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An Approach to the Estimation of Chronic Air
Pollution Effects Using Spatio-Temporal Information

Sonja GREVEN, Francesca DOMINICI, and Scott ZEGER

There is substantial observational evidence that long-term exposure to particulate air pollution is associated with premature death in urban
populations. Estimates of the magnitude of these effects derive largely from cross-sectional comparisons of adjusted mortality rates among
cities with varying pollution levels. Such estimates are potentially confounded by other differences among the populations correlated with
air pollution, for example, socioeconomic factors. An alternative approach is to study covariation of particulate matter and mortality across
time within a city, as has been done in investigations of short-term exposures. In either event, observational studies like these are subject to
confounding by unmeasured variables. Therefore the ability to detect such confounding and to derive estimates less affected by confounding
are a high priority.

In this article, we describe and apply a method of decomposing the exposure variable into components with variation at distinct temporal,
spatial, and time by space scales, here focusing on the components involving time. Starting from a proportional hazard model, we derive a
Poisson regression model and estimate two regression coefficients: the “global” coefficient that measures the association between national
trends in pollution and mortality; and the “local” coefficient, derived from space by time variation, that measures the association between
location-specific trends in pollution and mortality adjusted by the national trends. Absent unmeasured confounders and given valid model
assumptions, the scale-specific coefficients should be similar; substantial differences in these coefficients constitute a basis for questioning
the model.

We derive a backfitting algorithm to fit our model to very large spatio-temporal datasets. We apply our methods to the Medicare Cohort
Air Pollution Study (MCAPS), which includes individual-level information on time of death and age on a population of 18.2 million for the
period 2000–2006.

Results based on the global coefficient indicate a large increase in the national life expectancy for reductions in the yearly national
average of PM2.5. However, this coefficient based on national trends in PM2.5 and mortality is likely to be confounded by other variables
trending on the national level. Confounding of the local coefficient by unmeasured factors is less likely, although it cannot be ruled out.
Based on the local coefficient alone, we are not able to demonstrate any change in life expectancy for a reduction in PM2.5. We use additional
survey data available for a subset of the data to investigate sensitivity of results to the inclusion of additional covariates, but both coefficients
remain largely unchanged.
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1. INTRODUCTION

The Clean Air Act (Environmental Protection Agency, last
amended in 1990) requires the U.S. Environmental Protection
Agency (EPA) to set National Ambient Air Quality Standards
for seven pollutants considered harmful. Air quality standards
for several air pollutants have since also been adopted by the
European Union. Implementation of these standards led to de-
creases in air pollution concentrations in the United States
(Bachmann 2008). From a public policy and public health per-
spective, it is of importance to assess whether these decreases
have also led to an improvement in morbidity and mortality
for the general population (Health Effects Institute 2003). Stan-
dards are reviewed periodically, with evidence from epidemi-
ologic studies playing a large role in the public policy pro-
cess (Kaiser 1997; Greenbaum et al. 2001; Samet et al. 2003).
While there is substantial observational evidence that long-term
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exposure to particulate air pollution is associated with prema-
ture death in urban populations, confounding by unmeasured
variables remains a large concern in observational studies. The
ability to detect such confounding and to derive estimates less
affected by confounding thus are of great importance.

Evidence on the magnitude of the chronic effects of long-
term exposure to air pollution on mortality stems mostly from
cohort studies (see, e.g., Dockery et al. 1993; Pope et al. 2002;
Laden et al. 2006; Eftim et al. 2008). These studies compare
across locations long-term average air pollution concentrations
and time-to-death in cohorts. Cohort studies allow the esti-
mation of life expectancy lost due to air pollution (Künzli et
al. 2001; Rabl 2003). They have been criticized (Moolgavkar
1994; Vedal 1997; Gamble 1998), due to the difficulty of fully
accounting for all potential confounders, including individual
risk factors and location-specific characteristics such as socioe-
conomic factors.

An alternative approach is to study covariation of particu-
late matter and mortality across time within a predefined ge-
ographical location (e.g., county or city), as has been done in
investigations of health effects associated with short-term ex-
posures. Time series studies (see, e.g., Schwartz and Dockery
1992; Spix et al. 1993; Kelsall et al. 1997) estimate acute ef-
fects of short-term exposure to air pollutants, comparing day-
to-day variations in mortality with those in air pollution concen-
trations. Multisite time series studies (Katsouyanni et al. 1997;
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Samet et al. 2000; Samoli et al. 2008; Wong et al. 2008) com-
bine the evidence and statistical uncertainty across geographical
locations (Dominici, Samet, and Zeger 2000; Dominici 2002).
Due to the focus on short-term effects, time series studies do
not allow an assessment of the years of life-time lost due to
air pollution (Künzli et al. 2001). Potential confounders in time
series studies are time-varying variables such as weather or sea-
sonal effects, as well as slowly varying unmeasured factors.
Typically, smooth functions of weather variables and calendar
time are included in the regression model to account for tempo-
ral confounding. However, results have been found to be sensi-
tive to the flexibility granted to these smooth functions (Samoli
et al. 2001; Klemm and Mason 2003; Dominici, McDermott,
and Hastie 2004; Peng, Dominici, and Louis 2006), and time
series studies have also been criticized with regard to potential
residual confounding (Vedal 1997; Lumley and Sheppard 2000;
Moolgavkar 2005).

In this article, we develop a statistical approach for estimat-
ing chronic effects associated with long-term exposure to air
pollution. We use available spatio-temporal information from
large national databases to estimate two types of association
between PM2.5 and mortality. The first type measures whether,
on average across the nation, there is an association between
the long-term trend in PM2.5 and the long-term trend in age-
adjusted mortality rates (purely temporal association). The sec-
ond type measures whether cities exhibiting a more rapid de-
cline in PM2.5 also show a faster decline in mortality (residual
spatio-temporal association, adjusting for purely temporal and
spatial associations). We do not focus here on a third type used
in cohort studies, measuring the association between average
PM2.5 levels and average age-adjusted mortality rates across
cities (purely spatial or cross-sectional association). We decom-
pose the PM2.5 exposure variable into two components and es-
timate two regression coefficients. This decomposition allows
us to assess whether the strength of the evidence on the associ-
ation between PM2.5 and mortality is consistent across the time
and space × time scale in this large and complex dataset. In
fact, absent confounding or other model misspecification, the
two estimates should be similar, and large differences thus may
indicate confounding of one or both estimates. This approach is
related to specification tests in econometrics (Hausman 1978).

Starting from a proportional hazards model, we derive a Pois-
son regression model and estimate two regression coefficients.
We derive a backfitting algorithm that makes use of the spe-
cific model structure to obtain an efficient implementation of
our approach. This enables the fitting of our model to very large
spatio-temporal datasets. We evaluate spatio-temporal correla-
tion in the data and derive appropriate standard errors. We ap-
ply our methods to the Medicare Cohort Air Pollution Study
(MCAPS), which includes individual-level information on time
of death and age on a population of 18.2 million Medicare en-
rollees from 814 locations in the United States for the period
2000–2006. We use additional survey data available for a sub-
set of the data to investigate sensitivity of the results to the in-
clusion of potential confounders in the model. Sizable differ-
ences between resulting estimated coefficients raise concerns
about the presence of unmeasured confounding or other model
failure. Persistence of differences, even after inclusion of mea-
sured time-varying confounders from the survey, indicates that

adjustment is not fully possible given the available information.
While the estimate based on national trends is likely to be con-
founded by other variables trending on the national level, the
estimate based on local trends is less likely to be confounded,
although confounding cannot be ruled out.

We first introduce the data and our statistical model in Sec-
tions 2.1–2.3, proposing a decomposition of the spatio-temporal
information to investigate confounding. The backfitting algo-
rithm for fitting our proposed regression model is described
in Section 2.4. In Sections 2.5 and 2.6, we explore the spatio-
temporal correlation in the data and derive appropriate standard
errors for estimates of regression coefficients and associated in-
creases in life expectancy. Section 2.7, with a subset of the data
where additional covariates on current smoking, body mass in-
dex, income, and race are available, details an analysis of the
sensitivity of results to inclusion of these variables. In Section 3,
we apply our methods to a population of 18.2 million Medicare
enrollees from the MCAPS. Section 4 concludes with a discus-
sion. Theoretical derivations are given in the Appendix. An on-
line Appendix provides additional descriptions of the data and
analysis results, the air pollution data, and all R code used to
implement the methods and produce the results in this article.

2. METHODS

2.1 The Medicare Cohort Air Pollution Study Data

We construct a retrospective cohort study, by linking ambient
levels of PM2.5 to mortality data by monitor during the period
2000–2006 (see also Zeger et al. 2008, for details).

Specifically, we obtain data from 1006 PM2.5 monitors
for the period 2000–2006 from the EPA monitoring network
(http://www.epa.gov/oar/data/). In our analysis, we include
data from 814 monitors in the continental United States. This
subset was chosen on the basis of data availability. Each of the
814 monitors has measurements for at least four calendar years,
with each of the four years including 10 or more months with
at least four daily PM2.5 measurements. We divide the coun-
try into three geographical regions. These are the eastern re-
gion, the central region from the Mississippi River to the Sierra
Nevada range, and the western United States (Zeger et al. 2008).
Monitor locations and regional affiliation are depicted in Fig-
ure 1.

We define long-term exposure as the average of daily PM2.5
levels over the previous year. To take into account seasonality
in the PM2.5 levels, and PM2.5 observations that are unevenly
spread across the months, we calculate the yearly averages as
follows. First, to fill small gaps in the data, we smooth the
PM2.5 time series at each location using a linear regression with
the daily PM2.5 values as the response, and with thin plate re-
gression splines of time with four degrees of freedom per year
(Janes, Dominici, and Zeger 2007) as the predictor. These cor-
respond to an approximation to cubic smoothing splines, which
is optimal in a certain sense (Wood 2003, 2006). For gaps
longer than 90 days, we smooth the PM2.5 time series before
and after the gap separately. Second, for each month, we calcu-
late yearly averages of PM2.5 using the 365 predicted daily val-
ues from this model up to and including the respective month. In
case of missing values, 350 days are deemed sufficient to com-
pute the yearly average. The yearly averages thus obtained are

http://www.epa.gov/oar/data/
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Figure 1. Locations of 814 EPA PM2.5 monitoring sites in the continental United States used for the analysis. Boundaries of the three
geographical regions are indicated by thicker lines.

not sensitive to the precise choice of smoothing procedure, and
in fact the correlation with yearly averages from the raw data is
0.99. The 814 monitors provide up to 70 monthly measurements
of yearly average PM2.5 concentrations from December 2000 to
September 2006. Summary statistics are given in Table 1.

We then link PM2.5 data to the mortality data as follows: the
same PM2.5 exposure from a given monitoring site is assigned
to all enrollees in the Medicare program, the U.S. health insur-
ance program for those over 65, residing in a ZIP code (U.S.
postal code) with a geographic centroid within a six mile radius
from that site. As PM2.5 is fairly spatially homogenous (Bell
et al. 2007; Peng et al. 2008), the measurement error due to spa-
tial variation in PM2.5 should be of small order. The Medicare
data provides demographic information (age, gender, race), and
individual-level information on survival, with time of death or
censoring precise up to the month. The dataset includes about
18.2 million enrollees and 3.2 million deaths in total, with an
average of 10.4 million people enrolled in the cohort in any
given month. Table 1 provides regional statistics on these en-
rollees.

The PM2.5 data is publicly available, and we post the data
in the online Appendix in the form used for the analysis.
The Medicare mortality data used for this analysis is consid-
ered identifiable and the study was reviewed by the Centers
for Medicare & Medicaid Services (CMS) Privacy Board. Re-
quests for similar identifiable data files can be submitted to
the CMS for review and approval. Nonidentifiable and limited

datasets are publicly available. More information can be found
at http://www.resdac.umn.edu/Medicare/ .

2.2 The Statistical Model

First, we specify the following proportional hazards model

hc(a, t) = hc(a) exp(xc
t β), (1)

where hc(a, t) denotes the hazard of dying at age a and time t
for location c, and hc(a) is a location-specific baseline hazard
function. A location includes residents of ZIP codes with a ge-
ographic centroid within a six mile radius from the correspond-
ing monitor. xc

t is the average of the PM2.5 levels at location c
over the 12 months prior and including time t.

While the variables age a and time t are continuous vari-
ables in principle, the information in the Medicare data on time
point of death or censoring is only precise up to the month. We
thus discretize the time domain as follows. We measure t in
monthly intervals, and denote the set of months with observa-
tions for location c by Tc, where c = 1, . . . ,C. Subject i con-
tributes person-time, and, potentially, a death, to age interval
a in a given month t if the subject turned 65 in month t − a.
Monthly age is counted beginning at 65, since this is the cut-off
for eligibility for Medicare. Assuming a constant hazard within
each monthly age interval leads to a piecewise exponential sur-
vival model for life-tables (see Holford 1976) for each location.

With a study population of 18.2 million and 814 monitoring
locations, naively fitting model (1) would require the handling

Table 1. Number of monitors, number of months with PM2.5 data, average PM2.5 level, number of Medicare
enrollees and number of deaths among Medicare enrollees during the period December 2000 to September 2006.

Values are medians among locations, with 25th and 75th percentile given in smaller print

Monitoring Months with available Average PM2.5 level Medicare
Region stations PM2.5 data [μg/m3] enrollees Deaths

West 96 597070 8.911.515.1 616413,28937,556 109930287270
Center 200 577070 9.510.612.0 743214,74629,073 81918083474
East 518 687070 12.613.915.1 702314,20727,688 140628745451

U.S. 814 627070 10.813.014.7 695714,50229,058 122025395120

http://www.resdac.umn.edu/Medicare/
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of 18.2 million ×(814df +2) matrices, where df are the degrees
of freedom used in modeling hc(a). Computation proved to be
infeasible due to memory restrictions, even on a cluster node
with 64 GB of RAM. Instead, we use the log-linear regression
model

log E(Yc
at) = log(Tc

at) + log(hc(a)) + xc
t β, (2)

with the assumption that each Yc
at is an independent (across

calendar time, space, and age-months) Poisson variable, con-
ditional on Tc

at and xc
t . Here, Yc

at is the number of deaths at
age-month a in month t for location c, and Tc

at is the total
time subjects of age a at location c were at risk of dying dur-
ing month t. As the exact time of death or dropout during the
month is not known, we approximate Tc

at by Nc
at , defined as the

number of Medicare enrollees of age a with a ZIP code of res-
idence in location c at the beginning of the month. Under the
piecewise exponential survival model, models (1) and (2) are
equivalent with regard to likelihood-based inference; please see
the Appendix for a derivation using results by Holford (1980)
and Laird and Olivier (1981). Independence assumptions that
are made for this equivalence are independence between differ-
ent locations and birth-month cohorts for model (1), and inde-
pendence between locations c, months t and age-months a for
model (2). We evaluate the justification of these independence
assumptions in Section 2.5.

To make computation feasible and avoid excessive zero cell
counts, we further assume a constant hazard of dying over one-
year age intervals and after age 90. This allows us to collapse
ages a into one-year intervals, and to combine all ages over
90 into one age group. Each of the resulting 1.4 million ob-
servations (Yc

at,Nc
at, xc

t ) then describes the mortality rate among
people being a years of age at location c during month t, with
average PM2.5 exposure xc

t during the previous year. For each
location c, we model the log-hazard function log(hc(a)) in (2)
using thin plate regression splines (Wood 2003, 2006) of age
with three degrees of freedom, plus a location-specific inter-
cept. To investigate sensitivity of results to this choice, we also
repeat the analysis using five degrees of freedom. As the hazard
of dying changes very slowly from one year of age to the next,
results are practically identical, with changes in parameter esti-
mates at most in the third significant figure. An additional indi-
cator for ages over 90 allows for a potential discontinuity in the
hazard function due to the mixture of hazard values in this last
group. In model (2), β denotes the increase in the log-hazard of
dying in a given month for an increase of 1 μg/m3 in average
PM2.5 concentrations during the previous year.

2.3 Using Spatio-Temporal Information
to Investigate Confounding

Absent confounding and measurement error and given valid
model assumptions, model (2) allows estimation of the effect
of long-term exposure to PM2.5 on life expectancy. However,
confounding is a common problem in air pollution studies.

To investigate the consistency of the evidence on PM2.5 and
mortality, we propose to rewrite model (2) as follows (compare
Janes, Dominici, and Zeger 2007).

log E(Yc
at) = log(Nc

at) + log(hc(a))

+ (xc
t − xt − xc + x)β1 + (xt − x)β2, (3)

where xt denotes the population-weighted average of the yearly
PM2.5 averages in month t across locations, xc denotes the
population-weighted average of the yearly PM2.5 averages for
one location c, and x denotes the overall population-weighted
average. The Appendix gives details on these quantities, and
shows approximate orthogonality of (xc

t − xt − xc + x) and
(xt − x) for the purpose of model (3). We thus decompose
xc

t into two orthogonal pieces of information. A third piece,
(xc − x), is absorbed by the location-specific log-hazard func-
tion log(hc(a)). Note that only changes over time in PM2.5 con-
centrations contribute to the estimation of β1 and β2, avoiding
cross-sectional confounding by individual-level risk factors or
location-level characteristics.

In model (3), β1 and β2 both measure the strength of the asso-
ciation between PM2.5 and mortality, but use different sources
of information. More specifically, the parameter β2 provides ev-
idence as to whether nationally, PM2.5 and mortality rates are
decreasing over time in parallel across the study period. The
parameter β2 can be interpreted as the increase in the national
log-mortality rate in a given month and age group, for an in-
crease by 1 μg/m3 in the national average PM2.5 concentration
during the previous year. By contrast, the parameter β1 mea-
sures the strength of the evidence that mortality rates decline
faster (slower) than the national average in locations where
PM2.5 levels also decline faster (slower) than the national av-
erage. β1 can be interpreted as the additional increase in a local
log-mortality rate for a 1 μg/m3 increase in local PM2.5 con-
centrations over the national average level. The parameter β1
measures the association between local PM2.5 trends and local
mortality trends, adjusting for the association between the na-
tional trends in PM2.5 and mortality rates.

An instructive parallel can be drawn to another approach that
has been used to investigate long-term effects of air pollution on
mortality using information over time. Pope, Ezzati, and Dock-
ery (2009) plot differences in life expectancy �LEi between
1997–2001 and 1978–1983 for several U.S. counties against
corresponding changes in PM2.5 concentrations �PMi in those
counties. They obtain an effect estimate from the slope of a fit-
ted linear regression line, regressing �LEi on �PMi. Note that
such a plot yields two possible estimates of the PM2.5 effect:
first, the slope of the estimated regression line, and second, the
average increase in life expectancy over the mean reduction in
PM2.5 across counties, �LE/�PM. The first coefficient has a
similar interpretation to our β1, the second coefficient corre-
sponds to our β2, even though our estimated coefficients com-
pare more than two time points per location. We here investigate
consistency of these two sources of information on the effects
of long-term exposure to PM2.5 on mortality.

Estimation of the “global” parameter β2 and estimation of
the “local” parameter β1 are differently affected by confound-
ing. Consider the example of smoking, which has a large impact
on mortality. Denote by zc

t the proportion of smokers at loca-
tion c at time t, and suppose that zc

t has a large effect on mor-
tality. Now, confounding can occur if smoking and PM2.5 are
correlated. Even if smoking and PM2.5 concentrations are un-
related, confounding of β̂2 can occur if (zt − z) and (xt − x) are
not orthogonal. This could be due, for example, to downward
trends in both PM2.5 and smoking rates on the national level
over time, a scenario that is not unlikely to be true. As (zt − z)
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and (xc
t −xt −xc +x) are approximately orthogonal by construc-

tion, confounding of β̂1 can occur if (zc
t − zt − zc + z) and (xc

t −
xt − xc + x) are not orthogonal. This would be true if communi-
ties which showed larger decreases in PM2.5 than the national
average also showed larger decreases in smoking rates than the
national average, and vice versa. While this scenario is possible,
it is less plausible than correlation in the national trends.

Absent confounding and given valid model assumptions, β1
and β2 are equal and can be collapsed into the single “overall”
coefficient β in (2). Separate estimation of β1 and β2 allows us
to diagnose unmeasured confounding, as large differences be-
tween β̂1 and β̂2 indicate that confounding is likely (see also
Janes, Dominici, and Zeger 2007). For the inclusion of mea-
sured covariates, the approach can also aid in assessing whether
adjustment for confounding is sufficient. This approach is re-
lated to specification tests in econometrics (Hausman 1978). An
illustration of the interpretation of β1 and β2, and of potential
confounders, is given in the online Appendix.

2.4 Estimation Using the Backfitting Algorithm

Fitting model (3) directly is computationally very demand-
ing. First, this is due to the high dimensionality of the dataset
with 1.4 million observations (Yc

at,Nc
at, xc

t ), where a ranges
through 26 (mostly yearly) age groups, t through the on average
65 months per location, and c through the 814 locations. Sec-
ond, this is due to the complexity of the model, which specifies
a log-hazard function log(hc(a)) with 5 degrees of freedom for
each of the 814 locations.

To reduce the dimensionality of the problem, we use a back-
fitting algorithm (Buja, Hastie, and Tibshirani 1989).

• Initialize β
(0)
1 = β

(0)
2 = 0 and log(hc(a))(0) ≡ 0, c =

1, . . . ,C.
• Step A: For iteration j, set the offset to

offset1c(j)
at = log(Nc

at) + log(hc(a))(j−1)

for all a, t, and c. Fit the Poisson model

log E(Yc
at) = offset1c(j)

at

+ (xc
t − xt − xc + x)β1 + (xt − x)β2

and set β
(j)
1 and β

(j)
2 to the estimated coefficients.

• Step B: For iteration j, set the offset to

offset2c(j)
at = log(Nc

at)

+ (xc
t − xt − xc + x)β(j)

1 + (xt − x)β(j)
2

for all a, t and c. For c = 1, . . . ,C, fit the Poisson model

log E(Yc
at) = offset2c(j)

at + log(hc(a))

to data from location c, and set log(hc(a))(j) to the log-
hazard function estimated from this model.

• While the change in β
(j)
1 or β

(j)
2 is larger than a certain stop

criterion, repeat steps A and B. Conclude with step A.

The algorithm greatly reduces computational complexity by
estimating the log-hazard function for each location separately.
To investigate potential overdispersion, an overdispersion pa-
rameter φ = Var(Yc

at)/E(Yc
at) can be included in the last Step A.

This backfitting algorithm is slightly different from the local
scoring algorithm typically employed in estimation for general-
ized additive models (Hastie and Tibshirani 1990). There, one
backfitting algorithm for additive models (inner loop) is car-
ried out at each Newton–Raphson step (outer loop), and conver-
gence results from the backfitting algorithm for additive mod-
els (Buja, Hastie, and Tibshirani 1989) carry over directly. Here,
we carry out a full iteratively reweighted least squares algorithm
(inner loop) for each step of the backfitting algorithm (outer
loop). However, convergence of β

(j)
1 and β

(j)
2 to the unique max-

imum likelihood estimates β̂1 and β̂2 is straightforward, and is
shown in the Appendix.

We choose the stop criterion of the algorithm as a small rel-
ative change in the parameter estimates, max{|(β(j)

1 − β
(j−1)

1 )/

β
(j−1)

1 |, |(β(j)
2 − β

(j−1)

2 )/β
(j−1)

2 |} < 10−6, which is reached
within 4–8 iterations for the MCAPS data.

2.5 Variance Estimates and Spatio-Temporal Correlation

Variance estimators for β̂ = (β̂1, β̂2) that account for uncer-
tainty in the estimation of the log-hazard functions log(hc(a))

can be obtained from the likelihood using standard asymptotic
theory; details are given in the Appendix. These model-based
variance estimators are obtained under the assumption of inde-
pendence across time, age groups, and geographical locations.
In this section, we investigate the justification of this indepen-
dence assumption.

We examine averaged empirical variograms over age, time,
and space. More specifically, we define the empirical variogram
over space, averaged over time and age, as follows. The aver-
aged value for a bin of spatial distances (δ1, δ2] is given by

1

Nδ1,δ2

C∑
c=1

∑
u:δuc∈(δ1,δ2]

∑
t∈Tcu

A∑
a=1

1

2
(rc

at − ru
at)

2,

where rc
at = (yc

at − μ̂c
at)/

√
μ̂c

at is the Pearson residual and μ̂c
at

the fitted value from model (3) for location c, month t, and age
a, Tcu is the set of months common to locations c and u, δcu

is the spatial distance between locations c and u, and Nδ1,δ2 is
the number of terms in the sum for the interval (δ1, δ2]. As for
the usual variogram over space (see, e.g., Diggle and Ribeiro
2007), the averaged variogram can be compared to the variance
estimate σ̂ 2 = ∑

a,t,c rc
at

2/N. Complete independence between
spatial locations corresponds to variogram values close to σ̂ 2

for all spatial distances. Averaged variograms over age and time
are defined analogously.

2.6 Estimating Years of Life Gained

To translate the parameter estimates into values of relevance
for public health, we estimate the years of life gained due to
decreases in PM2.5 exposure. For a known hazard function h(a),
we can calculate the life expectancy of a 65-year-old individual
for a given exposure x and effect β as

LE(x, β) =
∑

a

a
[
1 − exp{−h(a) exp(xβ)}]

× exp

{
− exp(xβ)

∑
b<a

h(b)

}
,



Greven, Dominici, and Zeger: Estimation of Chronic Air Pollution Effects 401

where a runs through the monthly ages starting with 65. We
set the hazard function to a population-weighted average of
the estimated hazard functions across all locations, h(a) ≡∑C

c=1 wĉhc(a), where wc weighs location c according to its
average population over time, wc = N̄c/

∑
c N̄c with N̄c =∑

a,t Nc
at/|Tc|.

To estimate the increase in life expectancy associated with
a decrease in the annual average of PM2.5 by 10 μg/m3, we
compute �LE(β) = LE(x − 10, β) − LE(x, β). �LE(β) is the
difference between the life expectancy assuming the personal
exposure to be constant and equal to x, and the life expectancy
assuming the exposure to be 10 μg/m3 less than x. We choose x
as the population-weighted average of the PM2.5 yearly average
concentrations during the first year of the study period. Note
that this approach estimates the increase in life expectancy after
age 65, a lower bound for the overall increase in life expectancy.

We compute �LE(β̂1) and �LE(β̂2), and their approximate
standard errors using the Delta method. Details are given in the
Appendix.

2.7 Sensitivity Analysis

To investigate the sensitivity of β̂1 and β̂2 to the inclusion
of potential confounders in the model, we use data from the
Behavioral Risk Factor Surveillance System (BRFSS), avail-
able from the National Center for Chronic Disease Prevention
and Health Promotion. The Selected Metropolitan/Micropolitan
Area Risk Trends Survey (SMART) (http://apps.nccd.cdc.gov/
BRFSS-SMART/ ) since 2002 provides data for selected coun-
ties in the United States on several risk factors for disease. The
survey was designed specifically to look at trends in metropoli-
tan and micropolitan areas, and provides information on several
variables on the county level by month across several years,
that is, on a similar level of spatio-temporal detail as for the
PM2.5 and mortality variables. We use information available
on current smoking, body mass index (BMI), income (in eight
categories), and race (white/nonwhite) to construct monthly
county averages, respectively proportions. More information on
these variables zc

t is given in the online Appendix. Appropri-
ate weights are also available from the SMART website, and
monthly county averages are based on on average 58 to 59 re-
spondents, 51 for income. Covariate information is available
only for a subset of locations and months. Still, the SMART sur-
vey seems the best available source of information on possible
confounders on such a fine spatio-temporal level—illustrating
also the difficulty to fully adjust for confounding in large obser-
vational studies. We use 173 locations with at least 80% of the
maximum of 57 months of available information, correspond-
ing to 17% of the original dataset. We repeat the analysis for this
subset of data. We then additionally include the four variables
into model (3), allowing (a) the same coefficient and (b) differ-
ent coefficients for the components (zt −z) and (zc

t −zt −zc +z).

3. RESULTS FROM THE MCAPS STUDY

Yearly average PM2.5 concentrations have been decreasing
during the study period in most of the study locations (Fig-
ure 2), with a pronounced drop in PM2.5 levels after Septem-
ber 2001. Population-weighted PM2.5 average levels in 2001
were highest in the west, intermediate in the east, and lowest
in the central region. The west shows the strongest and most

Figure 2. Average PM2.5 concentrations over the previous year for
the months from December 2000 to September 2006. Depicted are
both the population-weighted average across 531 monitors with com-
plete time series in the continental United States (dotted-dashed line),
as well as the population-weighted average by region: the west (solid
line), the center (dashed line), and the east (dotted line).

consistent decline over time, which might reflect the stricter
California ambient air quality standard of 12 μg/m3 annual
average PM2.5 that came into effect July 5, 2003 (Califor-
nia Environmental Protection Agency Air Resources Board,
http://www.arb.ca.gov/research/aaqs/aaqs.htm). The decline
in PM2.5 concentrations is less pronounced in the east and cen-
ter, with higher average levels in 2005 after an initial decrease.
The national average is dominated by values from the eastern
region, which contributes 518 of the 814 monitors in this study.

Monthly age-standardized mortality rates have decreased
over the same time period in all regions (Figure 3). Rates are
comparable in the east and center, and lower in the west, with

Figure 3. Monthly age-standardized mortality rates among Medi-
care enrollees from each of the three regions for December 2000 to
September 2006. Mortality rates are standardized to the cohort study
population in October 2003, the middle of the study period, i.e., the
standardized rate rt at time t is defined as rt = ∑

a gaYat/Nat , where
Yat = ∑

c Yc
at , Nat = ∑

c Nc
at , and ga = Nat0/

∑
a Nat0 indicates the

age proportions in the population at t0, October 2003.

http://apps.nccd.cdc.gov/BRFSS-SMART/
http://www.arb.ca.gov/research/aaqs/aaqs.htm
http://apps.nccd.cdc.gov/BRFSS-SMART/
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Table 2. Estimated increase in the log-relative risk of dying in a given
month per 1μg/m3 increase in average PM2.5 concentrations during
the previous year. The local coefficient β1 measures the association
between local trends in PM2.5 and local trends in mortality rates,

adjusting for the respective national trends. The global coefficient β2
measures the association between the PM2.5 national trend and the
national trend in mortality rates. The overall coefficient β measures

the association between local trends in PM2.5 and local trends in
mortality, not adjusting for national trends

100 × β1 100 × β2 100 × β

Region Monitors estimate(S.E.) estimate(S.E.) estimate(S.E.)

West 96 0.151(0.127) 2.021(0.100) 1.291(0.077)

Center 200 −0.110(0.193) 3.766(0.293) 1.080(0.159)

East 518 0.089(0.107) 3.795(0.108) 1.929(0.075)

U.S. 814 −0.061(0.064) 4.313(0.084) 1.562(0.051)

mortality rates peaking in the winter months. Maps of yearly
average PM2.5 concentrations and age-standardized mortality
rates by location are also given in the online Appendix.

In Table 2 and Figure 4, we report results from model (3)
on the association between long-term exposure to PM2.5 and
mortality. Table 2 gives estimated coefficients for the United
States and each region, as well as their respective standard er-
rors. We report estimated local and global coefficients β1 and
β2 from model (3), and also the overall coefficient β from
model (2). The corresponding relative risk estimates are de-
picted in Figure 4.

Estimated overdispersion parameter values for model (3)
range from φ̂ = 1.01 to 1.02 across regions, and results shown
are based on a Poisson model without overdispersion. Aver-
age empirical variograms (shown in the online Appendix) give
no indication of correlation between observations over either
space, time, or age. We therefore report model-based standard
errors assuming independence across locations, months, and
age-groups.

The estimate of the global coefficient β2 indicates that a
10 μg/m3 increase in the national average PM2.5 concentra-
tion over the previous year is associated with a significant 54%

increase in the risk of dying in a given month for our Medicare
cohort. This estimate reflects that nationally, mortality rates are
declining over the study period in parallel with PM2.5. Esti-
mates of the risk increase associated with a 10 μg/m3 increase
in regional yearly average PM2.5 levels range from 22% to
46% across the three regions. The smallest value is estimated in
the west, where the decrease in mortality rates is the smallest,
but the decline in average PM2.5 concentrations is the largest
(Figures 2 and 3). Note that the national β2 estimate is not a
weighted average of the regional estimates and thus does not
have to lie within their range.

Estimates of the local coefficient β1 are approximately zero
and nonsignificant nationally and in all of the three regions. Es-
timates of β1 indicate that after adjusting for the association
between national trends in mortality and PM2.5, there is no sig-
nificant association between an increase in the local yearly aver-
age PM2.5 concentration and the risk of dying in a given month
for the local Medicare population.

Estimates of β lie between those of β1 and β2, as they are a
weighted average of these two estimates (Janes, Dominici, and
Zeger 2007). However, the large differences between the esti-
mated local and global coefficients β1 and β2 indicate that they
cannot be combined into a single coefficient β . Indeed, a test
for homogeneity H0 :β1 = β2 results in p-values smaller than
0.0001 in all regions. Similar to a specification test, this result
raises concerns about the model specification, with confound-
ing the likely source for the discrepancy. Confounding of β2

by other variables trending on the national level is likely, while
confounding of β1 by unmeasured factors, although less likely,
cannot be ruled out.

The sensitivity of β̂1 and β̂2 to unmeasured confounding is
also investigated in the sensitivity analysis. We consider the fol-
lowing four county and month level variables: proportion of
current smokers and of nonwhites, and mean income and body
mass index. The national trend in PM2.5 shows population-
weighted correlations of 0.08 to 0.22 in absolute value with
the corresponding trends in these four variables; the respective
correlations for the local deviations range from 0.00 to 0.04.

Figure 4. Estimated relative risk of dying in a given month per 10 μg/m3 increase in average PM2.5 concentrations during the previous
year. Relative risk (RR) estimates based on the local coefficient β1, the global coefficient β2, and the overall coefficient β are shown with 95%
confidence intervals.
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Figure 5. Sensitivity analysis using data on 173 locations with additional variables from the BRFSS-SMART survey. The left-most estimate
shows estimates β̂1 and β̂2 from model (3) for this subset of the data. a) indicates the analysis including additional variables on the level of the
monitor’s county: the proportion of current smokers and of nonwhites, and the mean income and body mass index. b) gives the results for the
same analysis allowing separate coefficients for the four variables’ global and local trends.

Figure 5 shows the results from the estimation of model (3) re-
peated on the subset of the data for which additional covariate
information from the BRFSS-SMART survey is available. Es-
timates β̂1 and β̂2 are shown on the left of the respective panel.
Both a) and b) indicate results including the additional covari-
ates in the model, allowing for the same (a) or separate (b) co-
efficients for global and local trends, respectively. We find re-
sults not much altered by the inclusion of these variables; of
the undecomposed variables (a) only race proved to be statisti-
cally significant. Some attenuation and widening of the confi-
dence interval is observed for β̂2 and b), as correlations between
the variables’ national trends and the national trend in PM2.5
are largest. The full results of the sensitivity analysis are given
in the online Appendix. Our decomposition and the remaining
strong differences between β̂1 and β̂2 indicate that inclusion of
these variables does not sufficiently adjust for confounding, il-
lustrating the difficulties to fully adjust for confounding in large
observational studies.

Table 3 translates parameter estimates into increases in life
expectancy associated with a reduction in yearly average PM2.5
concentrations, giving estimates with 95% confidence intervals
(CIs). Results based on the global coefficient indicate that a 10
μg/m3 reduction in the yearly national average of PM2.5 is as-
sociated with an increase in life expectancy of 3.16 years (CI
3.05–3.26 years) in the Medicare population, although this es-
timate is likely confounded as discussed before. Results based

Table 3. Estimated increase in life expectancy �LE in years for a
10 μg/m3 reduction in average yearly PM2.5 exposure. Assumptions

made in the calculation of �LE are given in Section 2.6. Estimates
are based on the local coefficient β1 or on the global coefficient β2.

Approximate 95% confidence intervals are derived from the standard
errors for β̂1 and β̂2 using the Delta method

Region Monitors �LE(β̂1)(95%CI) �LE(β̂2)(95%CI)

West 96 −0.08 0.130.33 1.431.571.71
Center 200 −0.40−0.090.22 2.452.853.26
East 518 −0.10 0.070.25 2.682.812.95

U.S. 814 −0.16−0.050.05 3.053.163.26

on local coefficients indicate no significant change in life ex-
pectancy for any reduction in PM2.5.

4. DISCUSSION

We have used spatio-temporal data from large national data
bases to estimate the effect of long-term exposure to PM2.5 on
life expectancy. We described an approach for decomposing the
exposure variable into two components and for investigating
differences between the corresponding estimated regression co-
efficients. Differences between the estimates of the two regres-
sion coefficients are indicative of unmeasured confounding or
other model misspecification.

We have developed a statistical model and estimation proce-
dure that allows the implementation of our approach for large
spatio-temporal datasets. In the MCAPS study, the particulate
air pollution application, sizable differences in effect estimates
raise concerns about unmeasured confounding and the use of
the aggregate data to draw conclusions on air pollution and mor-
tality. While the coefficient based on national trends in PM2.5
and mortality is likely to be confounded by other variables
trending on the national level, confounding of the local coef-
ficient by unmeasured factors cannot be ruled out, although it is
less likely. We used additional survey data available for a subset
of the data to investigate sensitivity of results to the inclusion
of additional covariates, but both coefficients remained largely
unchanged. Measurement error for these additional covariates
is likely to be large and available information is limited, illus-
trating the difficulty to comprehensively adjust for confounding
in large observational studies. Our decomposition here can also
help in assessing whether a given adjustment for confounding
is sufficient. In our study, the remaining differences in effect es-
timates indicate that this cannot be achieved with the available
data.

Few studies have investigated the association between partic-
ulate matter and mortality using temporal changes in long-term
average PM2.5. In a follow-up of the Six City Study, Laden et al.
(2006) found a 1.14 (CI 1.06–1.22) mortality risk ratio for an in-
crease by 10 μg/m3 in the annual mean PM2.5 level in the year
of death. However, the coefficient relies both on differences
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in exposure between cities and within a city over time, and
thus may be confounded by location-specific variables as well
as variables trending on the national level. Pope, Ezzati, and
Dockery (2009) regressed changes in life expectancy between
1978–1982 and 1997–2001 on changes in PM2.5 concentrations
between 1979–1983 and 1999–2000 in 51 metropolitan areas,
thus also adjusting for location-specific confounders and trends
on the national level, and obtaining estimates comparable in
principle to our estimates �LE(β̂1). They found a 0.61 year (CI
0.22–1.0 year) increase in mean life expectancy associated with
each 10 μg/m3 PM2.5 decrease, adjusting for changes in so-
cioeconomic, demographic and smoking variables. Differences
to our study that might explain the difference in results include
(a) the earlier study period with the corresponding higher PM2.5
levels, which could potentially have larger effects on mortal-
ity, (b) the longer study period resulting in larger differences
over time and thus larger power to detect effects, (c) differ-
ences in the statistical model and estimation approach, (d) the
population-based approach compared to the elderly population
in our study, which yields only lower bounds on the overall in-
crease in life expectancy, and (e) differences in the geographic
locations included, with possible differences, for example, in
the PM2.5 composition. Future studies will investigate the rea-
sons for the observed differences. Janes, Dominici, and Zeger
(2007) in a previous analysis of a part of the Medicare cohort
did not find evidence of an association between local trends in
mortality and local trends in yearly average PM2.5 after adjust-
ing for the association between national trends and for location-
specific differences, matching our own findings. A table with a
full comparison of these four studies can be found in the on-
line Appendix. Related work on PM10 for the US (Zanobetti,
Bind, and Schwartz 2008) and England (Janke, Propper, and
Henderson 2009) has found significant associations with mor-
tality, controlling for cross-sectional differences between loca-
tions and step-function or linear time trends. For earlier results
on total suspended particulates in the 70s and 80s, see Chay,
Dobkin, and Greenstone (2003), Chay and Greenstone (2003).

In our study, we used ambient PM2.5 measurements from sin-
gle monitors to measure PM2.5 exposure. From a public policy
perspective, decreases in ambient pollutant concentrations and
associated decreases in mortality are of interest in assessing the
impact of air quality regulations. Moreover, studies have shown
that PM2.5 is relatively homogeneous within a given county
(Dominici et al. 2006; Janes, Dominici, and Zeger 2007), and
ambient PM2.5 is a strong proxy of personal PM2.5 exposure
(Sarnat et al. 2006).

To fully use the spatio-temporal variation in the data, we used
the PM2.5 average concentration over the last year as the rel-
evant long-term exposure measurement. This approach could
potentially miss longer-term effects or lag periods. However,
the effects of long-term average PM2.5 and PM2.5 levels in
the year of death have been found to be similar (Laden et al.
2006), which suggests reversibility of effects within about a
year. This is plausible in light of the reversibility of the much
larger increase in cardiovascular risk in smokers within about
three years (Dobson et al. 1991; McElduff et al. 1998).

While we did not see any spatio-temporal correlation in the
residuals in our analysis, it would be of interest in general to
develop robust standard errors for the regression coefficients

that do not require an independence assumption across time and
space. Other relevant extensions of our model are age-varying
coefficients, to investigate potential differences in effects across
age groups (see, e.g., Zeger et al. 2008), as well as time-varying
coefficients. Of particular interest would be to include spatially
varying coefficients for the air pollution effects, which would
allow a more precise regional differentiation than the prespeci-
fied one considered here, and which could potentially discover
differences in local effects due, for example, to differences in
PM2.5 composition. More work is needed to allow the fitting
of these more complex models to large datasets such as the
MCAPS data.

APPENDIX: DERIVATIONS

Equivalence of Proportional Hazards Model
and Poisson Model (Section 2.2)

The equivalence of the two models has been noted by Holford
(1980) and Laird and Olivier (1981). First, consider the proportional
hazards model (1) with month-wise constant hazard function for one
location c and one birth-month cohort, which turns 65 in the same
month t0. For this cohort, the hazard of dying is constant in age-month
interval a, and equal to hc(a, t0 + a) = hc(a) exp(xc

t0+aβ). The like-
lihood contribution from this cohort then is, analogous to Laird and
Olivier (1981),

A∏
a=1

[
hc(a, t0 + a)

Yc
a,t0+a exp(−hc(a, t0 + a)Tc

a,t0+a)
]I(t0+a∈Tc),

where Yc
at is the number of deaths at age-month a in month t for loca-

tion c, Tc
at is the total time subjects of age a at location c were at risk

of dying during month t, Tc is the location-specific set of observed
months, and I(·) denotes the indicator function.

If we assume that observations which are from different locations or
different birth-month cohorts are independent, the full likelihood can
be written as

LS(β;h1(1), . . . ,hC(A))

=
C∏

c=1

A∏
a=1

∏
t∈Tc

(hc(a) exp(xc
t β))Yc

at exp(−hc(a) exp(xc
t β)Tc

at).

For the log-linear Poisson model (2), under the assumption of indepen-
dence between Yc

at and Yc̃
ãt̃

if (a, t, c) �= (ã, t̃, c̃), the likelihood is

LP(β;h1(1), . . . ,hC(A))

=
C∏

c=1

A∏
a=1

∏
t∈Tc

(hc(a)Tc
at exp(xc

t β))Yc
at exp(−Tc

ath
c(a) exp(xc

t β))

Yc
at!

∝ LS(β;h1(1), . . . ,hC(A)).

As the two likelihoods are proportional, the two models are equivalent
with regard to likelihood-based inference.

Approximate Orthogonality of the Decomposition
of PM2.5 (Section 2.3)

Let Nc
t = ∑A

a=1 Nc
at , with Nc

t = 0 if no observations are available at
a given month t and location c. Define the population-weighted aver-
ages xc = (

∑
t∈Tc

Nc
t xc

t )/(
∑

t∈Tc
Nc

t ), and (xt − x) = ∑C
c=1 Nc

t (xc
t −

xc)/(
∑C

c=1 Nc
t ). Under model (3), under the assumption that β1 and

β2 are small, hc(a) ≈ h(a) and Nc
at ≈ Nc

t wat for some weight wat , we
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have μc
at = E(Yc

at) ≈ Nc
t wath(a). Then,

C∑
c=1

A∑
a=1

∑
t∈Tc

μc
at(xt − x)(xc

t − xc − xt + x)

≈
T∑

t=1

(xt − x)
A∑

a=1

h(a)wat

C∑
c=1

Nc
t (xc

t − xc − xt + x) = 0

by construction. The two variables thus are approximately orthogonal
for the purpose of model (3) [compare the section below, Model-Based
Variance Estimates (Section 2.5)].

Convergence of the Backfitting Algorithm (Section 2.4)

The log-likelihood �(β,γ ) is a function of β = (β1, β2) and γ of
length 5C, which contains an indicator, three spline basis functions
in a and an indicator for ages over 90 for each location (see below,
Model-Based Variance Estimates). The log-likelihood is based on an
exponential family density and is strictly concave, as well as bounded
above, with �(β,γ ) → −∞ if one of the coordinates goes to ±∞.
Thus, the maximum likelihood estimator of (β , γ ) exists and is unique,
and there are no other local maximizers of the log-likelihood.

The backfitting algorithm alternates between maximizing �(β(j),γ )

over γ for fixed β(j), and maximizing �(β,γ (j)) over β for fixed γ (j).
This corresponds to the Block Coordinate Descent/Ascent Method,
which converges to arg max(β,γ ) �(β,γ ), as the log-likelihood is
stricly concave and bounded above (Abatzoglou and O’Donnell 1982;
Tseng 2001).

Model-Based Variance Estimates (Section 2.5)

The log-likelihood for model (3) can be defined as follows:

�(β,γ ) ∝
C∑

c=1

∑
t∈Tc

A∑
a=1

{Yc
at(x

c′
t β + zc′

a γ ) − Nc
at exp(xc′

t β + zc′
a γ )}.

Here, xc
at = xc

t of length 2 contains the PM2.5 variables for time t
and location c, β = (β1, β2), and zc′

a γ models the log-hazard func-
tions log(hc(a)), where zc

at = zc
a of length 5C contains an indicator,

three spline basis functions in a, and an indicator for ages over 90
for each location c̃, c̃ = 1, . . . ,C. This log-likelihood is based on the
assumption of independence between all pairs Yc

at and Yc̃
ãt̃

for which

(a, t, c) �= (ã, t̃, c̃).
The corresponding score equation is

S(β,γ ) =
C∑

c=1

∑
t∈Tc

A∑
a=1

(xc′
t , zc′

a )′
[
Yc

at − Nc
at exp(xc′

t β + zc′
a γ )

]
= (X | Z)′(Y − μ) = 0,

where vectors Y and μ = E(Y) of length N = A
∑

c Tc contain entries
Yc

at and Nc
at exp(xc′

t β + zc′
a γ ), respectively, and (X | Z) is the N × (2 +

5C) matrix with rows (xc′
t , zc′

a ), a = 1, . . . ,A, t ∈ Tc, c = 1, . . . ,C.
The model-based asymptotic covariance matrix for (β̂, γ̂ ) then is

(McCullagh and Nelder 1989)[
−E

(
d

d(β,γ )
S(β,γ )

)]−1
= ((X | Z)′ diag(μ)(X | Z))−1,

where diag(μ) denotes the diagonal matrix with the entries in μ on the
diagonal. Asymptotics here are for

∑
t∈Tc

Nc
at → ∞ for each a and c,

while A and C are fixed, such that the number of parameters in (β,γ )

stays constant.
Note that the upper left corner of ((X | Z)′ diag(μ)(X | Z))−1, pro-

viding variance estimates for β̂ , can be written as

[X′ diag(μ)X]−1 + [X′ diag(μ)X]−1[X′ diag(μ)Z]{[Z′ diag(μ)Z]
− [Z′ diag(μ)X][X′ diag(μ)X]−1[X′ diag(μ)Z]}−1

× [Z′ diag(μ)X][X′ diag(μ)X]−1

using Schur complement and Woodbury formula. If β1 and β2
are small, hc(a) ≈ h(a) and Nc

at ≈ Nc
t wa for some weight wa,

[X′ diag(μ)Z] is close to zero analogous to the approximate orthog-
onality of the decomposition of PM2.5. Variance estimates for β̂ thus
are little affected by estimation of even a large finite number of param-
eters γ .

Approximate Standard Errors for Estimated Years
of Life Gained (Section 2.6)

The quantity to be estimated is �LE(β) = LE(x − 10, β) −
LE(x, β) =: g(β). An approximate standard error for g(β̂) using the
Delta method is

σ(g(β̂)) ≈ |g′(β̂)|σ(β̂),

where σ(g(β̂)) and σ(β̂) are the standard errors of g(β̂) and β̂ , respec-
tively,

g′(β) = ∂

∂β
LE(x − 10, β) − ∂

∂β
LE(x, β) and

∂

∂β
LE(x, β) =

∑
a

ax exp(xβ) exp

{
− exp(xβ)

∑
b<a

h(b)

}

×
[

exp{−h(a) exp(xβ)}
a∑

c=1

h(c) −
a−1∑
c=1

h(c)

]
.

These standard errors are for a given baseline hazard function h(a),
and do not account for uncertainty in estimating h(a).

SUPPLEMENTARY MATERIALS

Supplement: Web_appendix.pdf contains (1) illustrations of
β1, β2 and potential confounders, (2) maps of yearly av-
erage PM2.5 concentrations and age-standardized mortality
rates by location, (3) average empirical variograms as de-
fined in Section 2.5, which illustrate the lack of correlation
in the residuals over space, time or age for the MCAPS data,
(4) sensitivity analyses using additional covariate informa-
tion from the BRFSS-SMART survey, (5) a comparison of
the current article with previous studies. Rcode.R provides
an implementation of the methods in this article. PM_data.txt
contains the yearly average PM2.5 data used to produce the
MCAPS results. Supplemental material is provided as a web
appendix in a single zip file. (Web_appendix.zip)
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