReduce 
framework and then implemented on the Amazon Elastic 
Compute Cloud. Experimental results have shown that the 
random forest algorithm can generate very accurate 
predictions. Moreover, significant speedup can be achieved by 
implementing the parallel random forest algorithm.  

Keywords-prognostics and health management; machine 
learning; cloud computing; tool wear prediction 

I.  INTRODUCTION 
Almost all engineering systems (e.g., aerospace systems, 

nuclear power plants, and machine tools) are subject to 
mechanical failures resulting from deterioration with usage 
and age or abnormal operating conditions [1-3]. Some of the 
abnormal operating conditions include wear, corrosion, high 
temperature, high pressure, vibration, buckling, and fatigue. 
The degradation and failures of engineering systems or system 
components will often incur higher costs and lower 
productivity due to unexpected machine down time. In order 
to increase manufacturing productivity while reducing 
maintenance costs, it is crucial to perform a maintenance 
strategy that allows manufacturers to schedule production 
shutdowns for repairs, inspection, and maintenance. 

Conventional maintenance strategies include reactive, 
preventive, and predictive maintenance [4-6]. The most basic 
approach to maintenance is reactive, also known as run-to-
failure maintenance planning. In the reactive maintenance 
strategy, assets are deliberately allowed to operate until 
failures actually occur. The assets are maintained on an as-
needed basis. One of the disadvantages of reactive 
maintenance is that it is difficult to anticipate maintenance 
resources (e.g., manpower, tools and replacement parts) will 
be needed for repairs. In preventive maintenance, systems or 
components are replaced based on a conservative schedule to 
prevent commonly occurring failures. Although preventive 
maintenance allows for more consistent and predictable 
maintenance schedules, it is expensive to implement 
preventive maintenance because of frequent replacement of 
components or parts before their end-of-life. To reduce the 
high costs of preventive maintenance, predictive maintenance 
is an alternative strategy in which maintenance actions are 
scheduled based on equipment performance or conditions 
instead of time. The objective of predictive maintenance is to 
determine the condition of in-service equipment, and 
ultimately to predict the time at which a system or a 
component will no longer meet desired functional 
requirements. 

The discipline that predicts health condition and remaining 
useful life based on previous and current operating conditions 
is often referred to as PHM. Classical prognostic approaches 
fall into two categories: model-based and data-driven 
prognostics [7-12]. Model-based prognostics refers to 
approaches based on mathematical models of system behavior 
derived from physical laws or probability distribution. For 
example, conventional model-based prognostics include 
methods based on Wiener and Gamma processes [13], hidden 
markov models [14], Kalman filter [15], and particle filter 
[16]. One of the disadvantages of model-based prognostics is 
that an in-depth understanding of the underlying physical 
processes that lead to system failures is required. Another 
disadvantage is that it is assumed that underlying processes 
follow certain probability distribution such as gamma or 
normal distributions.  

In comparison with model-based prognostics, data-driven 
prognostics refers to approaches that build a predictive model 
using a learning algorithm and large volumes of historical 
data. For example, classical data-driven prognostics include 
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approaches based on autoregressive model, multivariate 
adaptive regression, fuzzy set theory, and artificial neural 
networks (ANNs). The unique benefit of data-driven methods 
is that an in-depth understanding of system physical behaviors 
is not required. In addition, data-driven methods do not 
assume any underlying probability distributions. While a few 
machine learning algorithms such as ANNs and decision trees 
have been applied in the area of tool wear prediction, little 
research has been reported on the parallel implementation of 
machine learning algorithms on the cloud in the context of 
manufacturing [17]. To address the research gap, we 
developed a cloud-based parallel random forest algorithm to 
predict tool wear using two experimental data sets. The 
performance of the random forest algorithm is measured using 
accuracy and training time. The advantages of random forests 
[18] are: it is one of the most accurate machine learning 
algorithms; it runs efficiently on large datasets; it handles a 
large number of input variables (i.e., predictors) without 
variable selection; feature importance is estimated during 
training; and cross validation is not required because random 
forests generate an internal unbiased estimate of the 
generalization error as the forest building progresses.  

Moreover, because machine condition monitoring systems 
generate large volumes of measurement data, it is extremely 
challenging to design and implement efficient and scalable 
data-driven approaches that are capable of processing large 
volumes of historical data or high speed streaming data on a 
multi-core processor and/or a cluster. In order to benefit from 
multi-core processors and high performance computing 
clusters, it is important to parallelize the data-driven 
algorithms. To address this research gap, a novel PRF 
machine learning algorithm is implemented on a public cloud 
based on the MapReduce framework. It should be noted that 
the objective of this paper is to investigate the performance of 
the random forest algorithm and its parallel implementation 
using the MapReduce paradigm. Due to this reason, the 
comparison of random forests with other machine learning 
algorithms such as ANNs is not conducted.  

The main contributions of this paper include: 
• A parallel random forest (PRF) algorithm is 

developed based on the MapReduce framework and 
implemented on a single machine with multiple cores 
in a high performance computing cloud. 

• The performance of the PRF algorithm is compared 
with that of the random forest algorithm implemented 
in serial. The speedup and scalability of the PRF are 
evaluated using two training data sets. 

The remainder of the paper is organized as follows: 
Section 2 reviews the related literature on data-driven 
prognostics. Section 3 introduces the theoretical background 
of the random forest algorithm and a PRF implementation 
based on the MapReduce framework. Section 4 presents the 
methodology for data-driven prognostics for tool wear 
prediction using the MapReduce-based PRF algorithm. 
Section 5 presents an experimental setup, an experimental 
data set acquired from different types of sensors on a CNC 
milling machine, and experimental results. Section 6 provides 
conclusions that include a discussion of research contribution 
and future work. 

II. DATA-DRIVEN PROGNOSTICS 
Schwabacher and Goebel [19] conducted a review of data-

driven methods for prognostics. The most popular data-driven 
approaches to prognostics include ANNs and decision trees in 
the context of systems health management. ANNs are a family 
of computational models based on biological neural networks 
which are used to estimate complex relationships between 
inputs and outputs. Chungchoo and Saini [20] developed an 
online fuzzy neural network (FNN) algorithm that estimates 
the average width of flank wear and maximum depth of crater 
wear. A modified least-square backpropagation neural 
network was built to estimate flank and crater wear based on 
cutting force and acoustic emission signals. Chen and Chen 
[21] developed an in-process tool wear prediction system 
using ANNs for milling operations. A total of 100 
experimental data were used for training the ANN model. The 
input variables include feed rate, depth of cut, and average 
peak cutting forces. The ANN model can predict tool wear 
with an error of 0.037mm on average. Ozel and Karpat [22] 
developed a predictive model for tool flank wear and surface 
roughness in finish dry and turning operations using 
feedforward neural networks and regression. Based on 
experimental results, predictive neural network models 
provided more accurate predictions than regression models. 
Bukkapatnam et al. [23-25] developed effective tool wear 
monitoring techniques using ANNs based on features 
extracted from the principles of nonlinear dynamics. The 
disadvantages of ANNs include (1) the training outcome 
depends significantly on the choice of initial parameters such 
as number of layers and number of neurons in each layer and 
(2) training is too computationally expensive to solve large 
problems.  

Another data-driven method for prognostics is based on 
decision trees, which is a non-parametric supervised learning 
method used for classification and regression. The goal of 
decision tree learning is to create a model that predicts the 
value of a target variable by learning decision rules inferred 
from data features. A decision tree is a tree structure in which 
each internal node denotes a test on an attribute, each branch 
represents the outcome of a test, and each leaf node holds a 
class label. Jiaa and Dornfeld [26] proposed a decision tree-
based method for the prediction of tool flank wear in a turning 
operation using acoustic emission and cutting force signals. 
The features characterizing the AE RMS and cutting force 
signals were extracted from both time and frequency domains. 
The decision tree approach was demonstrated to be able to 
make reliable inferences and decisions on tool wear 
classification. Elangovan et al. [27] developed a decision tree-
based algorithm for tool wear prediction using vibration 
signals. Ten-fold cross-validation was used to evaluate the 
accuracy of the predictive model created by the decision tree 
algorithm. The maximum classification accuracy was 87.5%. 
While the advantage of decision trees is interpretability, 
decision trees can be very sensitive to small variations in 
training data.  
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III. MACHINE LEARNING 

A. Random Forests 
To address the research gap, the random forest algorithm 

is introduced to predict tool wear. A comprehensive tutorial 
on random forests can be found in Friedman et al. [28]. The 
random forest algorithm, developed by Leo Breiman [18,29], 
is an ensemble learning method that constructs a forest of 
decision trees from bootstrap samples of a training data set. 
Each decision tree produces a response, given a set of 
predictor values. In a decision tree, each internal node 
represents a test on an attribute, each branch represents the 
outcome of the test, each leaf node represents a class label for 
classification or a response for regression. A decision tree in 
which the response is continuous is also referred to as a 
regression tree. In the context of tool wear prediction, each 
individual decision tree in a random forest is a regression tree 
because tool wear describes the gradual failure of cutting 
tools. The pseudo code of the random forest algorithm for 
regression is shown in Table 1.  

Table 1. Pseudo Code of the Random Forest Algorithm 

Random Forests for Regression [28] 
Input: Training data 
Output: Prediction at a new data point 
1. for b = 1 to  do %  is the number of trees % 
1.1 Draw a bootstrap sample  of size  from the training data 
1.2 Grow a random-forest tree  to the bootstrapped data 
(1.2.1) Select  variables at random from  variables 
(1.2.2) Pick the best split-point among the  variables 
(1.2.3) Split the node into two children nodes 
2. Output the ensemble of trees  
3. Make a prediction at a new point  by aggregating the 
predictions of the  trees 

 

Bootstrap aggregating or bagging: Given a training data 
set 

,  
bootstrap aggregating or bagging generates  new 

training data sets  of size  by sampling from the original 
training data set  with replacement.  is referred to as a 
bootstrap sample. By sampling with replacement or 
bootstrapping, some observations may be repeated in each . 
Bagging helps reduce variance and avoid overfitting. The 
number of regression trees  is a parameter specified by users. 
Typically, a few hundred to several thousand trees are used in 
the random forest algorithm.  

Choosing variables to split on: For each of the bootstrap 
samples, grow an un-pruned regression tree with the following 
procedure: At each node, randomly sample  variables and 
choose the best split among those variables rather than 
choosing the best split among all predictors. This process is 
sometimes called “feature bagging”. The reason why a 
random subset of the predictors or features is selected is 
because the correlation of the trees in an ordinary bootstrap 
sample can be reduced. For regression, the default . 

Splitting criterion: Suppose that the training data is 
partitioned into  regions , , …, . A regression tree 
can be modeled as follows: 

 (3.1) 

where  is an indicator function; If its argument is true, 
then the indicator function returns 1; otherwise 0; and the 
response is modeled as a constant  in each region. The 
splitting criterion at each node is to minimize the sum of 
squares. Therefore, the best  is the average of  in region 

: 
 (3.2) 

Consider a splitting variable  and split point , and define 
the pair of half-planes 

, . (3.3) 
Then we seek the splitting variable  and split point  that 

solve 

. 
(3.4) 

For any choice  and s, the inner minimization is solved by 
 
 (3.5) 

Having found the best split, we partition the data into two 
resulting regions and repeat the splitting process on each of 
the two regions. This splitting process is repeated until a 
predefined stopping criterion is satisfied.   

Stopping criterion: Tree size is a tuning parameter 
governing the complexity of a model. The stopping criterion 
is that the splitting process proceeds until the number of 
records in  falls below a threshold. The default threshold is 
five ( ). Alternatively, the maximum depth to which 
a decision tree should be constructed can be specified.  

After  such trees  are constructed, a prediction at a 
new point  can be made by averaging the predictions from 
all the individual  regression trees on : 

 
(3.6) 

B. MapReduce-based Parallel Random Forests 
Because the tree growth step of the random forest machine 

learning algorithm is parallelizable, the MapReduce 
framework is used to parallelize the random forest algorithm. 
MapReduce is a programming model for processing large data 
sets with a parallel algorithm on a single machine with multi-
core CPUs and a cluster [30].  

Fig. 1 illustrates a high-level view of the MapReduce 
architecture [31,32]. In step 0, input data (i.e., training data 
sets) are fed into an algorithm. In step 1, the algorithm is 
executed on a single machine with multiple CPU cores or a 
cluster. In step 2, a master is created to split the input data into 
multiple pieces. Each piece is assigned to a mapper. In step 3, 
a Map function parses the input data and generates a list of 
intermediate <key, value> pairs. In step 4, the master collects 
the intermediate data from the mappers and sorts the 
intermediate data by the keys. All the intermediate data with 
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the same key are grouped together. After sorting, a Reduce 
function is called. In step 5, the Reduce function aggregates 
all the intermediate pairs with the same key generated by the 
Map function. Finally, in step 6, the reducer returns the final 
results. 

 
Figure 1. MapReduce Framework 

IV. METHODOLOGY  
This section presents the methodology for data-driven 

prognostics for tool wear prediction with the MapReduce-
based PRF algorithm. The input of the PRF is the training data  

 where denote the cutting forces, vibrations, 
and acoustic emissions,  denotes the magnitude of tool 
wear. A random forest is constructed using  
regression trees. Given the labeled training dataset 

, we drew a bootstrap sample of size  from the 
training dataset (Step 1.1). For each regression tree, we select 

variables at random 
from the 9 variables (Step 1.2.1). The best variable/split-point 
is selected among the 3 variables (Step 1.2.2). A regression 
tree progressively splits the training dataset into two child 
nodes, left node (with samples < z) and right node (with 
samples >= z). A splitting variable and split point are selected 
by solving Equations 3.4 and 3.5. The process is applied 
recursively on the dataset in each child node. The splitting 
process stops if the number of records in a node is less than 5. 
An individual regression tree is built by starting at the root 
node of the tree, performing a sequence of tests about the 
predictors, and organizing the tests in a hierarchical binary 
tree structure as illustrated in Fig. 2.  

 
Figure 2. Binary Regression Tree Growing Process 

After 10,000 trees are constructed, a prediction at a new 
point can be made by averaging the predictions from all the 
individual binary regression trees on this point. Because the 
random forest algorithm can be decomposed into a large 
number of independent computations, also known as perfectly 
parallel, the MapReduce framework performs optimally.  

V. EXPERIMENT AND RESULTS 

A. Experimental Setup 
The dataset used in this paper was obtained from Li et al. 

[33]. The details of the experiment are presented in this 
section. The experimental setup is shown in Fig. 3.  

 
Figure 3. Binary Regression Tree Growing Process 

The experiment was conducted on a three-axis high speed 
CNC machine (Röders Tech RFM 760). The workpiece 
material used in the dry milling experiment was stainless steel. 
The detailed description of the operating conditions in the dry 
milling operation can be found in Table 2. The spindle speed 
of the cutter was 10,400 RPM. The feed rate was 1,555 
mm/min. The Y depth of cut (radial) was 0.125 mm. The Z 
depth of cut (axial) was 0.2 mm. The sampling rate was 50 
KHz/channel.  

Table 2. Operating Conditions 

Parameter Value 
Spindle Speed 10400 RPM 
Feed Rate 1555 mm/min 
Y Depth of Cut 0.125 mm 
Z Depth of Cut 0.2 mm 
Sampling Rate 50 KHz/channel 
Material Stainless steel 

As shown in Table 3, seven signal channels, including 
cutting force, vibration, and acoustic emission data, were 
monitored. A stationary dynamometer, mounted on the table 
of the CNC machine, was used to measure cutting forces in 
three, mutually perpendicular axes (x, y, and z dimensions). 
Three piezo accelerometers, mounted on the workpiece, were 
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used to measure vibration in three, mutually perpendicular 
axes (x, y, and z dimensions). An acoustic emission (AE) 
sensor, mounted on the workpiece, was used to monitor a high 
frequency oscillation that occurs spontaneously within metals 
due to crack formation or plastic deformation. Acoustic 
emission is caused by the release of strain energy as the micro 
structure of the material is rearranged. Three datasets were 
generated. Each dataset contains 315 individual data 
acquisition files in the csv format. The size of each dataset is 
about 2.89 GB. 

Table 3. Signal Channel and Data Description 

Signal Channel Data Description 
Channel 1 Force (N) in X dimension 
Channel 2 Force (N) in Y dimension 
Channel 3 Force (N) in Z dimension 
Channel 4 Vibration (g) in X dimension 
Channel 5 Vibration (g) in Y dimension 
Channel 6 Vibration (g) in Z dimension 
Channel 7 Acoustic Emission (V) 

B. Tool Wear Prediction with Random Forests 
Feature extraction is an essential preprocessing step in 

which raw data collected from various signal channels is 
converted into a set of statistical features in a format supported 
by machine learning algorithms. The statistical features are 
then given as an input to a machine learning algorithm. In the 
first experiment, the raw data was collected from (1) cutting 
force, (2) vibration, and (3) acoustic emission signal channels. 
A set of statistical features (28 features) extracted from these 
signals include Maximum, Median, Mean, and Standard 
Deviation as listed in Table 4. 

Table 4. Extracted Features 
Cutting Force Vibration Acoustic Emission 
Max Max Max 
Median Median Median 
Mean Mean Mean 
Standard Deviation Standard Deviation Standard Deviation 

 

 
Figure 4. Tool Wear Prediction 

A predictive model was developed using the random forest 
algorithm. Two thirds (2/3) of the input data was used for 
model development (training). The remainder (1/3) of the 
input data was used for model validation (testing). Fig. 4 

shows the predicted against observed tool wear values using 
the experimental data set.  

The performance of the random forest algorithm is 
evaluated using accuracy and training time. The accuracy of 
the random forest algorithm is measured using the  statistic, 
also referred to as the coefficient of determination, and mean 
squared error ( ). In statistics, the coefficient of 
determination is defined as  where  is the 
sum of the squares of residuals,  is the total sum of 
squares. The coefficient of determination is a measure that 
indicates the percentage of the response variable variation that 
is explained by a regression model. A higher R-squared 
indicates that more variability is explained by the regression 
model. For example, an  of 100% indicates that the 
regression model explains all the variability of the response 
data around its mean. In general, the higher the R-squared, the 
better the regression model fits the data. The MSE of an 
estimator measures the average of the squares of the errors. 
The  is defined as  where  is a 
predicted value,  is an observed value, and  is the sample 
size. The random forest algorithm uses between 50% and 90% 
of the input data for model development (training) and uses 
the remainder for model validation (testing). Table 5 lists the 
MSE, , and training time. 

Table 5. Accuracy and Training Time 

  Random forest (10,000 Trees) 
Training size (%) MSE R2 Training time (Second) 
50 14.242 0.986 20.876 
60 11.466 0.989 26.562 
70 10.469 0.990 33.230 
80 8.195 0.992 38.995 
90 8.295 0.992 45.224 

C. Performance Evaluation for Parallel Random Forests 
This section presents the performance evaluation for the 

parallel implementation of the random forest algorithm. 
Specifically, the speedup and efficiency of the MapReduce-
based PRF algorithm are discussed. The PRF algorithm was 
implemented on one of the most popular public cloud 
computing platforms, Amazon Elastic Compute Cloud 
(Amazon EC2). A variety of instance types with varying 
combinations of CPU, memory, and storage are provided for 
evaluating the speedup, efficiency, and scalability of the PRF 
algorithm. The cloud computing service on the Amazon EC2 
can be accessed by an online user interface, called the AWS 
Management Console. A user can configure, launch, stop, 
restart, and terminate an instance (i.e., a virtual server in 
Amazon EC2) to run application programs in the cloud 
computing environment via a web browser. Amazon EC2 
provides a variety of instance types which comprise varying 
combination of virtual CPU (vCPU), memory, and storage. A 
C3 instance on the Amazon EC2 is one of the compute-
optimized instances, featuring the highest performing 
processors and the lowest price/compute performance. Table 
6 lists the hardware specifications of the C3 instance. The C3 
large instance equips with 32 virtual cores, 60 GB memory, 
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and two disks of 320 GB storage and runs on the Linux 
operating system.   

Table 6. Amazon EC2 Infrastructures 

Instance Type C3.8×large R3.8×large 
Processor Intel Xeon E5-2680 v2 Intel Xeon E5-2670 v2 
Number of CPU 32 32 
Memory (GB) 60 244 
Storage (GB) 640 (2 × 320) 640 (2 × 320) 

 
Fig. 5 shows the time spent training the predictive model 

using a C3 instance with varying number of cores and 
different sizes of training data sets. The algorithm was 
executed twenty times with the percentage of the training data 
sets and the number of cores ranging from 50% to 90% and 
from 1 to 32 cores, respectively. Execution time is calculated 
as an average over the twenty runs. Note that the time to 
construct the features from the initial signals is not included. 

 
Figure 5 Runtime vs number of cores using C3 instances 

As shown in Fig. 5 and Fig. 6, the PRF algorithm scales 
relatively well with the number of cores for different 
percentages of the training data sets. Take the run time with 
90% of the training data set for example, near linear speedup 
is observed when the PRF algorithm runs on the number of 
cores ranging from 1 to 16 cores based on the speedup curve. 
However, the speedup falls rapidly for 32 cores. It should be 
noted that relative speedup is the ratio of the solution time for 
a problem with a parallel algorithm executed on a single 
processor to the solution time with the same algorithm when 
executed on multiple processors. Another metric to measure 
the performance of the PRF algorithm is efficiency, defined as 
the ratio of relative speedup to the number of processors. As 
shown in Fig. 5, the execution time using 1, 2, 4, 8, 16, and 32 
cores are 44s, 23s, 12s, 7s, 4s, and 3s. For 1 to 16 cores, 
relative speedup is almost linear. Linear speedup in turn 
corresponds to efficiency of 1. When the number of cores 
continues to increase beyond 16 cores, the PRF cannot 
achieve linear speedup. This is because speedup is always 
limited by the serial part of the program according to 
Amdahl’s law [34] of the theoretical speedup of the execution 
of a program.  

 
Figure 6 Speedup using C3 instances (90% of the training data set)  

Because high performance computing applications are 
often limited by either computing speed or memory, it is 
worthwhile to evaluate whether this application is compute 
bound or memory bound. The PRF algorithm was executed on 
a R3 instance which is optimized for memory-intensive 
applications. Similar to the C3 instance, the R3 large instance 
equips with 32 virtual cores, two disks of 320 GB storage, and 
244 GB memory instead of 60 GB memory. Table 6 lists the 
hardware specifications of the R3 large instance. As shown in 
Fig. 7, training time using the R3 instance with 244 GB 
memory is almost the same as that of the C3 instance with 60 
GB memory. The results demonstrate that the PRF algorithm 
is compute bound instead of memory bound.  

 
Figure 7 Runtime vs number of cores using R3 instances 

VI. CONCLUSIONS 
In this paper, the prediction of tool wear in milling 

operations was performed with the random forest and PRF 
algorithms. The PRF algorithm was developed using the 
MapReduce framework and then implemented on the Amazon 
Elastic Compute Cloud. The effectiveness and efficiency of 
the algorithms were demonstrated with two different data sets 
collected from two milling experiments under various 
operating conditions. Two sets of statistical features were 
extracted from cutting forces, vibrations, acoustic emissions 
and the electrical current of the spindle motor, vibrations at 
the table and spindle, acoustic emissions at the table and 
spindle, respectively. Two thirds of the input data were used 
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for training. The remainder of the input data was used for 
testing. The performance of the random forest algorithm was 
evaluated using mean squared error, R-square, and training 
time. The experimental results have shown that random 
forests can generate very accurate predictions for the first data 
set. Due to the limited amount of training data, the random 
forest algorithm generated less accurate predictions for the 
second experiment. Moreover, the PRF algorithm was 
developed to scale up the random forest algorithm. The 
experimental results have shown that significant speedup can 
be achieved when building a large number of decision trees. 
Further, the PRF algorithm has been demonstrated to be 
compute bound by comparing the training time using two 
Amazon instances.  

In the future, it will be worthwhile to predict tool wear 
with other machine learning algorithms such as support vector 
machines as well as compare the performance of these 
algorithms with that of random forests using accuracy and 
training time. In addition, our future work will focus on 
collecting large volumes of streaming data from a network of 
CNC machines and build predictive models for tool wear 
estimation with the PRF algorithm and a cluster on the cloud. 
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