Sonja Rakic

Sonja Rakic
  • MD PhD
  • Research Associate at University of Southampton

About

35
Publications
8,022
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,726
Citations
Introduction
Skills and Expertise
Current institution
University of Southampton
Current position
  • Research Associate
Additional affiliations
September 2005 - October 2010
University College London
Position
  • Research Associate

Publications

Publications (35)
Article
Full-text available
Abstract Clinical studies indicate that systemic infections accelerate cognitive decline in Alzheimer’s disease. Animal models suggest that this may be due to enhanced pro-inflammatory changes in the brain. We have performed a post-mortem human study to determine whether systemic infection modifies the neuropathology and in particular, neuroinflamm...
Article
Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer's disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has theref...
Article
Full-text available
Mutation in the triggering receptor expressed on myeloid cells (TREM) 2 gene has been identified as a risk factor for several neurodegenerative diseases including Alzheimer’s disease (AD). Experimental studies using animal models of AD have highlighted a number of functions associated with TREM2 and its expression by microglial cells. It has theref...
Article
The inflammasome complex is part of the innate immune system, which serves to protect the host against harm from pathogens and damaged cells. It is a term first proposed by Tschopp's group in 2002, with numerous original research articles and reviews published on the topic since. There have been many types of inflammasome identified, but all result...
Article
Full-text available
Interneuron dysfunction in humans is often associated with neurological and psychiatric disorders, such as epilepsy, schizophrenia, and autism. Some of these disorders are believed to emerge during brain formation, at the time of interneuron specification, migration, and synapse formation. Here, using a mouse model and a host of histological and mo...
Article
Full-text available
The modulation of cortical activity by GABAergic interneurons is required for normal brain function and is achieved through the immense level of heterogeneity within this neuronal population. Cortical interneurons share a common origin in the ventral telencephalon, yet during the maturation process diverse subtypes are generated that form the chara...
Article
Full-text available
Cajal-Retzius (CR) cells play a crucial role in the formation of the cerebral cortex, yet the molecules that control their development are largely unknown. Here, we show that Ebf transcription factors are expressed in forebrain signalling centres-the septum, cortical hem and the pallial-subpallial boundary-known to generate CR cells. We identified...
Article
Full-text available
The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasti...
Article
Full-text available
Kallmann syndrome (KS) is a genetic disease characterized by hypogonadotropic hypogonadism and impaired sense of smell. The genetic causes underlying this syndrome are still largely unknown, but are thought to be due to a developmental defect in the migration of gonadotropin-releasing hormone (GnRH) neurons. Understanding the causes of the disease...
Article
Full-text available
Gamma-aminobutyric acid (GABA)ergic interneurons play a vital role in modulating the activity of the cerebral cortex, and disruptions to their function have been linked to neurological disorders such as schizophrenia and epilepsy. These cells originate in the ganglionic eminences (GE) of the ventral telencephalon and undergo tangential migration to...
Article
Full-text available
Oligodendrocytes are cells that myelinate axons, providing saltatory conduction of action potentials and proper function of the central nervous system. Myelination begins prenatally in the human, and the sequence of oligodendrocyte development and the onset of myelination are not thoroughly investigated. This knowledge is important to better unders...
Article
The subplate lays the foundation of the developing cerebral cortex, and abnormalities have been suggested to contribute to various brain developmental disorders. The causal relationship between cellular pathologies and cognitive disorders remains unclear, and therefore, a better understanding of the role of subplate cells in cortical development is...
Article
Full-text available
Projection neurons and interneurons populate the cerebral cortex in a layer-specific manner. Here, we studied the role of Cyclin-dependent kinase 5 (Cdk5) and its activator p35 in cortical interneuron migration and disposition in the cortex. We found that mice lacking p35 (p35(-/-)) show accumulation of interneurons in the upper part of the cortex....
Article
Full-text available
Cortical interneurons in rodents are generated in the ventral telencephalon and migrate tangentially into the cortex. This process requires the coordinated action of many intrinsic and extrinsic factors. Here we show that Robo1 and Robo2 receptor proteins are dynamically expressed throughout the period of corticogenesis and colocalize with interneu...
Article
Full-text available
Type I lissencephaly, a genetic disease characterized by disorganized cortical layers and gyral abnormalities, is associated with severe cognitive impairment and epilepsy. Two genes, LIS1 and doublecortin (DCX), have been shown to be responsible for a large proportion of cases of type I lissencephaly. Both genes encode microtubule-associated protei...
Article
Full-text available
Gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus play an important role in reproductive function. These cells originate in the nasal compartment and migrate into the basal forebrain in association with olfactory/vomeronasal nerves in embryonic life in rodents. Here, we studied the role of neuropilins and their ligands, semaphorins,...
Article
Full-text available
The earliest generated cells of the mammalian cerebral cortex form the preplate layer (PPL). The subsequently born cortical plate (CP) cells split this layer into the superficial layer I (LI) and the deep subplate (SP). The cellular and molecular mechanisms that underlie this event are unclear. To investigate the role of the cyclin-dependent kinase...
Article
The ARX protein (encoded by the aristaless-related homeobox gene) is a member of the paired class of homeoproteins. More precisely, it is a member of the Aristaless subclass of proteins with a glutamine residue (Q) at the critical position 50 of the homeodomain (Q50). Through identification of diverse inherited or de novo mutations, genetic investi...
Article
Since the discovery that the vast majority of the GABA-containing interneurons of the cerebral cortex arise in the subpallium, considerable effort has been put into the description of the precise origin of these neurons in subdivisions of the ganglionic eminence and in the migratory routes they follow on their way to the developing cortex. More rec...
Article
One of the main characteristics of the developing CNS is that all neurons and a majority of the macroglia originate in the proliferative layer situated near the lumen of the cerebral ventricles and the central canal in the brain and spinal cord, respectively, and then migrate to their final destinations. In the developing forebrain, this proliferat...
Article
Full-text available
Gonadotropin-releasing hormone (GnRH) neurons, a small number of cells scattered in the hypothalamic region of the basal forebrain, play an important role in reproductive function. These cells originate in the olfactory placode and migrate into the basal forebrain in late embryonic life. Here, we show that reelin, which is expressed along the route...
Article
Full-text available
In this study we examine possible origins and migratory routes of human cortical neurons, with special emphasis on the preplate and layer I. In embryonic stages, two main cell types, Cajal-Retzius cells, and cells labeled with interneuron markers (calretinin, calbindin and GABA), were present in the preplate layer. In addition, a number of preplate...
Article
Oligodendrocytes, the myelin-producing cells in the central nervous system, represent a large portion of the total number of cells in the human brain. Using cell-specific markers and antibodies to ventral homeodomain transcription factors, NKX2.1 and DLX2, we show here that a subpopulation of early oligodendrocyte progenitor cells (OPCs) in the hum...
Article
It has been suggested that Golli proteins, structurally related to myelin basic proteins (MBPs), have a role in autoimmune processes. We studied the expression of these proteins in multiple sclerosis (MS) and determined that the number of Golli-immunoreactive (ir) cells was significantly higher around lesions of chronic MS than in control white mat...
Article
The myelin basic protein gene (Mbp) encodes for the major myelin structural proteins and it is included in the Golli-Mbp gene complex. Previously, we observed MBP-like proteins in the human central nervous system (CNS) at developmental stages preceding myelination. In an effort to distinguish between Golli (HOG5 and HOG7) and MBP mRNAs and to deter...
Article
Programmed cell death (PCD) in the form of apoptosis is recognized as one of the central events in the development of the central nervous system. To study the time of onset, extent and distribution of PCD in the human telencephalon, embryos and fetuses from 4.5 to 27 gestational weeks (g.w.) were examined using the TUNEL (TdT-mediated dUTP-biotin n...
Article
Full-text available
The early expression of reelin, calcium-binding proteins (calretinin, calbindin, and parvalbumin), and neurofilament proteins have been explored in the developing central nervous system of human embryos and fetuses during the first trimester of gestation. Our objective has been to determine further the nature, developmental roles, and contributions...
Article
The early expression of reelin, calcium-binding proteins (calretinin, calbindin, and parvalbumin), and neurofilament proteins have been explored in the developing central nervous system of human embryos and fetuses during the first trimester of gestation. Our objective has been to determine further the nature, developmental roles, and contributions...

Network

Cited By