About
32
Publications
4,295
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
944
Citations
Citations since 2017
Introduction
Sougata Roy is an Associate Professor at the Department of Cell Biology & Molecular Genetics, University of Maryland, College Park. Sougata's lab focuses on understanding cell-cell communication during tissue morphogenesis.
Additional affiliations
August 2014 - February 2021
October 2006 - present
March 2000 - December 2006
Publications
Publications (32)
How signaling proteins generate a multitude of information to organize tissue patterns is critical to understanding morphogenesis. In Drosophila, FGF produced in wing-disc cells regulates the development of the disc-associated air-sac-primordium (ASP). Here, we show that FGF is Glycosylphosphatidylinositol-anchored to the producing cell surface and...
Asymmetric signaling and organization in the stem-cell niche determine stem-cell fates. Here, we investigate the basis of asymmetric signaling and stem-cell organization using the Drosophila wing-disc that creates an adult muscle progenitor (AMP) niche. We show that AMPs extend polarized cytonemes to contact the disc epithelial junctions and adhere...
Confocal microscopy¹ remains a major workhorse in biomedical optical microscopy owing to its reliability and flexibility in imaging various samples, but suffers from substantial point spread function anisotropy, diffraction-limited resolution, depth-dependent degradation in scattering samples and volumetric bleaching². Here we address these problem...
How signaling proteins generate a multitude of information to organize tissue patterns is critical to understanding morphogenesis. In Drosophila, FGF produced in wing-disc cells regulates the development of the disc-associated air-sac-primordium/ASP. We discovered that FGF is GPI-anchored to the producing cell surface and that this modification bot...
Furin is an evolutionarily conserved proprotein convertase (PC) family enzyme with a broad range of substrates that are essential for developmental, homeostatic, and disease pathways. Classical genetic approaches and in vitro biochemical or cell biological assays identified that precursor forms of most growth factor family proteins are processed by...
How morphogenetic signals are prepared for intercellular dispersal and signaling is fundamental to the understanding of tissue morphogenesis. We discovered an intracellular mechanism that prepares Drosophila melanogaster FGF Branchless (Bnl) for cytoneme-mediated intercellular dispersal during the development of the larval Air-Sac-Primordium (ASP)....
Gradients of signaling proteins are essential for inducing tissue morphogenesis. However, mechanisms of gradient formation remain controversial. Here we characterized the distribution of fluorescently-tagged signaling proteins, FGF and FGFR, expressed at physiological levels from the genomic knock-in alleles in Drosophila. FGF produced in the larva...
Binary transcription systems are powerful genetic tools widely used for visualizing and manipulating cell fate and gene expression in specific groups of cells or tissues in model organisms. These systems contain two components as separate transgenic lines. A driver line expresses a transcriptional activator under the control of tissue-specific prom...
Conserved morphogenetic signaling proteins disperse across tissues to generate signal and signaling gradients, which in turn are considered to assign positional coordinates to the recipient cells. Recent imaging studies in Drosophila model have provided evidence for a “direct-delivery” mechanism of signal dispersion that is mediated by specialized...
Fragile X syndrome (FXS) is the most common cause of heritable intellectual disability and autism and affects ~1 in 4000 males and 1 in 8000 females. The discovery of effective treatments for FXS has been hampered by the lack of effective animal models and phenotypic readouts for drug screening. FXS ensues from the epigenetic silencing or loss-of-f...
Epigenetic silencing of fragile X mental retardation 1 (FMR1) causes fragile X syndrome (FXS), a common inherited form of intellectual disability and autism. FXS correlates with abnormal synapse and dendritic spine development, but the molecular link between the absence of the FMR1 product FMRP, an RNA binding protein, and the neuropathology is unc...
The Drosophila tracheal system is a branched tubular network that forms in the embryo by a post-mitotic program of morphogenesis. In third instar larvae (L3), cells constituting the second tracheal metamere (Tr2) reenter the cell cycle. Clonal analysis of L3 Tr2 revealed that dividing cells in the dorsal trunk, dorsal branch and transverse connecti...
Recent findings in several organ systems show that cytoneme-mediated signaling transports signaling proteins along cellular extensions and targets cell-to-cell exchanges to synaptic contacts. This mechanism of paracrine signaling may be a general one that is used by many (or all) cell types in many (or all) organs. We briefly review these findings...
Long-distance cell-cell communication is essential for organ development and function. Whereas neurons communicate at long distances by transferring signals at sites of direct contact (i.e., at synapses), it has been presumed that the only way other cell types signal is by dispersing signals through extracellular fluid - indirectly. Recent evidence...
Development creates a vast array of forms and patterns with elegant economy, using a small vocabulary of pattern-generating proteins such as BMPs, FGFs and Hh in similar ways in many different contexts. Despite much theoretical and experimental work, the signaling mechanisms that disperse these morphogen signaling proteins remain controversial. Her...
Morphogen Pipeline
Developmental effects of morphogens are often thought to result from release of such signaling proteins from a cell, which then diffuse away to act by binding to receptors on distant target cells. But evidence is accumulating that another mechanism exists for such communication. Endothelial cells in the fruit fly have long, skinn...
This Presentation focuses on how morphogen signaling proteins disperse across developmental fields. Although the steady-state distributions of morphogen signaling proteins have been described well in a number of contexts, the mechanisms that generate these distributions have remained uncertain. Results presented here show that these proteins transf...
Study of activity of cloned promoters in slow-growing Mycobacterium tuberculosis during long-term growth conditions in vitro or inside macrophages, requires a genome-integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate-independent, easily scorable and highly sensitive reporter g...
The principal essential bacterial cell division gene ftsZ is differentially expressed through multiple transcripts in diverse genera of bacteria in order to meet cell division requirements in compliance with the physiological niche of the organism under different environmental conditions. We initiated transcriptional analyses of ftsZ gene of the fa...
The principal essential bacterial cell division gene ftsZ is differentially expressed through multiple transcripts in diverse genera of bacteria in order to meet cell division requirements in compliance with the physiological niche of the organism under different environmental conditions. We initiated transcriptional analyses of ftsZ gene of the fa...
Cytonemes are types of filopodia in the Drosophila wing imaginal disc that are proposed to serve as conduits in which morphogen signaling proteins move between producing and target cells. We investigated the specificity of cytonemes that are made by target cells. Cells in wing discs made cytonemes that responded specifically to Decapentaplegic (Dpp...
Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis , under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX)...
Bacterial FtsE gene codes for the ATP-binding protein, FtsE, which in complex with the transmembrane protein, FtsX, participates in diverse cellular processes. Therefore, regulated expression of FtsE and FtsX might be critical to the human pathogen, Mycobacterium tuberculosis, under stress conditions. Although ftsX gene of M. tuberculosis (MtftsX)...
Heat shock promoters of mycobacteria are strong promoters that become rapidly upregulated during macrophage infection and thus serve as valuable candidates for expressing foreign antigens in recombinant BCG vaccine. In the present study, a new heat shock promoter controlling the expression of the groESL1 operon was identified and characterized. Myc...
Multiple promoters drive the expression of the principal cell division gene, ftsZ, in bacterial systems. Primer extension analysis of total RNA from Mycobacterium tuberculosis and a Mycobacterium smegmatis transformant containing 1.117 kb of the upstream region of M. tuberculosis ftsZ and promoter fusion studies identified six ftsZ transcripts and...
The cytokinetic protein FtsZ plays a pivotal role in regulation of cell division in bacteria. Multiple promoters regulate transcription of the ftsZ gene in Escherichia coli, Streptomyces and Bacillus species. In order to identify promoter activity-containing regions of the ftsZ gene of Mycobacterium tuberculosis H37Rv (MtftsZ) in vivo, different re...
The success of Mycobacterium tuberculosis as a pathogen is due to its remarkable ability to: (i). adapt to and survive inside activated macrophages under nonproliferating condition, (ii). put up drug resistance and (iii). enter into hypoxia-induced dormancy and remain in nonproliferating condition, be resistant to drugs, and get reactivated into pr...