
Soraya Martín-SuárezAchucarro Basque Center for Neuroscience · Department of Neuroscience
Soraya Martín-Suárez
About
14
Publications
1,777
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
354
Citations
Citations since 2017
Introduction
Skills and Expertise
Publications
Publications (14)
In the hippocampus, lifelong neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). Yet, the mechanisms guiding the transition of NSCs from developmental to adult remain unclear. By using nestin-reporter mice deficient for D2, a cyclin expressed mainly postnata...
Hippocampal seizures mimicking mesial temporal lobe epilepsy (MTLE) cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive-neural stem cells, React-NSCs)) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric d...
Hippocampal neural stem cells (NSCs) and neurogenesis decline sharply with age, though a small population remains. Two articles in this issue of Cell Stem Cell by Ibrayeva et al. (2021) and Harris et al. (2021) indicate the presence of subpopulations of NSCs whose dynamics of activation and self-renewal change over time and may be key to NSC preser...
Dravet syndrome (DS) is an epileptic syndrome caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which is associated with febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved to reduce seizures in DS, but it may also be acti...
[This corrects the article DOI: 10.3389/fnins.2020.00811.].
A population of neural stem cells (NSCs) dwelling in the dentate gyrus (DG) is able to generate neurons throughout adult life in the hippocampus of most mammals. These NSCs generate also astrocytes naturally and are capable of generating oligodendrocytes after gene manipulation. It has been more recently shown that adult hippocampal NSCs after epil...
Hippocampal neurogenesis, the process by which neural stem cells (NSCs) continuously generate new neurons in the dentate gyrus (DG) of most mammals including humans, is chiefly regulated by neuronal activity. Thus, severe alterations have been found in samples from epilepsy patients and in the hippocampal neurogenic niche in mouse models of epileps...
A decrease in adult hippocampal neurogenesis has been linked to age-related cognitive impairment. However, the mechanisms involved in this age-related reduction remain elusive. Glucocorticoid hormones (GC) are important regulators of neural stem/precursor cells (NSPC) proliferation. GC are released from the adrenal glands in ultradian secretory pul...
Adult neurogenesis persists in the adult hippocampus due to the presence of multipotent neural stem cells (NSCs). Hippocampal neurogenesis is involved in a range of cognitive functions and is tightly regulated by neuronal activity. NSCs respond promptly to physiological and pathological stimuli altering their neurogenic and gliogenic potential. In...
Adult neurogenesis persists in the hippocampus of most mammal species during postnatal and adult life, including humans, although it declines markedly with age. The mechanisms driving the age‐dependent decline of hippocampal neurogenesis are yet not fully understood. The progressive loss of neural stem cells (NSCs) is a main factor, but the true ne...
Adult hippocampal neurogenesis is believed to maintain a range of cognitive functions, many of which decline with age. We recently reported that radial neural stem cells (rNSCs) in the hippocampus undergo activation-dependent conversion into astrocytes, a mechanism that over time contributes to a reduction in the rNSC population. Here, we injected...
The generation of new neurons from neural stem cells (NSCs) throughout adult life in the mammalian brain is a biological process that fascinates scientists for its uniqueness and restorative potential. In the dentate gyrus (DG) of the hippocampus NSCs are able to self-renew and generate new granule cells and astrocytes through a complex and plastic...