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Abstract 

Discovery of association rules is an important for Data mining. One of the most famous association 
rule learning algorithms is Apriori rule. Apriori algorithm is one of algorithms for generation of 
association rules.  The drawback of Apriori Rule algorithm is the number of time to read data in the 
database equal number of each candidate is generate. Many research papers have been published 
trying to reduce the amount of time needed to read data from the database.  In this paper, we propose 
a new algorithm that will work rapidly and without frequency tree or temporary candidate itemsets in 
RAM or Hard disk. SQL Model in Language Encapsulation and Compression Technique for 
Association Rules Mining (SMILE-ARM). This algorithm will generate candidates are greater than 
minimum support on-the-fly by SQL. This algorithm is based on two major ideas. Firstly, compress 
data. Secondly, generation of candidate itemsets on-the-fly by SQL. Based on the experimental results, 
an increase in the number of transactions or the number of items did not affect the speed at which 
candidates were generated by this algorithm. The construction method of SQL Model in Language 
Encapsulation and Compression Technique for Association Rules Mining (SMILE-ARM) technique has 
twenty times higher mining efficiency in execution time than Apriori Rule. 
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1. Introduction 

 
Data mining is the process of extracting patterns from data. Data mining is seen as an increasingly 

important tool by modern business to transform data into an informational advantage. Association rule 
mining is searches for recurring relationships in a database. One of the most popular technique in 
association rule mining is Apriori rule [1][2]. Association rule mining is usually associated with huge 
information.  Association rules exhaustively look for hidden patterns, making them suitable for 
discovering predictive rules involving subsets of data set attributes. Association rule learners are used 
to discover elements that co-occur frequently within a data set consisting of multiple independent 
selections of elements (such as purchasing transactions), and to discover rules. In my point of view, 
Firstly, most of information in data set is same pattern.  Secondly, amount of time to read the whole 
database. Thirdly, the pruning candidate in each step of process. This paper proposes the development 
of algorithm to discover association rules from large amounts of information that is faster than Apriori 
rule by using SQL Model in Language Encapsulation and Compression Technique for Association 
Rules Mining(SMILE-ARM).  The improvement focuses on compress data and improve performance 
without generate temporary frequency of Itemsets and reducing the number of times to read data from 
the database 

 
2. Basic in Association Rule  

 
Let D = {T1, T2, . . . ,Tn} [2] be a set of n transactions and let I be a set of items, I = {I1, 

I2, . . ., Im}.  Each transaction is a set of items, i.e. Ti ⊆ I. An association rule is an implication 
of the form X ⇒ Y, where X, Y⊂ I, and X ∩ Y = ∅; X is called the antecedent and Y is called the 
consequent of the rule. In general, a set of items, such as X or Y, is called an itemset. In this 
work, a transaction record transformed into a binary format where only positive binary values 
are included as items. This is done for efficiency purposes because transactions represent sparse 
binary vectors.  Let P(X) be the probability of appearance of itemset X in D and let P(Y|X) be 
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the conditional probability of appearance of itemset Y given itemset X appears.  For an itemset 
X⊆I, support(X) is defined as the fraction of transactions Ti∈D such that X⊆Ti. That is, P(X) = 
support(X). The support of a rule X ⇒ Y is defined as support(X⇒Y) = P(X∪Y).  An association 
rule X⇒Y has a measure of reliability called confidence (X⇒Y) defined as P(Y|X) = 
P(X∪Y)/P(X) = support(X∪Y)/support(X).  The standard problem of mining association rules [1] 
is to find all rules whose metrics are equal to or greater than some specified minimum support 
and minimum confidence thresholds.  A k-itemset with support above the minimum threshold is 
called frequent.  We use a third significance metric for association rules called lift, lift(X⇒Y) = 
P(Y|X)/P(Y) = confidence (X⇒ Y)/support(Y).  Lift quantifies the predictive power of X⇒ Y; we 
are interested in rules such that lift(X ⇒ Y) > 1. 

 
3. Apriori rule 

 
Apriori is an algorithm proposed by R. Agrwal and R. Srikant in 1994.   Apriori rule employs an 

iterative approach know as a level-wise search, where k-itemsets are used to explore (k+1)-itemsets. 
First, the set of frequency 1-itemsets is found by scanning the database to accumulate the count of each 
time and collecting those items satisfy minimum support.  The resulting set is  L1.  Next L1 used to find 
the set of frequency 2-itemsets, which is used to find, and so on, until no more frequency k-itemsets 
can be found.  The finding of each Lk requires one full scan of database. 
Algorithm: Apriori rule.  Find frequent itemsets using an iterative level-wide approach based on 
candidate generation. 
 
Input: 1. D, a database of transaction; 
           2. min_sup, The minimum support count threshold. 
 
Output: L, frequent itemsets in D 
Method: 
(1) L1 = Find_Frequent_1-Itemset(D); 
(2) for (k=2;Lk-1 ¹  0;k++){ 
(3)      Ck = apriori_gen(LK-1); 
(4)      for each transaction TÎD { // scan D for count 
(5)           Ct= subset(Ck,t);// Get subset of t that are candidate 
(6)            for each candidate cÎ  Ct  
(7)                 c.count++; 
(8)      } 
(9)       Lk = {cÎCk|c.count ³  min_sup} 
(10)  } 
(11)  Return L = È KLK; 

 
Procedure apriori_gen(Lk-1frequent (k-1)-itemsets) 
(1) for each itemset l1 Î  Lk-1 
(2)      for each itemset l2 ÎLk-1 
(3)           if(l1[1] = l2[1]^(l1[2]=l2[2]^…^(l1[k-2]=                                 

                       l2[k-2])^( l1[k-1])< l2[k-1] then { 
(4)                   C= l1 ><   l2; // join step : generate candidates 
(5)                   if has_infrequent_subset(c,Lk-1) the 
(6)                       delete c; // prune step : remove unfruitful candidate 
(7)                   else add c to Ck; 
(8)            } 
(9) return Ck; 

 
Procedure has_infrequent_subset(c:candidate k-itemset; 
Lk-1 : frequent(k-1)-itemsets); // use prior knowledge 
(1) for each (k-1)-subset s of c 
(2)      if  s Ï  Lk-1 then 
(3)          return True; 
(4) return False; 
(5)  
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4. Boolean Algebra 
 

Boolean algebra, developed in 1854 by George Boole in his book An Investigation of the Laws of 
Thought. Some operations of ordinary algebra, in particular multiplication xy, addition x+y, and 
negation -x, have their counterparts in Boolean algebra, respectively the Boolean Operations AND, OR, 
and NOT also called conjunction x∧y, disjunction x∨y, and negation or complement ¬x sometime !x.  
Some authors use instead the same arithmetic operations as ordinary algebra reinterpreted for Boolean 
algebra, treating xy as synonymous with x∧y and x+y with x∨y. 

 

 
Figure 1. Logic Gate 

 
 
5. Structured Query Language(SQL) 

 
SQL was developed at IBM by Donald D. Chamberlin and Raymond F.Boyce in the early 1970. 

SQL was designed to manipulate and retrieve data stored in IBM's original quasi-relational database 
management system, System R, which a group at IBM San Jose Research Laboratory had developed 
during the 1970. SQL is a database computer language designed for managing data in relational 
database management systems (RDBMS). The Structured Query Language (SQL) defines the methods 
used to create and manipulate relational databases on all major platforms. 

 
Table 1. Basic SQL Command 

SQL Command Description 
SELECT 
INSERT 
UPDATE 
DELETE 
CREATE object 
ALTER object 
DROP object 

Retrieves data from a table. 
Add new Data to a table. 
Modifies existing data in a table. 
Removes existing data from a table. 
Create a new database object 
Modifies the structure of an object. 
Removes an existing database object. 

 
SQL query syntax 
Select [Distinct] <column-name(s), arithmetic expression> 
From <table-name(s)> 
[Where <condition>] 
[Group by <column-name(s)>] 
[Having <condition>] 
[Order by <column-name(s)> [ASC/DESC]] 
 
SQL Insert syntax 
Insert into <table-name> 
[(column-name-1, column-name-2,…)] 
Value (<value-1,value-2,…>) 

 
6. SQL Model in Language Encapsulation and Compression Technique for 
Association Rules Mining(SMILE-ARM) 

 
An Algorithm of SMILE-ARM, The step of algorithm is 1. Find frequent itemsets    minimum 

support. 2. Compress data by create a new structure are same pattern of transactions. 3. Generate 
Candidate by SQL from candidate 2-itemsets until k-itemsets by generate candidate based on actual 
data in pattern transactions.  SMILE_ARM is able to generate any candidate itemsets without previous 
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candidate such as create candidate 4-itemsets do not need to create candidate 3-itemsets or candidate 2-
itemsets. SMILE-ARM is able to apply to do classification.  
 
Algorithm: Pseudo-code of SMILE-ARM. 
Tid_cl, a table of transaction 
Tid_Pattern, a table contain Pattern Data 
Final_Candidate , the result of candidates   Min_sup 
Tid_Item, Itemset 
Tid, transaction ID 
Min_sup, Minimum support count all transactions 
 
Procedure Find L1 
(1) for each itemset count  Tk    Tid_cl; 
(2) Delete Tk < Min_sup; 
(3) add to Final_Candidate; 
 
Procedure Compress Structure 
(1) for each Tid , Tidk   L1 { 
(2)      if Tid <> Tid_Patternk  then 
(3)          Create Tid_Patternk;\\  Create Pattern;    
(4)      else         
(5)          Tid_Patternk++; 
(6) } 
 
Procedure SQL_Command(k) 
(1) Insert into Final_Candidate (Candidate, Count_Items, xdim) 
(2) Select Tk.Tid_Item+Tk-1.Tid_Item+…+T1.Tid_Item, sum(T1.Feq),k 
(3) From Tid_Pattern as T1, Tid_Pattern as  T2,…,Tid_Pattern as Tk 
(4) Where (T1.Tid_Item < T2.Tid_Item and T2.Tid_Item < T3.Tid_Item and … Tk-1.Tid_Item <            
 Tk.Tid_Item ) and  (T1.Tid=T2.Tid and T2.Tid=T3.Tid and …Tk-1.Tid =Tk.Tid) 
(5) Group by Tk.Tid_item, Tk-1.Tid_item,…, T1.Tid_item 
(6) Having sum(T1.Feq) >= min_Sup 
 
Procedure Generate Associate Data 
(1) Find L1;  
(2) Compress Structure; 
(3) for each (k=2; k = Max_Itemk; k++){ 
(4)        SQL_Model(k); 
(5) } 
Example:  Minimum support 10 percent = 1.5  
  

Table 2. Transaction Data 
Trans# Item  Trans# Item  Trans# Item 
T001 
T001 
T001 
T002 
T002 
T003 
T003 
T004 
T004 
T004 
T004 
T005 
T005 

I1 
I2 
I5 
I2 
I4 
I2 
I3 
I1 
I2 
I3 
I4 
I1 
I3 

 T006 
T006 
T007 
T007 
T008 
T008 
T008 
T009 
T009 
T009 
T010 
T010 
T010 

I2 
I3 
I2 
I3 
I1 
I2 
I3 
I1 
I2 
I3 
I1 
I2 
I4 

 T011 
T011 
T011 
T012 
T012 
T013 
T013 
T013 
T014 
T014 
T014 
T015 
T015 

I1 
I2 
I3 
I2 
I3 
I1 
I2 
I4 
I1 
I2 
I3 
I2 
I3 
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Step 1: Find L1 
The algorithm scans all of transactions in order to find frequency item of each itemsets and remove 
frequency item less than minimum support. 
 

Table 3. Support Count 
 Itemsets Support count  
 {I1} 

{I2} 
{I3} 
{I4} 
{I5} 

9 
14 
11 
4 
1 

 

 
Eliminate {I5} lower Minimum Support 
 

Table 4. Result of candidate-1 Itemset 
 Itemsets Support count  
 {I1} 

{I2} 
{I3} 
{I4} 

9 
14 
11 
4 

 

 
Step 2: Compress Data 
Count transactions are same items such as T003 = {I2, I3},  T006 = {I2, I3}, T007 = {I2, I3}, T012 = 
{I2, I3} and T015 = {I2, I3} or {I2, I3} = {(T003), (T006), (T007), (T012), (T015)} = 5. Create pattern 
is same structure such as T001 ® create Pattern-1, T002® Pattern-2, {T003, T006, T007, T012, 
T015}®Pattern-3, T004® Pattern-4, {T010, T013 }® Pattern-5, T005® Pattern-6 and  {T008, 
T009, T011, T014}®Pattern-7.  
 

Table 5. Data Compression 
 

 
I1 I2 I3 I4 Count 

 Pattern-1 X X 
  

1 
 Pattern-2 

 
X 

 
X 1 

 Pattern-3 
 

X X 
 

5 
 Pattern-4 X X X X 1 
 Pattern-5 X X 

 
X 2 

 Pattern-6 X 
 

X 
 

1 
 Pattern-7 X X X 

 
4 

 
Step 3: Find Candidate 2-Itemsets to k-Itemsets 
To discover the set of frequency 2-itemsets to k-Itemsets by SQL Model, Generate candidate from 
Pattern table. 
 
SQL Command for candidate 2-Itemsets. 
Insert into CL_Final (Candidate,Count_Items,xdim) 
Select T2.Tid_Item+T1.Tid_Item, sum(T1.Feq),2 
From Tid_Pattern as T1, Tid_Pattern as  T2 
Where (T1.Tid_Item < T2.Tid_Item) 
     and (T1.Tid=T2.Tid) 
Group by T2.Tid_item, T1.Tid_item 
Having sum (T1.Feq) >= Min_Support 
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Figure 2. Generate Candidate K-Itemsets 

 
Table 6. Result of candidate=2 Itemsets 

Pattern Data Count Final Candidate Candiates xdim 
1 {I1,I2} 1 {I1,I2} 8 2 
2 {I2,I4} 1 {I1,I3} 6 2 
3 {I2,I3} 5 {I1,I4} 3 2 
4 {I1,I2,I3,I4} 1 {I2,I3} 10 2 
5 {I1,I2,I4} 2 {I2,I4} 4 2 
6 {I1,I3} 1  
7 {I1,I2,I3} 4    

 
SQL Command for candidate 3-itemsets. 
Insert into Final_Candidate (Candidate,Count_Items,3) 
Select T3.Tid_Item +T2.Tid_Item+T1.Tid_Item,           
           sum(T1.Feq),2 
From Tid_Pattern as T1, Tid_Pattern as  T2, Tid_Pattern as  T3 
Where (T1.Tid_Item < T2.Tid_Item and T2.Tid_Item <             
            T3.Tid_Item) and (T1.Tid=T2.Tid and  
            T2.Tid=T3.Tid) 
Group by T3.Tid_item, T2.Tid_item, T1.Tid_item 
Having sum (T1.Feq) >= Min_Support 
 
Attribute of <xdim> is for control to generate candidates on each step.  
 

Table 7. Generate from Candidate-3 Itemsets 
Pattern Data Count Final Candidate Candidate xdim 

1 {I1,I2} 1 {I1,I2,I3} 5 3 
2 {I2,I4} 1 {I1,I3,I4} 3 3 
3 {I2,I3} 5    
4 {I1,I2,I3,I4} 1    
5 {I1,I2,I4} 2    
6 {I1,I3} 1    
7 {I1,I2,I3} 4    

 
Final Result: Candidate-Itemsets ³   Min_Support 
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Table 8. Final Result 
 Itemsets Final Candidate  
 {I1} 

{I2} 
{I3} 
{I4} 
{I1,I2} 
{I1,I3} 
{I1,I4} 
{I2,I3} 
{I2,I4} 
{I1,I2,I3} 
{I1,I3,I4} 

9 
14 
11 
4 
8 
6 
3 

10 
4 
5 
3 

 

 
7. Experimental results 

 
In this section, we performed a set of experiments to evaluate the effectiveness of SMILE-ARM. 

The experiment dataset consists of two kinds of data. First, data from Phranakorn Yontrakarn Co., Ltd.  
This company sales and offer car services to discover association data.  Second, generate sampling data.  
The experiment of four criteria, Firstly, Increase amount of records from 10,000 to 50,000 records and 
fixed 10 items (Figure3, Figure4).  Secondly, increase of item and fixed amount of records = 50,000 
(Figure5, Figure6). Thirdly, increase amount of records from 10,000 to 190,000 records (Figure7). 
Fourthly, decrease of minimum support and fixed items and amount of records (Figure8).   

 
Experiment 1: Increase number of records.  Step 10,000 records. Fixed 10 items. Compare Apriori 

Rule with SQL Model in Language Encapsulation and Compression Technique for Association Rules 
Mining (SMILE-ARM). Apriori rule, with increasing amount of record will take longer time.  SMILE-
ARM has 35 times higher mining efficiency in execution time than Apriori Rule (10 Itemsets, 50,000 
records).    

 

 
Figure 3. Data from Phranakorn Yontrakarn Co., Ltd. Itemsets=10, Increase number of records 
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Figure 4. Sampling Data, Itemsets =10, Increase number of records 

 
Experiment 2: Increase items. Fixed number of records 50,000 records. Compare Apriori Rule with 

SQL Model in Language Encapsulation and Compression Technique for Association Rules Mining 
(SMILE-ARM). Apriori rule, with increasing itemsets will take longer time.  SMILE-ARM has 30 
times higher mining efficiency in execution time than Apriori Rule (30 Itemsets, 50,000 records).  That 
it mean amount of records will be slightly affected SMILE-ARM but Apriori rule performance takes a 
lot of time. 

 

 
Figure 5. Data from Phranakorn Yontrakarn,  Increase Itemsets, Fixed  number of records = 50,000 

records 
 

 
Figure 6. Sampling Data, Number of records=50,000 records, Increase Itemsets 
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Experiment 3: Increase number of records from 10,000  to 190,000 records.  Compare Apriori Rule 
with SQL Model in Language Encapsulation and Compression Technique for Association Rules 
Mining (SMILE-ARM).  Real-life data from Phranakorn Yontrakarn Co., Ltd. shows effective 
performance between Apriori rule and SMILE-ARM as 190,000 records, Apriori rule takes 238 
seconds but SMILE-ARM takes only 6 seconds on processing time. SMILE-ARM has 39 times higher 
mining efficiency in execution time than Apriori Rule (10 Itemsets, 190,000 records).   

 

 
Figure 7. Data from Phranakorn Yontrakarn Co., Ltd.  Increase number of recoords and Increase 

Itemsets 
 
Experiment 4: Decrease of minimum support from 60% to 10%. The step to change minimum 

support, Apriori rule low minimum support takes time to process 464 sec. but SMILE-ARM takes time 
to process 3 sec. SMILE-ARM has 154 times higher mining efficiency in execution time than Apriori 
Rule (10 Itemsets, 20,000 records, density 80%). SMILE-ARM slightly affects the performance 
because SMILE-ARM compresses data, SQL is generate candidate direct to database without 
temporary candidates.   

 

 
Figure 8. Performance of Apriori Rule and SMILE-ARM 

 
Table 9. Number of candidates 

Minimum Support (%) Number of Candidates 
10 
20 
30 
40 
50 
60 

1023 
1012 
847 
509 
175 
56 

 
The result of experiments, SQL Model in Language Encapsulation and Compression 

Technique for Association Rules Mining (SMILE-ARM) discovers an association is faster than 
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Apriori rule. If increasing the number of records, Apriori rule will take time to read the whole 
data.  If increasing the number of items, Apriori rule will create more candidates depending on 
the number of items but SQL Model in Language Encapsulation and Compression Technique for 
Association Rules Mining (SMILE-ARM) takes shorter time because it will compress data and 
SQL is generate candidate on-the-fly direct to database without temporary candidates. 

 
8. Conclusion 

 
The paper proposes a new association rule mining theoretic models and designs a new algorithm 

based on established theories. SQL Model in Language Encapsulation and Compression Technique for 
Association Rules Mining (SMILE-ARM) is compresses data and processes only the actual data by 
SQL command. SQL is very effective in terms of performance. SMILE-ARM is able to discover data 
more than twenty times faster than Apriori rule.   

From the experiments, we found that the number of records and number of Items would not affect 
the performance of SQL Model in Language Encapsulation and Compression Technique for 
Association Rules Mining (SMILE-ARM).  The results is a especially amplified in itemsets from 
experiment 4 where we used data from 10,000 records, 10 Items and density 80%. SMILE-ARM has 
proven to have the best performance. We believe that SMILE-ARM is an important way to find 
Association data or Data mining and the best of algorithm for classification. 
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