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Abstract– This paper introduces a new, principled approach to detecting LSB steganography

in digital signals such as images and audio. It is shown that the length of hidden message

embedded in the least significant bits of signal samples can be estimated with relatively high

precision. The new steganalytic approach is based on some statistical measures of sample pairs

that are highly sensitive to LSB embedding operations. The resulting detection algorithm is

simple and fast. To evaluate the robustness of the proposed steganalytic approach, bounds on

estimation errors are developed. Furthermore, the vulnerability of the new approach to possible

attacks is also assessed, and counter measures are suggested.

I. INTRODUCTION

Steganography is an art of sending a secrete message under the camouflage of a carrier content.

The carrier content appears to have totally different but normal (”innocent”) meanings. The goal

of steganography is to mask the very presence of communication, making the true message

not discernible to the observer. The wide use of the internet as a mass communication means

and the proliferation of digital multimedia on the web present unique opportunities for modern

steganography. Recent years have seen increased interests and even commercial software in using

digital media files, such as images, audio, and video files, as carrier contents of steganography.

A popular digital steganography technique is so-called least significant bit embedding (LSB

embedding). With the LSB embedding technique, the two parties in communication share a

private secret key that creates a random sequence of samples of a digital signal. The secrete

message, possibly encrypted, is embedded in the least significant bits of those samples of the

sequence. This digital steganography technique takes the advantage of random noise present in

the acquired media data, such as images, video and audio. Since the magnitude of signal noise

is comparable to that of the least significant bits, embedding message bits in the least significant

bit plane will not cause any discernible difference from the original visual or audio signals.

Earlier works on steganalysis of LSB embedding in grey-scale and color images were reported

in [3], [5], [1], [2], and a survey of steganography techniques can be found in [4].

In this paper we present a new robust steganalytic technique for detection of LSB embedding

in digital signals. The technique is based on a finite state machine whose states are selected

multisets of sample pairs, called trace multisets. Some of the trace multisets are equal in
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their expected cardinalities, if the sample pairs are drawn from a digitized continuous signal.

Random LSB flipping causes transitions between these trace multisets with given probabilities,

and consequently alters the statistical relations between the cardinalities of trace multisets.

Furthermore, the statistics of sample pairs is highly sensitive to LSB embedding, even when

the embedded message length is very short. By analyzing these relations and modeling them

with the finite-state machine, we arrive at a simple quadratic function that can estimate the

length of embedded message with high precision, under an assumption that is true in reality

for continuous signals such as natural images and audio. Furthermore, we can also bound the

estimation error in terms of the degree that this assumption deviates from the reality.

The paper is structured as follows. In Section 2 we will study, as the foundation of our new

approach of steganalysis, some interesting and useful statistical properties of sample pairs of a

continuous signal. Some special multisets of sample pairs, called trace multisets, are introduced.

The behavior of trace multisets under LSB embedding operations is modeled by a finite-state

machine. Then in Section 3 we use the structure of the finite-state machine to establish quadratic

equations for the length of embedded message in terms of the cardinalities of trace multisets.

The accuracy of the estimated hidden message length computed by the quadratic equations is

analyzed in Section 4. We also discuss how to use trace multisets and how to draw sample pairs

from a signal to minimize estimation errors. Section 5 presents our experimental results with

a test set of 29 continuous-tone images. Possible attacks to the proposed steganalytic method

are examined and counter measures are suggested in Section 6. Section 7 relates the proposed

approach of steganalysis to the RS method of [2], and proves some key observations on which

the RS method was based. In order not to obscure our main ideas we put necessary but lengthy

mathematical developments in four appendices.

II. TRACE MULTISETS OF SAMPLE PAIRS

In this section, to motivate the proposed approach of steganalysis, let us study the effects

of LSB embedding on some selected sets of sample pairs. Assuming that the digital signal is

represented by the succession of samples s1, s2, · · · , sN (the index represents the location of a

sample in a discrete waveform), a sample pair means a two-tuple (si, sj), 1 ≤ i, j ≤ N . We

use sample pairs rather than individual samples as the basic unit in our steganalysis to utilize

higher order statistics such as sample correlation. Let P be a set of sample pairs drawn from

DRAFT



4

a digitized continuous signal. We will later come back to the issue of how these sample pairs

should be chosen to aid steganalysis.

In the following development, however, it is more convenient to treat P , a set of sample

pairs, as a multiset of two tuples (u, v), where u and v are the values of two samples. In the

sequel, unless otherwise explicitly stated, two-tuples (u, v), or members of P , always refer to

values of two different samples drawn from a signal. Denote by Dn the submultiset of P that

consists of sample pairs of the form (u, u+ n) or (u+ n, u), i.e., the two values differ exactly

by n, where n is a fixed integer, 0 ≤ n ≤ 2b − 1, and b is the number of bits to represent each

sample value. In order to analyze the effects of LSB embedding on Dn, it is useful to introduce

some other submultisets of P that are closed under the embedding operation, in terms of the

pairwise difference of sample values. Since the embedding affects only the LSB, we use the most

significant b− 1 bits in choosing these closed multisets. For each integer m, 0 ≤ m ≤ 2b−1 − 1,

denote by Cm the submultiset of P that consists of the sample pairs whose values differ by m

in the first (b− 1) bits (i.e., by right shifting one bit and then measuring the difference).

To summarize the above, we introduced the multisets Dn, 0 ≤ n ≤ 2b− 1, to characterize the

changes caused by the LSB embedding in the difference between two sample values. We also

introduced the multisets Cm, 0 ≤ m ≤ 2b−1 − 1, which are invariant under the LSB embedding.

Note that the multisets Dn form a partition of P , and the multisets Cm form another partition of

P . It is interesting to investigate the relation between these two partitions. It is clear that D2m

is contained in Cm. Indeed, if (u, v) is a pair in D2m (i.e. | u− v |= 2m), then both u and v are

either even or odd. By right shifting one bit and taking the absolute difference, the value obtained

is exactly | u−v | /2, hence (u, v) ∈ Cm. This is not true however for D2m+1. The sample pairs

of D2m+1 are shared between Cm and Cm+1. Specifically, if (u, v) is a pair in D2m+1, then the

pair can have one of the following forms: (2k−2m−1, 2k), (2k, 2k−2m−1), (2k−2m, 2k+1)

or (2k+1, 2k−2m) for some k. The pairs (2k−2m−1, 2k) and (2k, 2k−2m−1) are in Cm+1.

This is because by right shifting one bit, the values 2k and 2k−2m−1 become k and k−m−1

respectively, which differ by m + 1. But the other two forms of pairs, (2k − 2m, 2k + 1) and

(2k + 1, 2k − 2m), are in Cm (by right shifting one bit the values 2k + 1 and 2k − 2m become

k and k −m respectively, which differ by m).

Since D2m+1 is shared between Cm and Cm+1 we partition D2m+1 into two submultisets X2m+1

and Y2m+1, where X2m+1 = D2m+1 ∩ Cm+1 and Y2m+1 = D2m+1 ∩ Cm, for 0 ≤ m ≤ 2b−1 − 2,
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and X2b−1 = ∅, Y2b−1 = D2b−1. Consequently, X2m+1 is the submultiset of sample pairs of the

form (2k− 2m− 1, 2k) or (2k, 2k− 2m− 1), and Y2m+1 the submultiset of sample pairs of the

form (2k − 2m, 2k + 1) or (2k + 1, 2k − 2m). A simpler characterization of these two types of

submultisets, which reveals both common and distinctive features of them, is the following. Both

types contain pairs (u, v) that differ by 2m + 1 (i.e. | u − v |= 2m + 1). Those pairs in which

the even component is larger are in X2m+1, whereas those pairs in which the odd component is

larger are in Y2m+1. For natural signals, the chance for a sample pair in D2m+1 to have a larger

or smaller even component is the same, meaning that for any integer m, 0 ≤ m ≤ 2b−1 − 2,

E{|X2m+1|} = E{|Y2m+1|}. (1)

In section 4 we present empirical evidence collected from 29 natural continuous-tone image that

validates assumption (1). In that section we will also analyze how the validity of assumption (1)

impacts on the precision of our steganalytic method.

In order to analyze the effects of LSB embedding on sample pairs, let us consider all four

possible cases of LSB flipping, labelled by four so-called modification patterns π: 00, 01, 10, 11,

with 1 indicating which sample(s) of a pair has(have) the LSB reversed, 0 indicating intact

sample(s). For each m, 1 ≤ m ≤ 2b−1 − 1, the submultiset Cm is partitioned into X2m−1, D2m

and Y2m+1. It is clear that Cm is closed under the embedding, but X2m−1, D2m and Y2m+1

are not. Take an arbitrary sample pair (u, v) of X2m−1. Then (u, v) = (2k − 2m + 1, 2k) or

(u, v) = (2k, 2k− 2m+1). By modifying the sample pair (u, v) with the pattern 10 the sample

pair obtained is (u′, v′) = (2k− 2m, 2k) or (u′, v′) = (2k + 1, 2k− 2m+ 1). Likewise, if (u, v)

is modified by the pattern 01, then (u′, v′) = (2k− 2m+ 1, 2k+ 1) or (u′, v′) = (2k, 2k− 2m).

These observations illuminate on the usefulness of multisets X2m and Y2m for steganalysis,

where X2m is defined as the submultiset of P consisting of all pairs of the form (2k− 2m, 2k)

or (2k + 1, 2k − 2m+ 1), and Y2m is defined as the submultiset of P consisting of all pairs of

the form (2k− 2m+ 1, 2k+ 1) or (2k, 2k− 2m). It is clear that X2m and Y2m form a partition

of D2m.

In summary, multiset Cm with 1 ≤ m ≤ 2b−1 − 1, can be partitioned into four submultisets

X2m−1, X2m, Y2m and Y2m+1, called the trace submultisets of Cm. And multiset Cm is closed

but its four trace submultisets are not under the LSB embedding operations. This phenomenon

can be modeled by a finite-state machine as depicted by Fig. 1. The finite-state machine shows
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Fig. 1. The finite-state machine whose states are trace multisets of Cm. Note that Cm is closed under LSB steganography but

its four subsets are not.
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Fig. 2. The finite-state machine associated with C0.

how the sample pairs are driven from and to the multisets X2m−1, X2m, Y2m and Y2m+1 by

different LSB modification patterns. Each arrow drawn from multiset A to multiset B, labeled

by a modification pattern, means that any sample pair of A becomes a pair of the multiset B,

if modified by the specified pattern. It is straightforward to construct the finite-state machine

of Fig. 1 based on the definition of the four trace submultisets of Cm. We have shown that

X2m−1
10→ X2m and X2m−1

01→ Y2m, and the other transitions can be similarly derived.

The finite-state machine of Fig. 1 does not apply to the multiset C0. We need to model the

behavior of C0 under embedding separately. Multiset C0 is closed under LSB embedding, and

can be partitioned into Y1 and D0. The transitions within C0 are illustrated in Fig. 2.

The significance of the finite-state machines of Fig. 1 and Fig. 2 is that one can statistically

measure the cardinalities of the trace multisets before and after the LSB embedding using the

probabilities of modification patterns applied to each multiset. Moreover, as we will see in the

next section, if the LSB embedding is done randomly in the time domain, then these probabilities

are functions of the length of the hidden message.

III. DETECTION OF LSB STEGANOGRAPHY

For each modification pattern π ∈ {00, 10, 01, 11} and any submultiset A ⊆ P , denote by

ρ(π,A) the probability that the sample pairs of A are modified with pattern π as a result of the
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embedding. Let p be the length of the embedded message in bits divided by the total number of

samples in a multimedia file. Then the fraction of the samples modified by the LSB embedding

is p/2. Assuming that the message bits of LSB steganography are randomly scattered in the time

domain (or image domain if the cover object is an image) we have:

i) ρ(00,P)= (1− p/2)2;

ii) ρ(01,P)= ρ(10,P) = p/2(1− p/2);

iii) ρ(11,P)= (p/2)2.

Let A and B be submultisets of P such that A ⊆ B. We say that multiset A is unbiased

with respect to B if ρ(π,A) = ρ(π,B) holds for each modification pattern π ∈ {00, 10, 01, 11}.

(When B = P we simply say that A is unbiased.) If all four trace submultisets of Cm are

unbiased, Cm is said to be unbiased. As a convention in sequel, we denote each multiset defined

above by A or A′, depending on if the multiset is obtained from the original signal or tampered

signal of LSB embedding. The same convention also applies to sample values such that (u, v)

and (u′, v′) are the values of a sample pair before and after LSB embedding. When the message

bits LSB steganography are randomly scattered in the time domain, it follows that each Cm is

unbiased and one can derive from the finite-state machine of Fig. 1 that

|X2m−1|(1− p)2 =
p2

4
|Cm| −

p

2
(|D′

2m|+ 2|X ′
2m−1|) + |X ′

2m−1|, (2)

|Y2m+1|(1− p)2 =
p2

4
|Cm| −

p

2
(|D′

2m|+ 2|Y ′
2m+1|) + |Y ′

2m+1|, (3)

where 1 ≤ m ≤ 2b−1 − 1. And for the special case m = 0, we have from Fig. 2 that

|Y1|(1− p)2 = |C0|
p2

2
− p

2
(2|D′

0|+ 2|Y ′
1 |) + |Y ′

1 |. (4)

A proof of (2) and (3) is presented in Appendix A in order not to disrupt the presentation of

our main ideas.

From equations (2), (3) and (4) together with the property E{|X2m+1|} = E{|Y2m+1|}, 0 ≤

m ≤ 2b−1 − 2, we finally obtain the following quadratic equations to estimate the value of p:

(|Cm| − |Cm+1|)p2

4
− (|D′

2m| − |D′
2m+2|+ 2|Y ′

2m+1| − 2|X ′
2m+1|)p

2

+|Y ′
2m+1| − |X ′

2m+1| = 0, m ≥ 1, (5)
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and

(2|C0| − |C1|)p2

4
− (2|D′

0| − |D′
2|+ 2|Y ′

1 | − 2|X ′
1|)p

2

+|Y ′
1 | − |X ′

1| = 0, m = 0. (6)

Note that all quantities in (5) and (6) can be obtained from the signal being examined for

possible presence of LSB embedding in it. No knowledge of the original signal is required. The

smaller root of quadratic equation (5) (or equation (6)) is the estimated value of p, provided

that |Cm| > |Cm+1| and |D2m| ≥ |D2m+2| (or 2|C0| > |C1| and 2|D0| ≥ |D2|). Indeed, the

inequalities

2|C0| > |C1| > |C2| > · · · > |Cm| > |Cm+1| > · · · , (7)

2|D0| > |D2| > |D4| > · · · > |D2m| > |D2m+2| > · · · (8)

hold under rather relaxed conditions. Let U and V be discrete random variables corresponding

to the first and second values of the sample pairs of P that have joint probability mass function

(pmf) P (u, v). Consider the difference between U and V , a new random variable Z = U − V .

Then the probability mass function of Z, PZ(z), is a projection of the joint pmf P (u, v) in the

direction (1, 1). If the sample pairs of P are drawn at random, then clearly PZ(z) has zero mean

since E{U} = E{V }.

Also note that if

2|D0| > |D1| > |D2| > · · · > |Di| > |Di+1| > · · · , (9)

then (7) and (8) follow, based on assumption (1). A sufficient condition for (9) to hold is that

PZ(z) is unimodal and peaks at mean. This condition is satisfied by a large class of joint

distributions, including the family of Kotz-type elliptical joint distributions

P (u, v) = α(r, s)|Σ|−1/2 exp{−r[((u, v)− (µu, µv))Σ
−1((u, v)− (µu, µv))

′]s} (10)

where r and s are constants, and α is a scaling function in r and s to make P (u, v) a probability

function. This family includes the joint Gaussian distribution as a special case. If P consists of

spatially adjacent sample pairs rather than randomly drawn, then |Di| even has an exponential

decay in i (see Fig. 5 for a preview of the distribution in practice).

DRAFT



9

For proving that the actual value of p equals the smaller of the two real roots of equation (5)

it suffices to show that

p ≤
(|D′

2m| − |D′
2m+2|+ 2|Y ′

2m+1| − 2|X ′
2m+1|)

|Cm| − |Cm+1|
. (11)

The right side of the above inequality represents the semisum of the two solutions of equation

(5). Relation (11) is equivalent to

p ≤
(|Cm| − |Cm+1|+ |Y ′

2m+1| − |X ′
2m−1|+ |Y ′

2m+3| − |X ′
2m+1|)

|Cm| − |Cm+1|
. (12)

Using (40) and |Cm| > |Cm+1|, (12) becomes

(p− 1)(|Cm| − |Cm+1|) ≤ (1− p)(|Y2m+1| − |X2m−1|+ |Y2m+3| − |X2m+1|) (13)

Applying (1), the above inequality reduces to

0 ≤ (1− p)(|D2m| − |D2m+2|). (14)

IV. ACCURACY OF ESTIMATED HIDDEN MESSAGE LENGTH

In this section we examine the factors that influence the robustness of the steganalytic technique

developed above, and suggest ways of improving the accuracy of estimated hidden message

length.

Given a chosen multiset P of sample pairs, the proposed LSB steganalytic technique hinges

on assumption (1). The accuracy of the estimated hidden message length p̂ made by (5) or (6)

primarily depends on the actual difference

ϵm = |X2m+1| − |Y2m+1|. (15)

An immediate reaction to this observation is to compute the estimate p̂ with (5) or (6) for an

m value such that |ϵm| is as small as possible. For natural signals that have reasonably smooth

waveforms, the smaller the value of m, the smaller the difference |ϵm|. In Fig. 3 we plot the

value
|ϵm|

|X2m+1|+ |Y2m+1|

averaged over 29 continuous-tone test images as a function of m.

However, a more robust estimate of hidden message length can be obtained by combining

trace multisets for a range of m values in which |ϵm| is small. For arbitrary 1 ≤ i ≤ j ≤ 2b−1−1,
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Fig. 3. Solid line: relative error |ϵm|/(|X2m+1|+|Y2m+1|) for 0 ≤ m ≤ 50; Dash-dot line: the percentage of |X2m+1|+|Y2m+1|

in
∑127

m=0
(|X2m+1|+ |Y2m+1|). Note the exponential decay of |X2m+1|+ |Y2m+1|.

the finite-state machines of Fig. 1 for Cm, 1 ≤ m ≤ 2b−1 − 1, can be combined and extended to

∪j
m=iCm by replacing the trace multisets X2m−1, X2m, Y2m, Y2m+1 with ∪j

m=iX2m−1, ∪j
m=iX2m,

∪j
m=iY2m, ∪j

m=iY2m+1 respectively. We say that the multiset ∪j
m=iCm is unbiased if the four

unions of trace multisets considered above are unbiased. The advantage of combining multiple

trace multisets for different m values is that

E{| ∪j
m=i X2m+1|} = E{| ∪j

m=i Y2m+1|} (16)

is a more relax condition to satisfy than (1) with respect to individual m. In other words,

|∑j
m=i ϵm| tends to be significantly smaller than |ϵm| for a fixed m, which is a determining

factor of the accuracy of the proposed steganalytic approach as we will see shortly. Note that

(16) does not require that (1) holds for all m. Instead, (16) only requires that for a sample pair

(u, v) ∈ P with |u−v| = 2t+1, i ≤ t ≤ j, the even value of u and v has equal probability to be

larger or smaller than the odd value of u and v. This is true for natural signals. To corroborate

on this assertion we plot in Fig. 4 the relative error term

|| ∪j
m=i X2m+1| − | ∪j

m=0 Y2m+1||
| ∪j

m=i X2m+1|+ | ∪j
m=0 Y2m+1|
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Fig. 4. Relative error of (16):

||∪j
m=i

X2m+1|−|∪j
m=i

Y2m+1||

|∪j
m=i

X2m+1|+|∪j
m=i

Y2m+1|
. a): the case of spatially adjacent sample pairs in P; b): the case

of randomly chosen sample pairs in P .

as a function of i and j. The statistics of Fig. 4 is collected from the 29 test images of our

experiment (see Section V). The graph shows that the error of (16) is very small for i = 0 and

appropriate j value. Given a j value the error of (16) increases in i. The error takes on the

minimum when i = 0 and j is approximately 30. Another important observation is that (16) is

far more accurate if P consists of spatially adjacent sample pairs than if it consists of randomly

chosen sample pairs.

As pointed out above, the four unions of trace multisets ∪j
m=iX2m−1, ∪j

m=iY2m+1, ∪j
m=iX2m,

and ∪j
m=iY2m have the same finite-state machine structure as in Fig. 1. Based on this finite-state

machine structure, the statistical relation of (16), and the fact that the multisets ∪j
m=iCm and

∪j+1
m=i+1Cm are unbiased if LSB steganography is done via random embedding, we can derive,

in analogous way to Appendix A, the following more robust quadratic equations for estimating

p:

p2

4
(|Ci| − |Cj+1|)− p

2
[|D′

2i| − |D′
2j+2|+

2
∑j

m=i(|Y ′
2m+1| − |X ′

2m+1|)] +∑j
m=i(|Y ′

2m+1| − |X ′
2m+1|) = 0, i ≥ 1. (17)

In fact, by summing up (5) for consecutive values of m, 1 ≤ i ≤ m ≤ j ≤ 2b−1 − 2, we can

also arrive at (17).

Similarly, based on (16) and the assumption that the multisets C0, ∪j
m=1Cm and ∪j+1

m=1Cm are
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unbiased for 0 = i ≤ j ≤ 2b−1 − 2, which is true for random LSB embedding, we have

p2

4
(2|C0| − |Cj+1|)− p

2
[2|D′

0| − |D′
2j+2|+

2
∑j

m=0(|Y ′
2m+1| − |X ′

2m+1|)] +∑j
m=0(|Y ′

2m+1| − |X ′
2m+1|) = 0, i = 0. (18)

We can solve either of the two quadratic equations in p, depending on the start index value i,

for the smaller root that is the estimated p.

Next we develop a bound on the estimation error of (17) and (18). The error bound is a

function of the actual differences

ϵm = |X2m+1| − |Y2m+1|, (19)

0 ≤ m ≤ 2b−1 − 2. For 1 ≤ i ≤ j ≤ 2b−1 − 2, denote

eij =
2
∑j

m=i ϵm
|D2i| − |D2j+2|

, (20)

and for 0 = i ≤ j ≤ 2b−1 − 2, denote

e0j =
2
∑j

m=0 ϵm
2|D0| − |D2j+2|

. (21)

Mention that, under some very easy to met assumptions, the denominator of eij is positive. We

can bound the estimation error as below

|p− p̂(i, j)| ≤ 2|eij|
1− eij

(1− p), (22)

for all 0 ≤ i ≤ j ≤ 2b−1 − 2, where p̂(i, j) is the estimated value of p obtained by solving

(17) (when i ≥ 1) or (18) (when i = 0), provided that eij < 1 and the LSB embedding is done

randomly in the time or spatial domain of the signal. The derivation of error bound (22) is given

in Appendix B.

To reduce estimation error we want to make |eij| small. In other words, we would like to

reduce |∑j
m=i ϵm| and increase |D2i| − |D2j+2|. Observe from Fig. 4 that |∑j

m=i ϵm| decreases

in general as the difference between i and j increases. But more critically to robust estimation

of p, given an i, the larger the distance j − i, the larger the difference |D2i| − |D2j+2|. This is

because |D2i| is a monotonically decreasing function in i (see Fig. 5). Therefore, we should let

i = 0 and choose a sufficiently large j in (18) to obtain robust estimate of p.

DRAFT



13

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

P
er

ce
nt

ag
e 

of
 |D

2i
| w

ith
 r

es
pe

ct
 to

 |P
|

i

Fig. 5. Probability function P (|D2i|) for spatially adjacent sample pairs (solid line), and for randomly selected sample pairs

(dash-dot line). The sample statistics is collected from a set of 29 continuous-tone images.

The estimate accuracy is also affected by the way how the sample pairs of the multiset P

are chosen. Appendix C shows that the more the two values of sample pairs are correlated, the

faster |Di| decreases in i. This means that given i and j, |D2i| − |D2j+2|, the denominator of

(20), are larger if the sample pairs of P are drawn from closer positions of a signal waveform.

Consequently, for more robust estimate of p the members of multiset P should be pairs of

two spatially adjacent samples (assuming the signal source is Markov). This reasoning is well

corroborated in practice. To illustrate this fact we plot in Fig. 5 the probability mass function of

P (|D2i|) against all possible i values for two different multisets P: one consisting of spatially

adjacent sample pairs, and the other consisting of randomly selected sample pairs.

The analysis of Appendix C also means that the estimate p̂ is more robust if samples of the

signal are more highly correlated, and vice versa.

V. EXPERIMENTAL RESULTS

The proposed LSB steganalytic technique is implemented and tested on a set of 29 continuous-

tone images of both color and gray-scale types. This test image set includes all original ISO/JPEG
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test images such as barb, balloon, goldhill, girl, etc., and those of the kodak set. Twenty-four

sample images of our test set are given in Fig. 6. As we can see the test set includes a wide

range of natural images, from natural scenery to man-made objects like buildings, and from

panoramic views to close-up portraits. This makes the test results to be reported in this section

indicative of the performance of the proposed steganalytic technique in reality.

Guided by our estimation error analysis of the proceeding section, in our experiments we form

the multiset P by selecting all pairs of 4-connected pixels. The inclusion of both vertically and

horizontally adjacent pixel pairs in P also accounts for sample correlation in both directions.

The accuracy of the LSB steganography detection technique is evaluated for hidden message

lengths p = 0, 3, 5, 10, 15, 20%, where p is measured by the percentage of the number of message

bits in the total number of pixels in the test image. In our simulation the embedded message

bits are randomly scattered in a test image. Fig. 7(a) plots the distribution of the estimates p̂ of

different test images for different embedded message lengths p. The vertical difference between

an estimate point and the diagonal line is the estimation error p̂− p. It is evident from Fig. 7(a)

that our LSB steganalytic technique is highly effective, making very good estimate of p. The

average error magnitude is only 0.023, and it stays almost the same for different p values.

We define false alarm rate as the probability that the steganalytic technique reports the

existence of embedded message when the input signal is truly original, and the missing rate

as the probability that a tampered signal evades the steganography detection. If one is to set a

threshold of p̂ > 0.018 to determine whether a hidden message is embedded in the image, then

for the test set the the false alarm rate when p = 0 is 13.79%, and the missing rate is 11.03%

when p = 3%. The missing rate quickly drops to 0 if the embedded message length p > 3%.

Our detection algorithm for LSB steganography is compared with the RS method of [2], which

is the most accurate and robust LSB steganalytic algorithm in the literature. The two algorithms

perform almost identically by the criteria of false alarm and missing rates, and also in terms of

average error in estimated hidden message length. These empirical findings should not come as

a surprise as we will see in Section VII that the two techniques are essentially based on the

same principle and assumptions.
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Fig. 6. Sample images of the test set
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Fig. 7. Performance of the proposed LSB steganalytic technique. a): the case of random LSB embedding; b): the case of

selective embedding, with τ = 1.

VI. POSSIBLE ATTACKS AND COUNTER MEASURES

If the message bits are scattered randomly among the least significant bits of all signal samples,

then the use of spatially adjacent sample pairs makes the estimate of p more robust. But this

choice of P opens a door for possible attacks on the detection method. An adversary can try to

fool the detection method by avoiding hiding message bits at locations where some of adjacent

sample pairs have close values. For instance, if the adversary does not embed in adjacent sample

pairs that differ by less than 3 in value, then he makes ρ(π,D0) = 0, π ∈ {01, 10, 11}. In other

words, the adversary purposefully tricks C0 to be biased, violating an assumption that ensures
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p=0% p=3% p=5% p=10% p=15% p=20%

τ = 0 0.1379 0.1103 0 0 0 0

τ = 1 0.1379 0.0828 0.0069 0.0069 0 0

TABLE I

PROBABILITY OF WRONG DECISION: MISSING RATE WHEN p > 0, AND FALSE ALARM RATE WHEN p = 0, WITH THE

DECISION THRESHOLD SET AT p̂ > 0.018.

the accuracy of (18). An attack of this type is to only embed message bits among candidate

sample positions where all adjacent sample pairs are in Ct such that t ≥ τ , where τ is prefixed

threshold. In other words, any sample pair (u, v) that is tampered by LSB embedding satisifies

|u− v| ≥ 2τ − 1, and |u′ − v′| ≥ 2τ − 1, where (u′, v′) represents the values of the two samples

after LSB embedding. Clearly, this LSB embedding scheme conditioned on Ct such that t ≥ τ

can be decoded, because both encoder and decoder can refer to the same Ct, t ≥ τ , to decide

whether a sample is a candidate for embedding.

The effects of the attack by embedding only at positions where all adjacent sample pairs are

in Ct such that t ≥ τ are demonstrated by Fig. 7(b) of threshold τ = 1. By comparing Fig. 7(b)

with Fig. 7(a) of threshold τ = 0, we see that the distribution of estimated message lengths p̂ has

significantly wider spread as τ changes from 0 (random embedding) to 1 (selective embedding).

Table 1 tabulates the false alarm rates when p = 0 and the missing rates when p > 0 for

different p and for τ = 0, 1. The statistics of Table 1 is collected from the set of test images.

Our empirical evidence indicates that the proposed LSB steganalytic technique cannot be fooled

by selective LSB embedding scheme that avoids embedding in smooth waveforms. As we can

see in Table 1 that for p = 3% the missing rate actually drops from random embedding (τ = 0)

to selective embedding (τ = 1), and it only increases very slightly for larger p.

In general, the proposed method is open for attack if the locations of chosen sample pairs in P

are known, and if the algorithm examines a specific close set Cs and the chosen s is also known.

Fortunately, to the benefit of steganalysis the detection algorithm can solve (17) for different

choices of i and j. In other words, the steganalyst can choose different multisets ∪j
m=iCm and

∪j+1
m=i+1Cm to estimate p. The estimate will be improved as long as ∪j

m=iCm and ∪j+1
m=i+1Cm are

unbiased. It is extremely difficult, if not impossible, to select locations of embedded message
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bits in such a way that all of Cm, 0 ≤ m ≤ 2b−1 − 1, become biased. The research on this type

of counter measures against attacks is underway.

We conclude this section with an analysis on the capacity of the aforementioned selective

steganography. The adversary’s objective is to make the multiset

C<τ = ∪0≤t<τCt

to be void of the message bits. The event that (u, v) ∈ P but (u, v) ̸∈ C<τ has the probability

Pτ = 1−
2τ−2∑
t=0

P (|Dt|)−
P (|D2τ−1|)

2
. (23)

In the case of steganography in images, if we include all 4-connected sample pairs in P , then

a sample u can be candidate for LSB embedding only if we simultaneously have (u, n) ̸∈ C<τ ,

(u, s) ̸∈ C<τ , (u,w) ̸∈ C<τ , and (u, e) ̸∈ C<τ , where n, s, w, and e denote the samples to the

north, south, west and east of u. In two-dimensional image signals, it is reasonable to assume

that (u, n) and (u, s) are mutually dependent but are independent of (u,w) and (u, e). Then the

probability for a sample to be candidate for LSB embedding is

P ((u, n) ̸∈ C<τ |(u, s) ̸∈ C<τ )P ((u, s) ̸∈ C<τ ) ·

P ((u,w) ̸∈ C<τ |(u, e) ̸∈ C<τ )P ((u, e) ̸∈ C<τ ) ≤ P 2
τ . (24)

From Fig. 5 and Appendix C we observe that Pτ has an exponential decay in τ . Therefore,

the capacity of selective steganography diminishes exponentially in threshold τ , and the rate of

decay is greater for highly correlated signals.

VII. REMARKS ON THE RS METHOD

Very recently Fridrich et al. proposed a steganalytic technique, called the RS method, to detect

LSB embedding in continuous-tone images [2]. The RS method was demonstrated in experiments

to be very effective. The RS method uses groups of four pixels (2× 2 blocks) versus our choice

of pixel pairs. Interestingly, our analysis presented in the proceeding sections offers a proof of

some key observations underlying the RS method if it is applied to sample pairs.

The RS method partitions an image into N/n disjoint groups of n neighboring pixels, where

N is the total number of pixels in the image. In [2] the authors considered the case n = 4. A

discrimination function f(·) that captures the smoothness of a group of pixels is defined f(G) =
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f(x1, x2, ..., xn) =
n−1∑
i=1

|xi+1 − xi|, where x1, x2, ..., xn are the values of the pixels in the group

G. In addition, three invertible operations, Fn(x), n = −1, 0, 1 on pixel values x, are introduced.

F1(x) is the operation that flips the LSB of a pixel, i.e., F1 : 0 ↔ 1, 2 ↔ 3, ..., 254 ↔ 255.

F−1(x) maps pixel values in the opposite direction to F1. Specifically, F−1 : −1 ↔ 0, 1 ↔

2, ..., 255 ↔ 256. F0(x) is defined as the identity function.

Operations F1 and F−1 are applied to a group of pixels G with a mask M (a n-tuple with

components −1, 0 or 1), which specifies where and how pixel values are to be modified. For

example, if the values of the four pixels of a group G are 39, 38, 40, 41 and M = (1, 0, 1, 0),

then FM(G) = (F1(39), F0(38), F1(40), F0(41)). Given a mask, operations F1 and F−1, and the

discrimination function f , a pixel group G is classified into one of the three categories:

G ∈ R(M) ⇔ f(F (G)) > f(G)

G ∈ S(M) ⇔ f(F (G)) < f(G)

G ∈ U(M) ⇔ f(F (G)) = f(G)

where R(M), S(M), and U(M) are called Regular, Singular, and Unusable Groups. The RS

method is based on the statistical hypothesis that, when no message is embedded in the image,

the following equalities hold

E{|S(M)|} = E{|S(−M)|}, (25)

E{|R(M)|} = E{|R(−M)|}, (26)

where mask −M is obtained by negating all the components of M . For instance, if M =

(1, 0, 1, 0) then −M = (−1, 0,−1, 0). Furthermore, the authors of [2] observed that |R(−M)| and

|S(−M)| were linear functions of the embedded message length and the two quantities diverge

as p increases (remind that p is the number of embedded samples divided by the total number of

samples). Also, |R(M)| and |S(M)| are quadratic functions in p, and |R(M)| = |S(M)| when
p
2
= 0.5.

Based on these observations, the RS method estimates the value of p using a quadratic equation,

whose coefficients are computed based on the sizes of the regular and singular groups for the

masks M and −M , for the input image and for the image obtained by flipping the LSB of all

pixels.

Next we prove the linear and quadratic functions observed in the experiments of [2] for the

case n = 2, i.e. each group consist of a pair of pixels, and the mask is M = (0, 1) or M = (1, 0).
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Fig. 8. The finite-state machine to verify the RS method.

In this case R(M), S(M), R(−M) and S(−M) are multisets of pairs of pixels values as defined

by this paper. Let us consider mask M = (0, 1) (hence −M = (0,−1)). The case for M = (1, 0)

is analogous. Define the multisets X and Y :

X = ∪2b−1
i=1 Xi, (27)

Y = ∪2b−1
i=1 Yi.

In other words, X is the multiset of pairs (u, v) ∈ P such that v is even and u < v, or v is odd

and u > v; Y is the multiset of pairs (u, v) ∈ P such that v is even and u > v, or v is odd and

u < v. Then, from the definitions of the discrimination function f and of the flipping functions

FM and F−M in [2], it follows that:

R(M) = X ∪D0, S(M) = Y (28)

R(−M) = Y ∪D0, S(−M) = X. (29)

Note that the statistical hypotheses (25) and (26) are equivalent to the following assumption:

E{|X|} = E{|Y |}. (30)

By the same analysis of transitions under embedding, between the trace multisets in Section

2, we obtain the finite-state machine of Fig. 8, where V = Y − Y1. Let R′(M), R′(−M),
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S ′(M), S ′(−M) be regular and singular multisets after LSB embedding. Each of these multisets

is defined in the same way as the corresponding multiset without the prime sign, just that now

we consider the pixel values after the LSB embedding.

The finite state machine described in Fig. 9 together with (28) and (29) leads to the following

relations (which are proved in Appendix D):

|R′(−M)| = |R(−M)|+ p

2
|Y1|, (31)

|S ′(−M)| = |S(−M)| − p

2
|Y1|, (32)

|R′(M)| = |R(M)| − p

2
(2|D0| − |Y1|)−

p2

2
(|Y1| − |D0|), (33)

|S ′(M)| = |S(M)|+ p

2
(2|D0| − |Y1|) +

p2

2
(|Y1| − |D0|) (34)

In order to simplify the derivation of (31) through (34), we replaced the hypotheses E{|S(M)|} =

E{|S(−M)|} and E{|R(M)|} = E{|R(−M)|} by |S(M)| = |S(−M)| and |R(M)| = |R(−M)|.

Thus, the equations (31) through (34) should be understood to hold after taking expectations at

the both sides of the equations. The first two equations state that |R′(−M)| and |S ′(−M)| are

linear functions in p, and they diverge as p increases. The next two equations show that |R′(M)|

and |S ′(M)| are quadratic functions in p, and also |R′(M)| = |S ′(M)| when p
2
= 0.5. Therefore,

our derivations corroborate with the observations on |R′(−M)|, |S ′(−M)|, |R′(M)| and |S ′(M)|

made by Fridrich et al. These observations form the basis of the RS detection technique of [2].

Furthermore, we can obtain the quadratic equation for the estimation of p in a straightforward

manner. The equation is

0.5|C0|p2 + (2|X ′| − |P|)p+ |Y ′| − |X ′| = 0 (35)

and its derivation is given in Appendix D.

VIII. CONCLUSION

A new approach is proposed to detect LSB steganography embedded in digital signals, and

to estimate the length of the hidden message length. The estimate is remarkably accurate under

mild assumptions that are true for continuous signals. The estimation error is analyzed in terms

of the degree that the input signals deviate from the assumptions, and error bounds are given.

Possible attacks to the proposed steganalytic method are examined and corresponding counter
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measures are discussed. Experiments are conducted on a set of continuous-tone images. Empirical

observations made in the simulations agree with our analytic results.

Appendix A. Proof of Equations (2) and (3).

First note that the multiset X ′
2m−1∪X ′

2m consists of the sample pairs of X2m−1∪X2m modified

by the patterns 00 or 10, and of the sample pairs of Y2m ∪Y2m+1 modified by the patterns 01 or

11. The probability that an arbitrary sample pair of X2m−1∪X2m is modified by the patterns 00 or

10 equals (1−p/2)2+p/2(1−p/2) = 1−p/2. Also the probability that an arbitrary sample pair

of Y2m ∪Y2m+1 is modified by the patterns 01 or 11 equals p/2(1− p/2)+ (p/2)2 = p/2. These

observations enable us to express the cardinality of X ′
2m−1∪X ′

2m, which equals |X ′
2m−1|+|X ′

2m|,

as follows:

|X ′
2m−1|+ |X ′

2m| = (|X2m−1|+ |X2m|)(1− p/2) + (|Y2m|+ |Y2m+1|)p/2. (36)

Similarly, the results in Fig. 1 allows us to evaluate the cardinality of the multiset Y ′
2m ∪ Y ′

2m+1

as follows:

|Y ′
2m|+ |Y ′

2m+1| = (|Y2m|+ |Y2m+1|)(1− p/2) + (|X2m−1|+ |X2m|)p/2. (37)

Subtracting (37) from (36) yields

|X ′
2m−1| − |Y ′

2m+1|+ |X ′
2m| − |Y ′

2m| = (|X2m−1| − |Y2m+1|+ |X2m| − |Y2m|)(1− p). (38)

Further, by observing that the multiset X2m−1 ∪ Y2m exchanges sample pairs only with X2m ∪

Y2m+1, and vice versa, and that the exchanged pairs are only those modified by the patterns 10

or 11, and the fact that an arbitrary sample pair of each of the above mentioned multisets has

the probability p/2 of being modified by the patterns 10 or 11, we have

|X ′
2m−1| − |Y ′

2m+1|+ |Y ′
2m| − |X ′

2m| = (|X2m−1| − |Y2m+1|+ |Y2m| − |X2m|)(1− p). (39)

Adding (38) and (39) results in (after making the necessary cancellations and simplification):

|X ′
2m−1| − |Y ′

2m+1| = (|X2m−1| − |Y2m+1|)(1− p). (40)

The next step is to derive the cardinality of X ′
2m−1 ∪ Y ′

2m+1 using the finite-state machine of

Fig. 1. Note that X2m−1 ∪ Y2m+1 exchanges pairs only with the multiset D2m (remind that

D2m = X2m ∪ Y2m). It follows that

|X ′
2m−1|+ |Y ′

2m+1| = (|X2m−1|+ |Y2m+1|)[(1− p/2)2 + (p/2)2] + |D2m|p(1− p/2). (41)
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Since |D2m| = |Cm| − |X2m−1| − |Y2m+1|, it follows further that

|X ′
2m−1|+ |Y ′

2m+1| = (|X2m−1|+ |Y2m+1|)(1− p)2 + |Cm|p(1− p/2). (42)

By multiplying by (1 − p) both sides of (40), and adding the obtained equation to (42), we

obtain

|X ′
2m−1|(2− p) + |Y ′

2m+1|p = 2|X2m−1|(1− p)2 + |Cm|p(1− p/2). (43)

But the multiset Cm is closed under embedding, hence

|Cm| = |X ′
2m−1|+ |Y ′

2m+1|+ |D′
2m|. (44)

Finally, combining (43) and (44) establishes (2). Similarly, by multiplying by (1− p) both sides

of (40), then subtracting the obtained equation from (42), and further using (44), equality (3)

also follows.

The derivation of equation (4) is similar, and is omitted.

Appendix B. Derivation of Error Bound (22).

We shall prove inequality (22) only for i ≥ 1. The case i = 0 is analogous and omitted.

Let us fix some i and j with 1 ≤ i ≤ j ≤ 2b−1 − 2. For simplicity we shall use the notation

p̂ instead of p̂(i, j). Hence p̂ satisfies the relation

p̂2

4
(|Ci| − |Cj+1|)−

p̂

2
[|D′

2i| − |D′
2j+2|+ 2

j∑
m=i

(|Y ′
2m+1| − |X ′

2m+1|)] +

j∑
m=i

(|Y ′
2m+1| − |X ′

2m+1|) = 0. (45)

First note that
j∑

m=i

(|Y ′
2m+1| − |X ′

2m+1|) =
j∑

m=i

(|Y ′
2m+1| − |X ′

2m−1|) + |X ′
2i−1| − |X ′

2j+1|. (46)

Using (40) and (15) we further obtain
j∑

m=i

(|Y ′
2m+1| − |X ′

2m+1|) = (1− p)
j∑

m=i

(|Y2m+1| − |X2m−1|) + |X ′
2i−1| − |X ′

2j+1| =

(1− p)
j∑

m=i

(−ϵm) + |X ′
2i−1| − (1− p)|X2i−1| − |X ′

2j+1|+ (1− p)|X2j+1|. (47)
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Replacing in (45) it follows that

p̂2

4
(|Ci| − |Cj+1|)−

p̂

2
(|D′

2i| − |D′
2j+2|) +

(1− p̂)[(1− p)
j∑

m=i

(−ϵm) + |X ′
2i−1| − (1− p)|X2i−1| − |X ′

2j+1|+ (1− p)|X2j+1|] = 0. (48)

Rearranging the relation above yields

p̂2

4
(|Ci| − |Cj+1|) + (1− p̂)(1− p)

j∑
m=i

(−ϵm) +

−p̂

2
|D′

2i|+ (1− p̂)|X ′
2i−1| − (1− p̂)(1− p)|X2i−1| −

(
−p̂

2
|D′

2j+2|+ (1− p̂)|X ′
2j+1| − (1− p̂)(1− p)|X2j+1|) = 0. (49)

Now let us evaluate the expression

−p̂

2
|D′

2m|+ (1− p̂)|X ′
2m−1| − (1− p̂)(1− p)|X2m−1| (50)

for an arbitrary m ≥ 1. By replacing |D′
2m| by |Cm| − |X ′

2m−1| − |Y ′
2m+1| and rearranging the

terms, we obtain

−p̂

2
|D′

2m|+ (1− p̂)|X ′
2m−1| − (1− p̂)(1− p)|X2m−1| =

−p̂

2
|Cm|+

p̂

2
(|Y ′

2m+1| − |X ′
2m−1|) + |X ′

2m−1| − (1− p̂)(1− p)|X2m−1|. (51)

From (40) and (42) it follows (by adding them and afterwards dividing by 2 the coefficients of

the resulted equality) that

|X ′
2m−1| =

1

2
(|X2m−1| − |Y2m+1|)(1− p) +

1

2
(|X2m−1|+ |Y2m+1|)(1− p)2 +

|Cm|
p

2
(1− p

2
). (52)

By replacing in (51) |Y ′
2m+1| − |X ′

2m−1| from (40) and |X ′
2m−1| from (52), and afterwards using

the equality

|X2m−1|+ |Y2m+1| = |Cm| − |D2m|, (53)

we obtain

−p̂

2
|D′

2m|+ (1− p̂)|X ′
2m−1| − (1− p̂)(1− p)|X2m−1| =

p

2
(
p

2
− p̂)|Cm| −

1

2
(1− p)(p̂− p)|D2m|. (54)
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Applying (54) to m = i and m = j +1, and replacing in (49), together with the replacement of∑j
m=i(−ϵm) by −eij

2
(|D2i| − |D2j+2|) (according to (20)), implies that

1

2
(|Ci| − |Cj+1|)(p̂− p)2 − (1− p)(|D2i| − |D2j+2|)(1− eij)(p̂− p) +

(1− p)2(−eij)(|D2i| − |D2j+2|) = 0. (55)

We shall treat the above relation as a function in variable (p̂− p).

Assertion. Let x0 be the smallest solution of the equation

ax2 + bx+ c = 0, (56)

where a, b, c are real numbers with b2 − 4ac ≥ 0 and b < 0. Then the inequality

|x0| ≤
2|c|
−b

. (57)

Indeed, we have

|x0| =
∣∣∣∣∣−b−

√
b2 − 4ac

2a

∣∣∣∣∣ =
∣∣∣∣∣ b2 − (b2 − 4ac)

2a(−b+
√
b2 − 4ac)

∣∣∣∣∣ ≤ 2|c|
−b

. (58)

Assuming that eij < 1 and |D2i| − |D2j+2| > 0, we apply Assertion to (55) and subsequently

conclude (22).

Appendix C. Sample Correlation and Multiset Cardinality

Suppose that the sample pairs (u, v) of P are randomly drawn. Since the marginal distributions

PU(u) and PV (v) of the joint distribution P (u, v), are themselves the distribution of sample

values. Hence the random variables U and V have the same mean:

E{U} = E{V }, (59)

and the same variance:

V ar(U) = V ar(V ) = σ2. (60)

Now consider the difference Z = U − V , a new random variable. Since Z = (U, V )(1,−1)t, it

follows that the variance of Z is given by

V ar(Z) = (1,−1)Σ(1,−1)t, (61)
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where Σ is the covariance matrix of the random vector (U, V ). Denoting by Cov(U, V ) the

covariance between the two random variables U and V , and using (60), it follows that

V ar(Z) = 2σ2 − 2Cov(U, V ). (62)

Let ρ denote the correlation between the random variables U and V . Then

ρ =
Cov(U, V )√

V ar(U)V ar(V )
=

Cov(U, V )

σ2
. (63)

Hence

V ar(Z) = 2σ2(1− ρ). (64)

This means that the variance of Z = U − V decreases as the correlation between U and V

increases. Note that

|Di| = (PZ(i) + PZ(−i))|P|, i ≥ 1. (65)

Hence we conclude that the probability P (|Di|) decreases more rapidly in i when the correlation

between U and V becomes higher, if PZ(z) is unimodel and peaks at 0, which is a rather relaxed

condition satisfied by many two-dimensional joint distributions of U and V .

Appendix D. Derivations of Key Results of Section VII.

Note from Fig. 1 (in Section 2) that the multiset X exchanges sample pairs only with the

multiset V and vice versa, and the exchanged pairs are only those modified by the patterns 01 or

11. Consequently equations (66) and (67) can be derived in the same way as (36) in Appendix

A.

|X ′| = |X|(1− p

2
) + |V |p

2
(66)

|V ′| = |V |(1− p

2
) + |X|p

2
(67)

Assumption (30) implies that

E{|X|} = E{|V |}+ E{|Y1|}. (68)

Applying (68) in (66) and (67) obtains

|X ′| = |X| − |Y1|
p

2
(69)

|V ′| = |V |+ |Y1|
p

2
(70)
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Since S(−M) = X from (29), (69) immediately implies (32). Also, since R(−M) = Y ∪ D0

from (29), we have

|R′(−M)| = |Y ′|+ |D′
0| = |V ′|+ |Y ′

1 |+ |D′
0|. (71)

Then, the relation (31) follows from (71), (70), and the obvious equality |Y ′
1 |+|D′

0| = |Y1|+|D0|.
From the finite state machine depicted in Fig. 2 (Section 2), we see that the multiset Y1

exchanges sample pairs only with the multiset D0 and vice versa, and the exchanged pairs are

only those modified by the patterns 01 or 10. These facts yield

|Y ′
1 | = |Y1|(1− p+

p2

2
) + |D0|p(1−

p

2
), (72)

|D′
0| = |D0|(1− p+

p2

2
) + |Y1|p(1−

p

2
). (73)

in a similar way to relation (41) in Appendix A. Starting from |R′(M)| = |X ′|+ |D′
0| of (28) and

applying (69) and (73), we arrive at (33). Similarly, the relation |S ′(M)| = |Y ′| = |V ′| + |Y ′
1 |

of (28) together with (70) and (72) leads to (34).

Relations (66), (67) and (68) imply that

|X ′| − |V ′| = (|Y1|)(1− p). (74)

Further, replacing |D0| by |C0| − |Y1|, equation (72) becomes

|Y ′
1 | = |Y1|(1− p)2 + |C0|p(1−

p

2
). (75)

The elimination of |Y1| from (74) and (75) leads to

|Y ′
1 | = (|X ′| − |V ′|)(1− p) + |C0|p(1−

p

2
). (76)

Since |X ′|+ |V ′|+ |Y ′
1 |+ |D′

0| = |P|, relation (35) follows.
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