
SQL Model in Language Encapsulation and Compression Technique for
Association Rules Mining

1Somboon Anekritmongkol, 2Kulthon Kasemsan

1,Faculty of information Technology, Rangsit University, Pathumtani 12000, Thailand,
somboon_a@hotmail.com

2Faculty of information Technology, Rangsit University, Pathumtani 12000, Thailand,
kasemsan@rangsit.rsu.ac.th

Abstract

Discovery of association rules is an important for Data mining. One of the most famous association
rule learning algorithms is Apriori rule. Apriori algorithm is one of algorithms for generation of
association rules. The drawback of Apriori Rule algorithm is the number of time to read data in the
database equal number of each candidate is generate. Many research papers have been published
trying to reduce the amount of time needed to read data from the database. In this paper, we propose
a new algorithm that will work rapidly and without frequency tree or temporary candidate itemsets in
RAM or Hard disk. SQL Model in Language Encapsulation and Compression Technique for
Association Rules Mining (SMILE-ARM). This algorithm will generate candidates are greater than
minimum support on-the-fly by SQL. This algorithm is based on two major ideas. Firstly, compress
data. Secondly, generation of candidate itemsets on-the-fly by SQL. Based on the experimental results,
an increase in the number of transactions or the number of items did not affect the speed at which
candidates were generated by this algorithm. The construction method of SQL Model in Language
Encapsulation and Compression Technique for Association Rules Mining (SMILE-ARM) technique has
twenty times higher mining efficiency in execution time than Apriori Rule.

Keywords: Data Mining, Association Rule, Apriori Rule, Frequent Itemset

1. Introduction

Data mining is the process of extracting patterns from data. Data mining is seen as an increasingly

important tool by modern business to transform data into an informational advantage. Association rule
mining is searches for recurring relationships in a database. One of the most popular technique in
association rule mining is Apriori rule [1][2]. Association rule mining is usually associated with huge
information. Association rules exhaustively look for hidden patterns, making them suitable for
discovering predictive rules involving subsets of data set attributes. Association rule learners are used
to discover elements that co-occur frequently within a data set consisting of multiple independent
selections of elements (such as purchasing transactions), and to discover rules. In my point of view,
Firstly, most of information in data set is same pattern. Secondly, amount of time to read the whole
database. Thirdly, the pruning candidate in each step of process. This paper proposes the development
of algorithm to discover association rules from large amounts of information that is faster than Apriori
rule by using SQL Model in Language Encapsulation and Compression Technique for Association
Rules Mining(SMILE-ARM). The improvement focuses on compress data and improve performance
without generate temporary frequency of Itemsets and reducing the number of times to read data from
the database

2. Basic in Association Rule

Let D = {T1, T2, . . . ,Tn} [2] be a set of n transactions and let I be a set of items, I = {I1,

I2, . . ., Im}. Each transaction is a set of items, i.e. Ti ⊆ I. An association rule is an implication
of the form X ⇒ Y, where X, Y⊂ I, and X ∩ Y = ∅; X is called the antecedent and Y is called the
consequent of the rule. In general, a set of items, such as X or Y, is called an itemset. In this
work, a transaction record transformed into a binary format where only positive binary values
are included as items. This is done for efficiency purposes because transactions represent sparse
binary vectors. Let P(X) be the probability of appearance of itemset X in D and let P(Y|X) be

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

International Journal of Information Processing and Management(IJIPM)
Volume 4, Number 1, January 2013
doi:10.4156/ijipm.vol4.issue1.9

65

the conditional probability of appearance of itemset Y given itemset X appears. For an itemset
X⊆I, support(X) is defined as the fraction of transactions Ti∈D such that X⊆Ti. That is, P(X) =
support(X). The support of a rule X ⇒ Y is defined as support(X⇒Y) = P(X∪Y). An association
rule X⇒Y has a measure of reliability called confidence (X⇒Y) defined as P(Y|X) =
P(X∪Y)/P(X) = support(X∪Y)/support(X). The standard problem of mining association rules [1]
is to find all rules whose metrics are equal to or greater than some specified minimum support
and minimum confidence thresholds. A k-itemset with support above the minimum threshold is
called frequent. We use a third significance metric for association rules called lift, lift(X⇒Y) =
P(Y|X)/P(Y) = confidence (X⇒ Y)/support(Y). Lift quantifies the predictive power of X⇒ Y; we
are interested in rules such that lift(X ⇒ Y) > 1.

3. Apriori rule

Apriori is an algorithm proposed by R. Agrwal and R. Srikant in 1994. Apriori rule employs an

iterative approach know as a level-wise search, where k-itemsets are used to explore (k+1)-itemsets.
First, the set of frequency 1-itemsets is found by scanning the database to accumulate the count of each
time and collecting those items satisfy minimum support. The resulting set is L1. Next L1 used to find
the set of frequency 2-itemsets, which is used to find, and so on, until no more frequency k-itemsets
can be found. The finding of each Lk requires one full scan of database.
Algorithm: Apriori rule. Find frequent itemsets using an iterative level-wide approach based on
candidate generation.

Input: 1. D, a database of transaction;
 2. min_sup, The minimum support count threshold.

Output: L, frequent itemsets in D
Method:
(1) L1 = Find_Frequent_1-Itemset(D);
(2) for (k=2;Lk-1 ¹ 0;k++){
(3) Ck = apriori_gen(LK-1);
(4) for each transaction TÎD { // scan D for count
(5) Ct= subset(Ck,t);// Get subset of t that are candidate
(6) for each candidate cÎ Ct
(7) c.count++;
(8) }
(9) Lk = {cÎCk|c.count ³ min_sup}
(10) }
(11) Return L = È KLK;

Procedure apriori_gen(Lk-1frequent (k-1)-itemsets)
(1) for each itemset l1 Î Lk-1
(2) for each itemset l2 ÎLk-1
(3) if(l1[1] = l2[1]^(l1[2]=l2[2]^…^(l1[k-2]=

 l2[k-2])^(l1[k-1])< l2[k-1] then {
(4) C= l1 >< l2; // join step : generate candidates
(5) if has_infrequent_subset(c,Lk-1) the
(6) delete c; // prune step : remove unfruitful candidate
(7) else add c to Ck;
(8) }
(9) return Ck;

Procedure has_infrequent_subset(c:candidate k-itemset;
Lk-1 : frequent(k-1)-itemsets); // use prior knowledge
(1) for each (k-1)-subset s of c
(2) if s Ï Lk-1 then
(3) return True;
(4) return False;
(5)

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

66

4. Boolean Algebra

Boolean algebra, developed in 1854 by George Boole in his book An Investigation of the Laws of
Thought. Some operations of ordinary algebra, in particular multiplication xy, addition x+y, and
negation -x, have their counterparts in Boolean algebra, respectively the Boolean Operations AND, OR,
and NOT also called conjunction x∧y, disjunction x∨y, and negation or complement ¬x sometime !x.
Some authors use instead the same arithmetic operations as ordinary algebra reinterpreted for Boolean
algebra, treating xy as synonymous with x∧y and x+y with x∨y.

Figure 1. Logic Gate

5. Structured Query Language(SQL)

SQL was developed at IBM by Donald D. Chamberlin and Raymond F.Boyce in the early 1970.

SQL was designed to manipulate and retrieve data stored in IBM's original quasi-relational database
management system, System R, which a group at IBM San Jose Research Laboratory had developed
during the 1970. SQL is a database computer language designed for managing data in relational
database management systems (RDBMS). The Structured Query Language (SQL) defines the methods
used to create and manipulate relational databases on all major platforms.

Table 1. Basic SQL Command

SQL Command Description
SELECT
INSERT
UPDATE
DELETE
CREATE object
ALTER object
DROP object

Retrieves data from a table.
Add new Data to a table.
Modifies existing data in a table.
Removes existing data from a table.
Create a new database object
Modifies the structure of an object.
Removes an existing database object.

SQL query syntax
Select [Distinct] <column-name(s), arithmetic expression>
From <table-name(s)>
[Where <condition>]
[Group by <column-name(s)>]
[Having <condition>]
[Order by <column-name(s)> [ASC/DESC]]

SQL Insert syntax
Insert into <table-name>
[(column-name-1, column-name-2,…)]
Value (<value-1,value-2,…>)

6. SQL Model in Language Encapsulation and Compression Technique for
Association Rules Mining(SMILE-ARM)

An Algorithm of SMILE-ARM, The step of algorithm is 1. Find frequent itemsets minimum

support. 2. Compress data by create a new structure are same pattern of transactions. 3. Generate
Candidate by SQL from candidate 2-itemsets until k-itemsets by generate candidate based on actual
data in pattern transactions. SMILE_ARM is able to generate any candidate itemsets without previous

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

67

candidate such as create candidate 4-itemsets do not need to create candidate 3-itemsets or candidate 2-
itemsets. SMILE-ARM is able to apply to do classification.

Algorithm: Pseudo-code of SMILE-ARM.
Tid_cl, a table of transaction
Tid_Pattern, a table contain Pattern Data
Final_Candidate , the result of candidates Min_sup
Tid_Item, Itemset
Tid, transaction ID
Min_sup, Minimum support count all transactions

Procedure Find L1
(1) for each itemset count Tk Tid_cl;
(2) Delete Tk < Min_sup;
(3) add to Final_Candidate;

Procedure Compress Structure
(1) for each Tid , Tidk L1 {
(2) if Tid <> Tid_Patternk then
(3) Create Tid_Patternk;\\ Create Pattern;
(4) else
(5) Tid_Patternk++;
(6) }

Procedure SQL_Command(k)
(1) Insert into Final_Candidate (Candidate, Count_Items, xdim)
(2) Select Tk.Tid_Item+Tk-1.Tid_Item+…+T1.Tid_Item, sum(T1.Feq),k
(3) From Tid_Pattern as T1, Tid_Pattern as T2,…,Tid_Pattern as Tk
(4) Where (T1.Tid_Item < T2.Tid_Item and T2.Tid_Item < T3.Tid_Item and … Tk-1.Tid_Item <
 Tk.Tid_Item) and (T1.Tid=T2.Tid and T2.Tid=T3.Tid and …Tk-1.Tid =Tk.Tid)
(5) Group by Tk.Tid_item, Tk-1.Tid_item,…, T1.Tid_item
(6) Having sum(T1.Feq) >= min_Sup

Procedure Generate Associate Data
(1) Find L1;
(2) Compress Structure;
(3) for each (k=2; k = Max_Itemk; k++){
(4) SQL_Model(k);
(5) }
Example: Minimum support 10 percent = 1.5

Table 2. Transaction Data
Trans# Item Trans# Item Trans# Item
T001
T001
T001
T002
T002
T003
T003
T004
T004
T004
T004
T005
T005

I1
I2
I5
I2
I4
I2
I3
I1
I2
I3
I4
I1
I3

 T006
T006
T007
T007
T008
T008
T008
T009
T009
T009
T010
T010
T010

I2
I3
I2
I3
I1
I2
I3
I1
I2
I3
I1
I2
I4

 T011
T011
T011
T012
T012
T013
T013
T013
T014
T014
T014
T015
T015

I1
I2
I3
I2
I3
I1
I2
I4
I1
I2
I3
I2
I3

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

68

Step 1: Find L1
The algorithm scans all of transactions in order to find frequency item of each itemsets and remove
frequency item less than minimum support.

Table 3. Support Count
 Itemsets Support count
 {I1}

{I2}
{I3}
{I4}
{I5}

9
14
11
4
1

Eliminate {I5} lower Minimum Support

Table 4. Result of candidate-1 Itemset
 Itemsets Support count
 {I1}

{I2}
{I3}
{I4}

9
14
11
4

Step 2: Compress Data
Count transactions are same items such as T003 = {I2, I3}, T006 = {I2, I3}, T007 = {I2, I3}, T012 =
{I2, I3} and T015 = {I2, I3} or {I2, I3} = {(T003), (T006), (T007), (T012), (T015)} = 5. Create pattern
is same structure such as T001 ® create Pattern-1, T002® Pattern-2, {T003, T006, T007, T012,
T015}®Pattern-3, T004® Pattern-4, {T010, T013 }® Pattern-5, T005® Pattern-6 and {T008,
T009, T011, T014}®Pattern-7.

Table 5. Data Compression

I1 I2 I3 I4 Count

 Pattern-1 X X

1
 Pattern-2

X

X 1

 Pattern-3

X X

5
 Pattern-4 X X X X 1
 Pattern-5 X X

X 2

 Pattern-6 X

X

1
 Pattern-7 X X X

4

Step 3: Find Candidate 2-Itemsets to k-Itemsets
To discover the set of frequency 2-itemsets to k-Itemsets by SQL Model, Generate candidate from
Pattern table.

SQL Command for candidate 2-Itemsets.
Insert into CL_Final (Candidate,Count_Items,xdim)
Select T2.Tid_Item+T1.Tid_Item, sum(T1.Feq),2
From Tid_Pattern as T1, Tid_Pattern as T2
Where (T1.Tid_Item < T2.Tid_Item)
 and (T1.Tid=T2.Tid)
Group by T2.Tid_item, T1.Tid_item
Having sum (T1.Feq) >= Min_Support

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

69

Figure 2. Generate Candidate K-Itemsets

Table 6. Result of candidate=2 Itemsets

Pattern Data Count Final Candidate Candiates xdim
1 {I1,I2} 1 {I1,I2} 8 2
2 {I2,I4} 1 {I1,I3} 6 2
3 {I2,I3} 5 {I1,I4} 3 2
4 {I1,I2,I3,I4} 1 {I2,I3} 10 2
5 {I1,I2,I4} 2 {I2,I4} 4 2
6 {I1,I3} 1
7 {I1,I2,I3} 4

SQL Command for candidate 3-itemsets.
Insert into Final_Candidate (Candidate,Count_Items,3)
Select T3.Tid_Item +T2.Tid_Item+T1.Tid_Item,
 sum(T1.Feq),2
From Tid_Pattern as T1, Tid_Pattern as T2, Tid_Pattern as T3
Where (T1.Tid_Item < T2.Tid_Item and T2.Tid_Item <
 T3.Tid_Item) and (T1.Tid=T2.Tid and
 T2.Tid=T3.Tid)
Group by T3.Tid_item, T2.Tid_item, T1.Tid_item
Having sum (T1.Feq) >= Min_Support

Attribute of <xdim> is for control to generate candidates on each step.

Table 7. Generate from Candidate-3 Itemsets
Pattern Data Count Final Candidate Candidate xdim

1 {I1,I2} 1 {I1,I2,I3} 5 3
2 {I2,I4} 1 {I1,I3,I4} 3 3
3 {I2,I3} 5
4 {I1,I2,I3,I4} 1
5 {I1,I2,I4} 2
6 {I1,I3} 1
7 {I1,I2,I3} 4

Final Result: Candidate-Itemsets ³ Min_Support

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

70

Table 8. Final Result
 Itemsets Final Candidate
 {I1}

{I2}
{I3}
{I4}
{I1,I2}
{I1,I3}
{I1,I4}
{I2,I3}
{I2,I4}
{I1,I2,I3}
{I1,I3,I4}

9
14
11
4
8
6
3

10
4
5
3

7. Experimental results

In this section, we performed a set of experiments to evaluate the effectiveness of SMILE-ARM.

The experiment dataset consists of two kinds of data. First, data from Phranakorn Yontrakarn Co., Ltd.
This company sales and offer car services to discover association data. Second, generate sampling data.
The experiment of four criteria, Firstly, Increase amount of records from 10,000 to 50,000 records and
fixed 10 items (Figure3, Figure4). Secondly, increase of item and fixed amount of records = 50,000
(Figure5, Figure6). Thirdly, increase amount of records from 10,000 to 190,000 records (Figure7).
Fourthly, decrease of minimum support and fixed items and amount of records (Figure8).

Experiment 1: Increase number of records. Step 10,000 records. Fixed 10 items. Compare Apriori

Rule with SQL Model in Language Encapsulation and Compression Technique for Association Rules
Mining (SMILE-ARM). Apriori rule, with increasing amount of record will take longer time. SMILE-
ARM has 35 times higher mining efficiency in execution time than Apriori Rule (10 Itemsets, 50,000
records).

Figure 3. Data from Phranakorn Yontrakarn Co., Ltd. Itemsets=10, Increase number of records

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

71

Figure 4. Sampling Data, Itemsets =10, Increase number of records

Experiment 2: Increase items. Fixed number of records 50,000 records. Compare Apriori Rule with

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
(SMILE-ARM). Apriori rule, with increasing itemsets will take longer time. SMILE-ARM has 30
times higher mining efficiency in execution time than Apriori Rule (30 Itemsets, 50,000 records). That
it mean amount of records will be slightly affected SMILE-ARM but Apriori rule performance takes a
lot of time.

Figure 5. Data from Phranakorn Yontrakarn, Increase Itemsets, Fixed number of records = 50,000

records

Figure 6. Sampling Data, Number of records=50,000 records, Increase Itemsets

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

72

Experiment 3: Increase number of records from 10,000 to 190,000 records. Compare Apriori Rule
with SQL Model in Language Encapsulation and Compression Technique for Association Rules
Mining (SMILE-ARM). Real-life data from Phranakorn Yontrakarn Co., Ltd. shows effective
performance between Apriori rule and SMILE-ARM as 190,000 records, Apriori rule takes 238
seconds but SMILE-ARM takes only 6 seconds on processing time. SMILE-ARM has 39 times higher
mining efficiency in execution time than Apriori Rule (10 Itemsets, 190,000 records).

Figure 7. Data from Phranakorn Yontrakarn Co., Ltd. Increase number of recoords and Increase

Itemsets

Experiment 4: Decrease of minimum support from 60% to 10%. The step to change minimum

support, Apriori rule low minimum support takes time to process 464 sec. but SMILE-ARM takes time
to process 3 sec. SMILE-ARM has 154 times higher mining efficiency in execution time than Apriori
Rule (10 Itemsets, 20,000 records, density 80%). SMILE-ARM slightly affects the performance
because SMILE-ARM compresses data, SQL is generate candidate direct to database without
temporary candidates.

Figure 8. Performance of Apriori Rule and SMILE-ARM

Table 9. Number of candidates

Minimum Support (%) Number of Candidates
10
20
30
40
50
60

1023
1012
847
509
175
56

The result of experiments, SQL Model in Language Encapsulation and Compression

Technique for Association Rules Mining (SMILE-ARM) discovers an association is faster than

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

73

Apriori rule. If increasing the number of records, Apriori rule will take time to read the whole
data. If increasing the number of items, Apriori rule will create more candidates depending on
the number of items but SQL Model in Language Encapsulation and Compression Technique for
Association Rules Mining (SMILE-ARM) takes shorter time because it will compress data and
SQL is generate candidate on-the-fly direct to database without temporary candidates.

8. Conclusion

The paper proposes a new association rule mining theoretic models and designs a new algorithm

based on established theories. SQL Model in Language Encapsulation and Compression Technique for
Association Rules Mining (SMILE-ARM) is compresses data and processes only the actual data by
SQL command. SQL is very effective in terms of performance. SMILE-ARM is able to discover data
more than twenty times faster than Apriori rule.

From the experiments, we found that the number of records and number of Items would not affect
the performance of SQL Model in Language Encapsulation and Compression Technique for
Association Rules Mining (SMILE-ARM). The results is a especially amplified in itemsets from
experiment 4 where we used data from 10,000 records, 10 Items and density 80%. SMILE-ARM has
proven to have the best performance. We believe that SMILE-ARM is an important way to find
Association data or Data mining and the best of algorithm for classification.

9. References

[1] Agrawal R., Imielinski T. and Swami A., “Mining association rules between sets of items in

large databases”, In Proceedings of ACM SIGMOD International Conference on Management
of Data Washington D.C., USA, pp. 207–216, 1993.

[2] Ramakrishnan Srikant and Rakesh Agawal, “Mining Generalized Association Rules”, In
Proceedings of 21th VLDB Conference Zurich, Swizerland, pp. 407-419, 1995.

[3] Fukuda, T., Morimoto, Y. Morishita, S. and Tokuyama T., “Data Mining using Two-
Dimensional Optimized Association Rules Scheme, Algorithms, and Visualization”, In
Proceedings of ACM - SIGMOD International Conference on the Management of Data, pp. 13-
23, 1996.

[4] M. Zaki, S. Parthasarathy, M. Ogihara and W. Li. "New Algorithms for Fast Discovery of
Association Rules". 3rd International Conference on Knowledge Discovery and Data, Mining
KDD’97, Newport Beach, CA, 283–296, 1997.

[5] Christian Borgelt, “Simple Algorithms for Frequent Item Set Mining”, Springer-Verlag, Berlin,
Germany, pp.351-369, 2010.

[6] Zuling Chen and Guoqing Chen, “Building an Association Classifier Based on Fuzzy
Association Rules”, International Journal of Computational Intelligence Systems, Vol. 1-3, pp.
262-272, 2008.

[7] HUANG Liusheng, CHEN Huaping, WANG Xun, CHEN Guoliang, “A Fast Algorithm for
Mining Association Rules. Journal of Computer Science and Technology”, Vol.15, pp. 619-624,
2000.

[8] DU XiaoPing, TANG SgiWei and Akifumi Makinouchi, “Maintaining Discovered Frequent
Itemsets: Cases for Changeable Database and Support”, Journal of Computer Science and
Technology, Vol.18, pp. 648-658, 2003.

[9] S.Prakash and R.M.S.Parvathi, “An Enhanced Scaling Apriori for Association Rule Mining
Efficiency. European Journal of Scientific Research”, Vol.39, pp.257-264, 2010.

[10] LI Qingzhong, WANG Haiyang, YAN Zhongmin and MA Shaohan, “Efficient Mining of
Association Rules by Reducing the Number of Passes over the Database”, Journal of Computer
Science and Technology, Vol.16, pp. 182-188, 2001.

[11] Somboon Anekritmongkol and M.L. Kulthon Kasemsan, “The Comparative of Boolean Algebra
Compress and Apriori Rule Techniques for New Theoretic Association Rule Mining Model”,
International Journal of Advancements in Computing Technology, Vol. 3 No. 1, pp. 58-67,
2011.

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

74

[12] Shui Wang, Le Wang, "An Implementation of FP-Growth Algorithm Based on High Level Data
Structures of Weka-JUNG Framework", Journal of JCIT, Vol. 5, No. 9, pp. 287-294, 2010.

[13] S. Roy , D. K. Bhattacharyya , "OPAM: An Efficient One Pass Association Mining Technique
without Candidate Generation", Journal of JCIT, Vol. 3, No. 3, pp. 32-38, 2008.

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining
Somboon Anekritmongkol, Kulthon Kasemsan

75

