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EXTENDING (τ-)TILTING SUBCATEGORIES

AND (CO)SILTING MODULES

J. ASADOLLAHI, F. PADASHNIK, S. SADEGHI AND H. TREFFINGER

Abstract. Let B be a finite dimensional algebra and A = B[P0] be the one-point extension
algebra of B with respect to the finitely generated projective B-module P0. The categories of
B-modules and A-modules are related by two adjoint functors R and E, called the restriction
and the extension functors, respectively. Based on the nice homological properties of these two
functors, restriction and extension of some notions such as tilting and τ -tilting modules have
been studied in the category of finitely presented modules, i.e. small mod. In this paper, we
investigate the behaviour of tilting and support τ -tilting subcategories with respect to these
two functors. Moreover, we investigate the restriction and the extension of special related
modules such as finendo quasi-tilting modules, silting modules, and cosilting modules. Our
studies will be done in the category of all modules, which will be called large Mod. Based
on such study, in addition to the new results, classical results are extended, not only from
modules to subcategories but also from small mod to large Mod.

1. Introduction

All algebras in this paper are assumed to be finite dimensional over an algebraically closed
field k. Let B be such an algebra and A = B[P0] be the one-point extension algebra of B with
respect to a fixed finitely generated projective B-module P0. It is shown by Assem, Happel and
Trepode [7] that one can construct a tilting B-module, resp. a tilting A-module, starting from a
basic tilting A-module, resp. a basic tilting B-module. To do this they considered two functors
R : mod-A −→ mod-B and E : mod-B −→ mod-A, called restriction and extension functors,
respectively. It turned out that these two functors, being an adjoint pair, have nice homological
properties. P. Suarez [18] followed this approach and studied the restriction and extension of
(support) τ -tilting modules. The notion of τ -tilting theory was introduced by Adachi, Iyama
and Reiten in [1] as a new approach for studying two classical branches of the representation
theory of finite dimensional algebras, namely tilting theory and Auslander-Reiten theory.

Based on the importance of the notions of tilting and τ -tilting modules, they have been
studied, and also generalized, in different settings.

For instance, both notions have been extended to the categorical level. Beligiannis [9] devel-
oped a fully general tilting theory in an arbitrary abelian category in an extensive manuscript
that is started in 2004 and announced at several conferences later but still not made publicly
available, see [8, Remark 1.9]. More recently, in [8], the authors reconsidered tilting theory in
an abelian category with enough projective objects. On the other hand, the notion of τ -tilting
subcategories were studied in [12] for functor categories. The more general notion of τ -tilting
subcategories in an abelian category is studied in [15]. See preliminaries section for more details.
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Furthermore, silting modules, introduced and studied in [4], provide a wide generalisation of
tilting modules as well as support τ -tilting modules over finite dimensional algebras to arbitrary
rings. By Proposition 3.10 of [4] all tilting modules are silting, and by Proposition 3.15 of [4]
over an artin algebra, a finite dimensional module is silting if and only if it is support τ -tilting.
Moreover, in the same paper, an extension of silting modules, i.e. finendo quasi-tilting modules,
is introduced and studied. While by [4, Proposition 3.10] all silting modules are finendo quasi-
tilting, it is known that the inclusion of silting modules in the class of finendo quasi-tilting
modules is proper [3, Example 5.4]. As the categorical dual of silting modules, the authors
of [10] introduced the notion of cosilting modules. We remark that there is a notion of cofinendo
quasi-cotilting modules in the literature; by [21] all quasi-cotilting modules are cofinendo and by
Theorem 4.18 of [20], quasi-cotilting modules and cosilting modules are the same.

Note that Keller and Vossieck in [14] introduced silting objects in triangulated categories,
as important tools in the study of homotopy or derived categories and showed that they are
in correspondence with other concepts such as (co-)t-structures or simple-minded collections of
objects.

A natural attempt now is to investigate the behaviour of tilting and τ -tilting subcategories on
one hand and silting modules, finendo quasi-tilting modules, and cosilting modules on the other
hand, under the restriction and extension functors. This will be the main theme of this paper.
To be able to investigate such behaviour, we need to work within the category of all modules,
say large Mod.

The paper is structured as follows. Section 2 is devoted to study the module category of
one-point extension algebras. We show that similar to the nice homological properties of the
restriction and extension functors hold true in the large module category. In particular, when
A = B[P0] is the one point extension algebra ofB with respect to the finitely generated projective
B-module P0, then we have the following recollement

(1.1) Mod-k
i∗ // Mod-A

R //

v=HomA(k,−)

dd

u=k⊗A−

zz
Mod-B.

E

dd

L=AeB⊗B−

yy

In Section 3 we study tilting subcategories. It is shown that in an abelian category with enough
projective objects, the definition of tilting subcategories introduced in [8] is equivalent to the
definition of [9]. Using this fact, in Section 4 the behaviour of tilting subcategories with respect
to the restriction and extension functor will be studied. Results of this section, provide an
extensive generalization of the main result of [7].

Then we turn our attention to the study of restriction and extension of certain important
modules in the module category of an algebra. The modules we consider are silting modules,
finendo quasi-tilting modules and cosilting modules. This will be done in Section 5.
τ -tilting subcategories of abelian categories are a wide generalization of τ -tilting modules.

Let A be an abelian category with enough projective objects. By Definition 2.1 of [15] an
additively closed full subcategory T of A is called a weak support τ -tilting subcategory if
Ext1A (T1,Fac(T2)) = 0, for all T1, T2 ∈ T and for every projective object P in A , there exists

an exact sequence P
f

−→ T 0 −→ T 1 −→ 0 such that T 0 and T 1 are in T and f is a left T -
approximation of P . In Section 6 the restriction and extension of τ -tilting subcategories will
be studied. On the other hand, there is a bijection between the collection of all equivalence
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classes of τ -tilting subcategories of Mod-R and the collection of all equivalence classes of finendo
quasi-tilting R-modules, when R is an arbitrary ring [6, Theorem 8.1.10]. In view of this result,
we are able to show that restriction of a finendo quasi-tilting module T in Mod-A, i.e. RT , is a
finendo quasi-tilting module in Mod-B.

By Theorem 2.29 of [8], we know that there are bijections between tilting subcategories of
A , where A is an abelian category with enough projective objects, and special triples of full
subcategories of A , the so-called cotorsion torsion triples. Moreover, Theorem 5.7 of [6] implies
that there is a bijection between the collection of all support τ -tilting subcategories of A and the
collection of all τ -cotorsion torsion triples of A . Based on these bijections we study explicitly
the behaviour of these triples under the restriction and extension functors. This is the content
of the last section of the paper.

Notations and conventions. Throughout the paper, all rings are associative with identity.
Let R be such a ring. The category of all (left) R-modules will be denoted by Mod-R. We let
Prj-R, resp. Inj-R, denote the full subcategory of Mod-R consisting of all projective, resp.
injective, R-modules.

For a class X in Mod-R, let Add-X , resp. add-X , denote the class of all modules isomorphic
to a direct summand of an arbitrary direct sum, resp. finite direct sum, of copies of modules in
X . Also let Gen(X ), resp. Fac(X ), be the subcategory of Mod-R consisting of all R-modules
isomorphic to an epimorphic images of modules in Add-X , resp. in add-X . Obviously we have
Gen(X ) = Fac(Add-X ). Dually, let Prod(X ) denote the subcategory of Mod-R consisting of
all modules isomorphic to a direct summand of an arbitrary direct product of copies of modules
in X . We also let Cogen(X ) to be the subcategory of Mod-R consisting of all R-modules that
can be embedded into a direct product of copies of modules in X .

Finally, for an R-module M , let Pres(M) denote the subcategory of Mod-R consisting of all
modules that admit an Add-M -presentation, i.e. all modules X , for them there exists an exact
sequence M1 −→ M0 −→ X −→ 0, such that M0,M1 ∈ Add-M and let Copres(M) be the
subcategory of Mod-R consisting of all modules that admit an Prod(M)-copresentation.

2. One-point extension algebras

Let k be an algebraically closed field and B be a finite dimensional k-algebra. Let Mod-B
denote the category of (left) B-modules and mod-B denote its subcategory consisting of finitely
presented B-modules.

Let {e1, . . . , en} be a basic set of primitive idempotents of B. It is known [2, Theorem
27.11] that projective B-modules are direct sums of (possibly infinitely many) copies of Bei, for
1 ≤ i ≤ n. When B is a bounded path algebra of a quiver Q, these idempotents are in bijection
with the vertices of Q. So, the only difference between the big projectives, i.e. projectives in
Mod-B, and small projectives, i.e. projectives in mod-B, are the multiplicities, but there are no
new indecomposable projectives showing up.

Let P0 be a fixed finitely generated projective B-module. The one-point extension of B by
P0, which is denoted by A = B[P0], is the matrix algebra

A =

(

B P0

0 k

)

with the ordinary addition of matrices and the multiplication induced from the module structure
of P0.
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It is known that B is a full convex subcategory of A and there exists a unique indecomposable
projective A-module P̃ which is not a projective B-module. Also, the simple top S of P̃ is an
injective A-module of projective dimension at most one.

Let eB denote the identity of B. The following two functors

R = HomA(AeB,−) : Mod-A −→ Mod-B

and

E = HomB(eBA,−) : Mod-B −→ Mod-A

are called restriction and extension functors, respectively.
It is known that (R, E) is an adjoint pair. More generally, they fit into the following recolle-

ment

(2.1) Mod-k
i∗ // Mod-A

R //

v=HomA(k,−)

dd

u=k⊗A−

zz
Mod-B.

E

dd

L=AeB⊗B−

yy

The functor R is exact since it is both a right and a left adjoint. Furthermore, since eBA
is a projective B-module, the functor E is also exact. It follows form the general properties
of the functors appearing in a recollement that R preserves projective and injective modules
and E preserves injective modules. Moreover, we can embed Mod-B in Mod-A under the usual
embedding functor. In particular, RX is a submodule of X .

We follow the convention of [7] and use letters X , Y and Z to denote the A-modules and use
letters M , N and L to denote the B-modules.

Remark 2.1. By restricting the categories of the recollement 2.1 to the corresponding subcat-
egories consisting of finitely presented modules we obtain the following recollement

(2.2) mod-k
i∗ // mod-A

R=HomA(AeB ,−) //

HomA(k,−)

dd

k⊗A−

zz
mod-B

E=HomB(eBA,−)

dd

AeB⊗B−

zz

which was considered in [7] and [18].

The proofs of the following properties of the restriction and extension functors are similar to
the proofs of Lemma 2.2 and Proposition 3.2 of [7], so we skip their proofs.

Lemma 2.2. Let X be an A-module and M be a B-module. There are short exact sequences

0 −→ RX −→ X −→ S′′ −→ 0

and

0 −→M −→ EM −→ S′ −→ 0

in Mod-A, where S′ and S′′ are in Add-S. They are called the restriction sequence of X and
the extension sequence of M , respectively.
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Following proposition collects some of the basic homological properties of the restriction and
extension functors. The proof of (1) can be found in Proposition 3.2, Theorem 3.10, of [16].
The proof of others are similar to the proof of Corollary 3.5, Proposition 3.6, Corollary 3.7 and
Lemma 4.5 of [7]. So we skip the proofs.

Recall that the right perpendicular category of S is the full subcategory of Mod-A defined by

Sperp := {X ∈ Mod-A | HomA(S,X) = 0, Ext1A(S,X) = 0}.

Proposition 2.3. Let X and Y be A-modules and M be a B-module.

(1) If X ∈ Sperp, then there is a functorial isomorphism X ∼= ERX. Moreover, for all
j ≥ 0, there is an isomorphism

ExtjA(EM,X) ∼= ExtjB(M,RX).

(2) For all j ≥ 0, there is an isomorphism

ExtjA(X, EM) ∼= ExtjB(RX,M).

(3) There is an epimorphism

Ext1A(X,Y ) −→ Ext1B(RX,RY ).

(4) For each j ≥ 2, there is an isomorphism

ExtjA(X,Y ) ∼= ExtjB(RX,RY ).

Finally, recall that, similar to the proof of Proposition 2.5 of [7], one can deduce that the
kernel and the the cokernel of the unit of adjunction δX : X −→ ERX are in Add-S. Moreover,
δX is a monomorphism if and only if HomA(S,X) = 0. In the following easy lemma we show
that δX is an epimorphism if and only if Ext1A(S,X) = 0.

Lemma 2.4. With the above notations, δX is an epimorphism if and only if Ext1A(S,X) = 0.

Proof. Assume that δX is an epimorphism. So we have the short exact sequence

0 −→ S0 −→ X
δX−→ ERX −→ 0,

where S0 ∈ Add-S. The induced long exact sequence of Ext groups, in view of the facts that S0

is injective and ERX ∈ Sperp, implies the result. For the converse, consider the exact sequence

0 −→ S0 −→ X
δX−→ ERX −→ S1 −→ 0,

with S0, S1 ∈ Add-S. Break out it into two short exact sequences

0 → S0 → X → L→ 0 and 0 → L→ ERX → S1 → 0.

The vanishing of Ext1A(S,X), using the first sequence, implies the vanishing of Ext1A(S,L). Now
using this, we get from the second sequence that HomA(S, S1) = 0. This implies that S1 = 0.
Hence δX is an epimorphism. �

Setup 2.5. Throughout the paper, k is an algebraically closed field, B is a finite dimensional
k-algebra and A is the one point extension of B by a fixed finitely generated projective B-module
P0. We also let R : Mod-A −→ Mod-B denote the restriction functor and E : Mod-B −→ Mod-A
denote the extension functor.
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3. Tilting subcategories

In this section, we recall the definition of tilting subcategories of an abelian category A ,
introduced by Beligiannis [9].

Let us begin by recalling some facts. Let A be an abelian category and X be a full sub-
category of A . A morphism ϕ : X −→ M , where M is an object of A , is called a right
X -approximation of M if X ∈ X and every other morphism ψ : X ′ −→ M , with X ′ ∈ X ,
factors through ϕ. If every object in A admits a right X -approximation, then X is called a con-
travariantly finite subcategory of A . The notions of a left X -approximation and a covariantly
finite subcategory are defined dually. If X is both a contravariantly finite and a covariantly fi-
nite subcategory of A , then it is called a functorially finite subcategory of A . If for every object
M in A there exists a monic 0 −→ M −→ X , where X ∈ X , then X is called a cogenerating
subcategory of A . Generating subcategories are defined dually.

Finally, for an integer n ≥ 0, we set

X
⊥n := {M ∈ A | ExtnA (X ,M) = 0},

X
⊥ := {M ∈ A | ExtiA (X ,M) = 0, ∀ i ≥ 1}.

The notions ⊥nX and ⊥X are defined dually. Note that Ext0A serves for HomA .
Now we have the necessary background for the following definition of [9].

Definition 3.1. Let A be an abelian category. An additively closed subcategory T of A is
called a tilting subcategory if

(i) T is a contravariantly finite subcategory of A .
(ii) T ⊥ = Fac(T ).
(iii) T ⊥ contains a cogenerating subcategory C of A .

Note that if A has enough injective objects, then the condition (iii) in the above definition
automatically holds true, because in this case, T ⊥ contains the full subcategory of all injective
objects of A as a cogenerating subcategory.

Recently in [8, Definition 2.17] the following definition for a tilting subcategory in an abelian
category with enough projective objects is studied.

Definition 3.2. Let A be an abelian category with enough projectives. An additively closed
subcategory T of A is called a tilting subcategory if

(i) T is contravariantly finite in A .
(ii) Ext1A (T1, T2) = 0, for all T1, T2 ∈ T .
(iii) Every object T ∈ T has projective dimension at most 1.
(iv) For every projective object P in A , there exists a short exact sequence

0 −→ P −→ T 0 −→ T 1 −→ 0

with T i ∈ T .

An additively closed full subcategoryT of A which satisfies the conditions (ii)−(iv) of Definition
3.2, is called a weak tilting subcategory.

Recall that a subcategory X of A is additively closed if it is closed under taking finite direct
sums and direct summands.

Remark 3.3. An abelian category A is called noetherian if every ascending chain of subobjects
of an object eventually becomes stationary. By [8, Proposition 2.20], if A is noetherian, then
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every weak tilting subcategory of A is automatically contravariantly finite. The proof of this is
based on the fact that in a noetherian abelian category a notion of trace exists. Although Mod-R
is not in general a noetherian category, but trace always exists, see [2] or page 2 of [11]. Recall
that, for a class X of R-modules, the trace of X in an R-module M , denoted by TrX (M), is
defined to be the unique largest submodule of M that belongs to Fac(X ). Therefore, it follows,
using the same proof as in the proof of Proposition 2.20 of [8], that any weak tilting subcategory
of Mod-R is automatically a tilting subcategory.

The following theorem is proved by Beligiannis, see Remark 1.9 of [8]. Since there is no
published account for this fact, we present a proof here.

Theorem 3.4. Let A = Mod-R. Let T be an additive subcategory of A . Then T is a tilting
subcategory in the sense of Definition 3.1 if and only if it is a tilting subcategory of A in the
sense of Definition 3.2.

We split out the proof to the following two propositions.

Proposition 3.5. Let T be a tilting subcategory of A = Mod-R in the sense of Definition 3.1.
Then T is a tilting subcategory of A in the sense of Definition 3.2.

Proof. We just need to show the validity of the Conditions (ii)-(iv) of 3.2. Obviously, every
T ∈ T belongs to Fac(T ) = T ⊥. Hence the Condition (ii) holds true. To show the validity
of the Condition (iii), we show that Ext2R(T,M) = 0, for every T ∈ T and every M ∈ Mod-R.
Consider the short exact sequence

0 −→M −→ E −→ D −→ 0

with E ∈ Inj-R. This, by applying the functor HomR(T,−), induces the exact sequence

0 −→ Ext1R(T,D) −→ Ext2R(T,M) −→ 0

of abelian groups. But E is in T ⊥ and T ⊥ = Fac(T ) is closed under factor modules. So
D ∈ T ⊥ and hence Ext1R(T,D) = 0. Therefore Ext2R(T,M) = 0. To see the validity of the
Condition (iv), let P be a projective R-module. Consider the short exact sequence

0 −→ P −→ E −→ D −→ 0.

Since E is in T ⊥ = Fac(T ), there exists an epimorphism T −→ E −→ 0, where T ∈ T . The
map P −→ E factors through T , because P is projective, and hence we get the short exact
sequence

0 −→ P −→ T −→ L −→ 0.

Now since L ∈ Fac(T ) and T is a contravariantly finite subcategory of Mod-R, there exists a
short exact sequence

0 −→ K −→ T 1 h
−→ L −→ 0,

where T 1 ∈ T and h is a right T -approximation of L. By applying the functor HomA (T ,−)
to the above short exact sequence and using the fact that h is a right T -approximation, we get
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K ∈ T ⊥. Consider the pull back diagram

0

��

0

��
K

��

K

��
0 // P // T 0

��

// T 1

��

// 0

0 // P // T

��

// L //

��

0

0 0

and use the fact that T ⊥ is closed under extensions, to get that T 0 ∈ T ⊥ = Fac(T ). By
the similar argument to that we just applied to L, applying this time to T 0, we get the exact
sequence

0 −→ Y −→ T ′ −→ T 0 −→ 0,

where T ′ ∈ T and Y ∈ T ⊥. But Ext1R(T
0, Y ) = 0, so the sequence splits. Therefore T 0 is a

summand of T ′. Hence T 0 ∈ T and the short exact sequence

0 −→ P −→ T 0 −→ T 1 −→ 0

is the desired one. �

Proposition 3.6. Let T be a tilting subcategory of A = Mod-R in the sense of Definition 3.2.
Then T is a tilting subcategory of A in the sense of Definition 3.1.

Proof. We just need to show the validity of the Condition (ii) of Definition 3.1. LetM ∈ Fac(T ).
Consider the short exact sequence

0 −→ K −→ T −→M −→ 0

with T ∈ T . Let T ′ ∈ T . By applying the functor HomR(T
′,−) on the above short exact

sequence, we get the long exact sequence

Ext1R(T
′, T ) −→ Ext1R(T

′,M) −→ Ext2R(T
′,K)

of abelian groups. By the Conditions (ii) and (iii) of 3.2, we have Ext1R(T
′, T ) = 0 and

Ext2R(T
′,K) = 0. Hence for all i ≥ 1, ExtiR(T

′,M) = 0. So M ∈ T ⊥. Conversely, let M ∈ T ⊥

and TrT (M) denote the trace of T in M , the unique largest submodule of M that belongs
to Fac(T ). The short exact sequence in the Condition (iv) of 3.2, induces the commutative
diagram

HomR(T
0,TrT 0(M)) //

∼=

��

HomR(P,TrT 0(M))

β

��
HomR(T

0,M)
α // HomR(P,M)

where β is a monomorphism and, since T 1 ∈ T , α is an epimorphism. Therefore β is an
isomorphism and TrT0(M) = M. Hence M ∈ Fac(T ). �
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Remark 3.7. Note that Proposition 3.5 is valid with the similar proof for an arbitrary abelian
category with enough projective objects. Moreover, Proposition 3.6 holds true for a noetherian
abelian category with enough projective objects.

4. Extending tilting subcategories

In this section we study the behaviour of the tilting subcategories of Mod-A and Mod-B under
the restriction functor R and the extension functor E . Such study is motivated by [7, 4.1] and
provides a wide generalization of their results.

For a subcategory T of Mod-A, we set RT = {RT : T ∈ T }. Similarly, for a subcategory
T ′ of Mod-B, we set ET ′ = {EM : M ∈ T ′}. Furthermore, we set ET ′ ⊕S := Add-{ET ′, S}
and E T ′ ⊕ S := add-{E T ′, S}, where we have fixed S for the simple injective A-module i∗(k).

Theorem 4.1. (a) Let T be a tilting subcategory of Mod-A. Then T ′ = RT is a tilting
subcategory of Mod-B.

(b) Let T ′ be a tilting subcategory of Mod-B. Then ET ′ ⊕ S is a tilting subcategory of
Mod-A.

Proof. (a) We show that T ′ satisfies the conditions of Definition 3.1. Let M ∈ Fac(T ′). There
exists a short exact sequence

0 −→ K −→ RT 1 −→M −→ 0

where T 1 ∈ T . Assume that RT 0 ∈ T ′ = RT . By applying the functor HomB(RT
0,−) to the

above short exact sequence we get the following exact sequence

Ext1B(RT
0,RT 1) −→ Ext1B(RT

0,M) −→ Ext2B(RT
0,K).

Since T 0, T 1 ∈ T and T is a tilting subcategory of Mod-A, we have Ext1A(T
0, T 1) = 0 and

pdAT
0 ≤ 1. So by the statements (2) and (4) of Proposition 2.3, we have Ext1B(RT

0,RT 1) = 0
and pdBRT

0 ≤ 1. Hence we get Ext1B(T
′,M) = 0 and therefore M ∈ T ′⊥. Now we show the

reverse inclusion. Let M ∈ T ′⊥. By the statement (2) of Proposition 2.3, EM ∈ T ⊥. Since
T is a tilting subcategory of Mod-A, T ⊥ = Fac(T ). Hence EM ∈ Fac(T ) and so there is an
epimorphism f : T −→ EM such that T ∈ T . By using the restriction and extension sequences
we have the following commutative diagram

0 // RT //

f ′

��

T //

f

��

S′ //

f ′′

��

0

0 // M // EM // S′′ // 0

where f ′ = Rf : RT −→ REM ∼= M . Now by the Snake lemma, we have an epimorphism
g : Kerf ′′ −→ Cokerf ′. But Cokerf ′ = 0, since Kerf ′′ ∈ Add-S and Cokerf ′ ∈ Mod-B.
Therefore, f ′ is an epimorphism and M ∈ Fac(RT ). The last condition is valid because Mod-B
has enough injective objects. Hence T ′ is a weak tilting subcategory of Mod-B. Now the result
follows from Remark 3.3.

(b) We proceed as in the proof of part (a). The inclusion Fac(ET ′⊕S) ⊆ (ET ′⊕S)⊥ follows
from Proposition 2.3. Now let X ∈ (ET ′ ⊕ S)⊥. Let X = X ′ ⊕ S, where X ′ does not have
S as a summand. So HomA(S,X

′) = 0. On the other hand, since Ext1A(ET ′ ⊕ S,X) = 0, we
have Ext1A(S,X

′) = 0. Therefore, X ′ ∈ Sperp. By the statement (1) of Proposition 2.3, we
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get Ext1B(T
′,RX ′) = 0 and so RX ′ ∈ T ′⊥. But T ′ is a tilting subcategory of Mod-B, so

T ′⊥ = Fac(T ′). Hence RX ′ ∈ Fac(T ′) and there exists an epimorphism

T ′ −→ RX ′ −→ 0

where T ′ ∈ T . Now since E is an exact functor and X ′ ∈ Sperp, we get the exact sequence

ET ′ −→ ERX ′ ∼= X ′ −→ 0

in which we conclude X ′ ∈ Fac(ET ′) and X ∈ Fac(ET ′ ⊕ S). The proof now is completed in
view of Remark 3.3. �

Using the same argument as in the proof of the above theorem, similar result could be proved
in small mod. So we just state the theorem and skip the proof.

Theorem 4.2. (a) Let T be a tilting subcategory of mod-A. Then RT is a tilting subcat-
egory of mod-B.

(b) Let T ′ be a tilting subcategory of mod-B. Then E T ′ ⊕ S is a tilting subcategory of
mod-A.

As an immediate consequence we have the following corollary, that provides another proof for
Proposition 4.1 of [7]. Recall that a Λ-module T , where T is an artin algebra, is called a tilting
module if Ext1Λ(T, T ) = 0, the projective dimension of T , pdΛT is at most 1, and there exists a
short exact sequence 0 → Λ → T 0 → T 1 → 0, such that T 0 and T 1 are in add-T . It is easy to
see that if T is a tilting B-module , then add-T is a tilting subcategory of mod-B, see [6].

Corollary 4.3. (a) Let T be a tilting A-module. Then RT is a tilting B-module.
(b) Let T ′ be a tilting B-module. Then E T ′ ⊕ S is a tilting A-module.

Proof. (a). Let T be a tilting module in mod-A. Then add-T is a tilting subcategory of mod-A.
and so by Theorem 4.2, Radd-T is a tilting subcategory of mod-B. But clearly Radd-T =
add-RT . Hence RT is a tilting module in mod-B.

The statement (b) proves similarly. �

Remark 4.4. Our proof of the Theorem 4.2 is independent of the main result of [7]. However,
in the small mod, one can use Proposition 4.1 of [7]. Let T be a tilting subcategory of mod-A.
Since prj-A = add-A, by Proposition 3.42 of [17], there exists a tilting object T in T such that
T = add-T to provide another proof for Theorem 4.2. In fact, Proposition 4.1 of [7] implies
that RT is a tilting module in mod-B and hence add-RT is a tilting subcategory of mod-B.
But add-RT = Radd-T = RT implies that RT is a tilting subcategory of mod-B. The same
is true for the Statement (b) of the corollary.

5. Extending special modules

In this section we investigate and discuss the restriction and extension of finendo quasi-tilting
modules, silting modules and cosilting modules.

Recall that anR-module T is Ext-projective, resp. Ext-injective, with respect to a subcategory
X of Mod-R, if T ∈ X and Ext1R(T,X ) = 0, resp. Ext1R(X , T ) = 0.
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5.1. Silting modules. Let σ be a morphism in Prj-R. Let Dσ denote the class of all modules
M in Mod-R such that the induced morphism HomR(σ,M) is surjective.

Definition 5.1. (see [4]) Let T be an R-module. T is called

• finendo, if it is finitely generated over its endomorphism ring.
• quasi-tilting, if it is Ext-projective in Gen(T ) and Pres(T ) = Gen(T ).
• silting, if there exists a projective presentation σ of T such that Dσ = Gen(T ).

If T is both finendo and quasi-tilting it is called finendo quasi-tilting. By [4, Proposition 3.10],
every silting module is finendo quasi-tilting.

For the restriction of a silting module, we need an assumption on the vanishing of Ext.

Theorem 5.2. Let T be a silting A-module with respect to a projective presentation σ. Then
the following hold.

1. DRσ ⊆ Gen(RT ).
2. If Ext1A(S, T ) = 0, then Gen(RT ) ⊆ DRσ. In particular, RT is a silting B-module.

Proof. 1. Since T is a silting A-module, there exists a projective presentation Q1
σ

−→ Q0 of T
such that Dσ = Gen(T ). Since the functor R is exact and preserves projectives, the induces
sequence

RQ1
Rσ
−→ RQ0 −→ RT −→ 0

is a projective presentation of RT .
Let M ∈ DRσ. So there exists an epimorphism

HomB(RQ0,M) −→ HomB(RQ1,M) −→ 0.

Since (R, E) is an adjiont pair, we get an epimorphism

HomA(Q0, EM) −→ HomA(Q1, EM) −→ 0

which shows that EM ∈ Dσ = Gen(T ). Therefore REM ∼= M ∈ R(Gen(T )). But since the
functor R commutes with arbitrary direct sums, we haveM ∈ Gen(RT ). Hence we have proved
the statement 1.

2. Since Ext1A(S, T ) = 0, by Lemma 2.4, δT : T −→ ERT is an epimorphism. Let N ∈
Gen(RT ). There exists an epimorphism

⊕

RT −→ N −→ 0. Thus EN ∈ Gen(ERT ). Now
since δT is an epimorphism, EN ∈ Gen(T ). But Gen(T ) = Dσ implies that EN ∈ Dσ. Therefore
there exists an epimorphism

HomA(Q0, EN) −→ HomA(Q1, EN) −→ 0.

By using the adjoint pair (R, E) we have an epimorphism

HomB(RQ0, N) −→ HomB(RQ1, N) −→ 0

which shows that N ∈ DRσ . So Gen(RT ) ⊆ DRσ and hence DRσ = Gen(RT ). Therefore RT
is a silting B-module. �

Theorem 5.3. Let B and A be as in the Setup 2.5.

1. Let T be a finendo quasi-tilting module in Mod-A. Then RT is a finendo quasi-tilting
module in Mod-B.

2. Let T ′ be a finendo quasi-tilting B-module. Then ET ′ ⊕ S is a finendo quasi-tilting
A-module.



12 J. ASADOLLAHI, F. PADASHNIK, S. SADEGHI AND H. TREFFINGER

Proof. 1. For the proof of this statement, we use a bijection between finendo quasi-tilting modules
and support τ -tilting subcategories which comes in section 6, after Theorem 6.3.

2. First we show that ET ′⊕S is Ext-projective in Gen(ET ′⊕S). Let X ∈ Gen(ET ′⊕S). We
may assume that X = X ′ ⊕ S(I), where S(I) is a direct coproduct of I copies of S and X ′ does
not have any copy of S as a summand. Consider an epimorphism

(5.1)
⊕

(ET ′ ⊕ S) −→ X ′ −→ 0.

By applying the functor HomA(S,−) we get Ext1A(S,X
′) = 0. Hence X ′ ∈ Sperp and so

X ′ ∼= ERX ′.
Now by applying the functor R on the 5.1, we get an epimorphism

(5.2)
⊕

T ′ −→ RX ′ −→ 0,

which, in turn, implies thatRX ′ ∈ Gen(T ′). ThereforeX ′ = ERX ′ ∈ E(Gen(T ′)). SoX ′ = EM ,
for some M ∈ Gen(T ′). On the other hand, by adjoint property of adjoint pair (R, E), we have

Ext1A(ET
′, EM) = Ext1B(T

′,M).

Since T ′ is a finendo quasi-tilting B-module, it is Ext-projective in Gen(T ). So Ext1B(T
′,M) = 0.

Hence Ext1A(ET
′, EM) = 0. On the other hand, since A is a finite dimensional algebra, S(I) is

an injective A-module. Thus we conclude that

Ext1A(ET
′ ⊕ S,X ′ ⊕ S(I)) = 0,

which shows that ET ′ ⊕ S is Ext-projective in Gen(ET ′ ⊕ S).
Next, we show that Gen(ET ′ ⊕ S) ⊆ Pres(ET ′ ⊕ S). Let X ∈ Gen(ET ′ ⊕ S). By the similar

argument as in the first part of the proof, we have X = X ′ ⊕ S(I) such that X ′ ∈ E(Gen(T ′)).
Therefore RX ′ ∈ Gen(T ′). But since T ′ is finendo quasi-tilting, RX ′ ∈ Pres(T ′). Thus there
exists an exact sequence

T ′
1 −→ T ′

0 −→ RX ′ −→ 0

such that T ′
1, T

′
0 ∈ Add-T ′. By applying the exact functor E on the above exact sequence and

using the fact that X ′ ∈ Sperp, we get X ′ ∈ Pres(ET ′). Hence X = X ′ ⊕ S ∈ Pres(ET ′ ⊕ S).
Finally since T ′ is finitely generated over its endomorphism ring, we conclude that ET ⊕ S is

finitely generated over its endomorphism ring. The proof is hence complete. �

Let Λ be an artin algebra. A module T ∈ mod-Λ is called a support τ -tilting module [1] if
Ext1A (T,Fac(T )) = 0 and there exists an exact sequence

B
f

−→ T 0 −→ T 1 −→ 0

such that T 0, T 1 ∈ add-T and f is a left add-T -approximation, see [13].
Using previous result, we are able to provide another proof for the main result, i.e. Proposition

3.2, of [18].

Corollary 5.4. Let A = B[P0] as in the Setup 2.5.

(i) Let T be a support τ-tilting module of mod-A. Then RT is a support τ-tilting module
in mod-B.

(ii) Let T ′ be a support τ-tilting module of mod-B. Then ET ′ ⊕ S is a support τ-tilting
module in mod-A.
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Proof. By the main theorem of [19], over a finite dimensional algebra, finendo quasi-tilting
modules and support τ -tilting modules coincide. Hence the result follows from the Theorem
5.3. �

Remark 5.5. Let T ′ be a silting B-module. So by [4, Proposition 3.10] it is a finendo quasi-
tilting module. Hence by the above theorem ET ⊕S is a finendo quasi-tilting A-module. That is
the extension of a silting B-module is a finendo quasi-tilting A-module. However, it is not clear
if the extension of a silting B-module is a silting A-module.

5.2. Cosilting modules. In this subsection, we study the behaviour of cosilting modules over
the one-point extension algebras. Let ζ be a morphism in Inj-R. Let Bζ denote the class of all
modules M in Mod-R such that the induced morphism HomR(M, ζ) is surjective.

Definition 5.6. (See [5, Proposition 1.6], [21, Definition 2.1] and [10, Definition 3.1]) Let T be
an R-module. T is called

• cofinendo if there exists a right Prod(T )-approximation of an injective cogenerator
Mod-R.

• quasi-cotilting if it is Ext-injective in Cogen(T ) and Copres(T ) = Cogen(T ).
• cosilting if there is an injective copresentation ζ of T such that Cogen(T ) = Bζ .

By [21, Proposition 2.11], all quasi-cotilting R-modules are cofinendo. Moreover, by Theorem
4.18 of [20], quasi-cotilting modules and cosilting modules are coincide.

Theorem 5.7. Let B and A be as in the Setup 2.5.

1. Let C ∈ Sperp be a cosilting A-module. Then RC is a cosilting B-module.
2. Let C′ be a cosilting B-module. Then EC′ ⊕ S is a cosilting A-module.

Proof. 1. Since cosilting modules and quasi-cotilting modules are coincide, we show that RC is
quasi-cotilting. So we need to show that RC is Ext-injective in Cogen(RC) and Cogen(RC) ⊆
Copres(RC). Let M ∈ Cogen(RC). So EM ∈ Cogen(C) and therefore M ∈ R(Cogen(C)).
Hence M ∼= RX , where X ∈ Cogen(C). Since C ∈ Sperp, we have Ext1B(RX,RC)

∼=
Ext1A(ERX,C). Since C is a quasi-cotilting A-module and ERX = EM ∈ Cogen(C), so
Ext1A(ERX,C) = 0 and hence Ext1B(M,RC) = 0. Thus RC is Ext-injective in Cogen(RC).
Now we show Cogen(RC) ⊆ Copres(RC). Let M ∈ Cogen(RC). By the similar argument as in
the first part, we have M ∼= RX , where X ∈ Cogen(C). So by the assumption X ∈ Copres(C).
Hence there exists an exact sequence

0 −→ X −→ C0 −→ C1

such that Ci ∈ Add-(C). By applying the functor R to the above exact sequence we get
RX ∼=M ∈ Copres(RC), as we wanted.

2. Since C′ is a cosilting B-module, there exists an injective copresentation

0 −→ C′ −→ E0 ζ
−→ E1

of C′ such that Cogen(C′) = Bζ . By applying the exact functor E on the above exact sequence
and using the fact that E preserves injective modules, we get

0 −→ EC′ ⊕ S −→ EE0 ⊕ S
(Eζ 0)
−→ EE1,

which is an injective copresentation for EC′ ⊕ S. We claim that B(Eζ o) = Cogen(EC′ ⊕ S). To
prove the claim, first let X ∈ B(Eζ 0). We can assume that S is not a direct summand of X ,
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since it is clear that S is in both B(Eζ o) and Cogen(EC′ ⊕ S). Then the induced morphisms

HomA(X, EE
0 ⊕ S) −→ HomA(X, EE

1)

and hence the morphism

HomA(X, EE
0) −→ HomA(X, EE

1)

are epimorphisms. Therefore since (R, E) is an adjoint pair, the following sequence

HomB(RX,E
0) −→ HomB(RX,E

1) −→ 0,

is exact, which shows that RX ∈ Bζ = Cogen(C′). So there is a monomorphism 0 −→
RX −→

∏

C′ that induces the monomorphism 0 −→ ERX −→ E
∏

C′ =
∏

EC′. Since
S is not a summand of X , the morphism δX : X −→ ERX is a monomorphism. Thus we
get the monomorphism 0 −→ X −→

∏

EC′ which shows that X ∈ Cogen(EC′ ⊕ S). Hence
B(Eζ 0) ⊆ Cogen(EC′ ⊕ S). For the converse inclusion, let Y ∈ Cogen(EC′ ⊕ S). We assume

that Y = Y ′⊕S(I) such that S is not a direct summand of Y ′. Then there exists a monomorphism

0 −→ Y ′ −→
∏

(EC′ ⊕ S).

By applying the exact functor R to the above exact sequence, we get a monomorphism

0 −→ RY ′ −→
∏

C′

which shows that RY ′ ∈ Cogen(C′). Thus ERY ′ ∈ E(Cogen(C′)). But since S is not a di-
rect summand of Y ′, we have monomorphism 0 −→ Y ′ −→ ERY ′ which shows that Y ′ ∈
E(Cogen(T ′)). So Y ′ = EM where M ∈ Cogen(C′). Therefore RY ′ ∈ Cogen(C′) = Bζ . By the
definition of Bζ , there exists an epimorphism

HomB(RY
′, E0) −→ HomB(RY

′, E1) −→ 0.

Since (R, E) is an adjoint pair, we get the epimorphism

HomA(Y
′, EE0) −→ HomA(Y

′, EE1) −→ 0,

that, in turn, induces the following epimorphism

HomA(Y, EE
0)⊕HomA(Y, S) −→ HomA(Y, EE

1) −→ 0.

Hence Y ∈ B(Eζ 0), which shows Cogen(EC′ ⊕ S) ⊆ B(Eζ 0). This completes the proof of the
claim. So EC′ ⊕ S is a cosilting A-module. �

6. τ-tilting subcategories

As an application of the results of the previous section, in view of [6], we are able to study the
restriction and extension of τ -tilting subcategories. Let us first recall the definition of a τ -tilting
subcategory of an abelian category with enough projective objects.

Definition 6.1. (see [12, Definition 1.5] and [15, Definition 2.1]) Let A be an abelian category
with enough projective objects. An additively closed subcategory T of A is called

• τ -rigid if for every object T ∈ T there exists an exact sequence

P1
g

−→ P0 −→ T −→ 0

such that P1 and P0 are projectives and for every T ′ ∈ T , HomA (g, T ′) is an epimor-
phism.
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• weak support τ -tilting if it is a τ -rigid subcategory of A and for every projective object
P in A , there exists an exact sequence

P
f

−→ T 0 −→ T 1 −→ 0

such that T 0 and T 1 are in T and f is a left T -approximation of P .
• support τ -tilting if it is a weak support τ -tilting subcategory which is contravariantly
finite in A .

• τ -tilting if it is a support τ -tilting subcategory such that for every projective object P
in A , there exists an exact sequence

P
f

−→ T 0 −→ T 1 −→ 0

such that T 0 and T 1 are in T and f is a non-zero left T -approximation of P .

Theorem 6.2. Let T be a support τ-tilting subcategory of Mod-A. Then RT is a support
τ-tilting subcategory of Mod-B.

Proof. First we show that RT is a τ -rigid subcategory of Mod-B. Since T is a τ -rigid subcat-
egory of Mod-A, for every object T ∈ T , there exists a projective presentation

Q1
g

−→ Q0 −→ T −→ 0

of T such that the induced morphism HomA(g,T ) is an epimorphism. We can deduce that Q1

does not contain P̃ as a summand. Otherwise, S should appear as a summand of Q0, i.e. should
be projective, which contradicts with the fact that P0 6= 0. Since R is an exact functor and
preserves projective modules, the exact sequence

RQ1
Rg
−→ RQ0 −→ RT −→ 0

is a projective presentation of RT . Now in order to show the result, we have to show that
HomB(Rg,RT ) is an epimorphism. Let RT ′ ∈ RT and f ∈ HomB(RQ1,RT

′). Since RQ1
∼=

Q1, the morphism f induces morphism f̃ ∈ HomB(Q1, T
′) such that f̃ = if where i : RT ′ −→ T ′

is the inclusion. But, τ -rigidity of T implies that there exists a morphism h : Q0 −→ T ′ such
that f̃ = hg. Therefore Rf̃ = RhRg. Hence f = RhRg.

Since T is a τ -tilting subcategory of Mod-A, for every projective B-module P , there exists
an exact sequences

P
f

−→ T 0 −→ T 1 −→ 0

such that T 0, T 1 ∈ T and f is a left T -approximation of P . By applying the exact functor R
on the above exact sequence we have the following exact sequence

RP
Rf
−→ RT 0 −→ RT 1 −→ 0.

Here RP ∼= P ∈ Prj-B, so in order to show that this is a desired exact sequence, we need to show
that Rf is a left RT -approximation. Let h : RP −→ RU be a morphism such that U ∈ T .
Then the morphism h induces morphism h̃ ∈ HomB(P,U) such that h̃ = ih where i : RU −→ U

is the natural inclusion. Since f is a left T -approximation, there exists morphism g : T 0 −→ U

such that gf = h̃. Therefore RgRf = Rh̃ = h.
To complete the proof, we just need to show that, T ′ is a contravariantly finite subcategory

of Mod-B. Let M ∈ Mod-B. Since T is a contravariantly finite subcategory of Mod-A, there is
a right T -approximation T −→ EM , with T ∈ T , for EM ∈ Mod-A. By applying the functor
R we get a right T ′-approximation RT −→ M for M . Hence T ′ is a contravariantly finite
subcategory of Mod-B. �
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We say that two support τ -tilting subcategories T and T ′ are equivalent if Fac(T ) =
Fac(T ′). Moreover, two quasi-tilting B-modules T and T ′ are called equivalent if Add-T =
Add-T ′. We need the following theorem.

Theorem 6.3. (see [6, Theorem 8.1.10]) Let R be a ring. There is a bijection between the
collection of equivalence classes of τ-tilting subcategories of Mod-R and the collection of equiva-
lence classes of finendo quasi-tilting R-modules. Based on this bijection, Add-T for any finendo
quasi-tilting R-module is a support τ-tilting subcategory of Mod-R.

Now we can prove the part 1 of Theorem 5.3.

Proof of Theorem 5.3.1. Since T is a finendo quasi-tilting module, by Theorem 6.3, Add-T
is a support τ -tilting subcategory of Mod-A. Hence by Theorem 6.2, RAdd-T is a τ -tilting
subcategory of Mod-B. It is obvious that RAdd-T = Add-RT . Now the result follows from
Proposition 8.1.7 of [6].

Theorem 6.4. Let T ′ be a support τ-tilting subcategory of Mod-B. Then ET ′⊕S is a support
τ-tilting subcategory of Mod-A.

Proof. By Theorem 6.3, there is a finendo quasi-tilting B-module T ′ such that Fac(T ′) =
Gen(T ′). Theorem 5.3.2, implies that ET ′ ⊕ S is a finendo quasi-tilting A-module. Theorem
8.1.5 of [6], implies that Add-(ET ′⊕S) is a support τ -tilting subcategory of Mod-A. To conclude
the result, it is enough to note that Fac(Add-(ET ′ ⊕S)) = Fac(ET ′ ⊕S). This follows using the
fact that Fac(Add-(ET ′ ⊕ S)) = Gen(ET ′ ⊕ S). �

Corollary 6.5. (i) Let T be a support τ-tilting subcategory of mod-A. Then RT is a
support τ-tilting subcategory of mod-B.

(ii) Let T ′ be a support τ-tilting subcategory of mod-B. Then E T ′⊕S is a support τ-tilting
subcategory of mod-A.

Proof. The proof follows using similar arguments as in the proofs of Theorems 6.2 and 6.4. �

7. (τ-)Cotorsion torsion triples

In this section, using bijections between tilting subcategories, resp. support τ -tilting subcat-
egories, and cotorsion torsion triples, resp. τ -cotorsion torsion triples, we study the restriction
and extension of these triples. We start by recalling the bijections.

Let A be an abelian category with enough projective objects. A pair (T ,F ) of full subcat-
egories of A is called a torsion pair if HomA (T ,F ) = 0 and for every A ∈ A there exists a
short exact sequence 0 −→ tA −→ A −→ fA −→ 0 such that tA ∈ T and fA ∈ F .

A pair (C ,D) of full subcategories of A is called a cotorsion pair if C = ⊥1D and D = C⊥1

and for every object A ∈ A , there exist short exact sequences

0 −→ D −→ C −→ A −→ 0 and 0 −→ A −→ D′ −→ C′ → 0,

where C and C′ are in C and D and D′ are in D .
A triple (C ,T ,F ) of full subcategories in A is called cotorsion torsion triple, if (C ,T ) is a

cotorsion pair and (T ,F ) is a torsion pair.
Following theorem provides a tight connection between tilting subcategories of an abelian

category with enough projective objects and its cotorsion torsion triples.

Theorem 7.1. (see [8, Theorem 2.29]) Let A be an abelian category with enough projective
objects. Then there is a bijection between the collection of all tilting subcategories of A and the
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collection of all cotorsion torsion triples of A . Based on this bijection, a tilting subcategory T

maps to the triple (⊥1(Fac(T )),Fac(T ),T ⊥0) and a cotorsion torsion triples (C ,T ,F ) maps
to C ∩ T .

As a counterpart to a cotorsion torsion triple we have the notion of τ -cotorsion torsion triple.
A pair of full subcategories (C ,D) of A is called a τ -cotorsion pair [6] if C ∩D is a contravariantly
finite subcategory of A , C = ⊥1D and for every projective object P ∈ A , there exists an exact
sequence

P
f

−→ D −→ C −→ 0,

where D ∈ C ∩ D , C ∈ C and f is a left D-approximation. A triple (C ,T ,F ) of full subcate-
gories in A is called a τ -cotorsion torsion triple, if (C ,T ) is a τ -cotorsion pair and (T ,F ) is a
torsion pair.

There is also a connection between τ -tilting subcategories of an abelian category with enough
projective objects and its τ -cotorsion torsion triples.

Theorem 7.2. (see [6, Theorem 5.7]) Let A be an abelian category with enough projective
objects. Then there is a bijection between the collection of all support τ-tilting subcategories of
A and the collection of all τ-cotorsion torsion triples of A . Based on this bijection, a support
τ-tilting subcategory T maps to the triple (⊥1(Fac(T )),Fac(T ),T ⊥0) and a τ-cotorsion torsion
triples (C ,T ,F ) maps to C ∩ T .

7.1. Cotorsion torsion triples. Now we have the necessary background for our first theorem.

Theorem 7.3. Let (C ,T ,F ) be a cotorsion torsion triple in Mod-A. Then the triple

(⊥1(Fac(R(C ∩ T ))),Fac(R(C ∩ T )), (R(C ∩ T ))
⊥0)

is a cotorsion torsion triple in Mod-B. If furthermore, T ⊆ Sperp then (R(C ),R(T ),R(F ∩
Sperp)) is also a cotorsion torsion triple in Mod-B and these two are the same.

Proof. By Theorem 7.1, C ∩ T is a tilting subcategory of Mod-A. Hence by Theorem 4.1.a,
R(C ∩T ) is a tilting subcategory of Mod-B. Therefore, by using the bijection of Theorem 7.1,
we may conclude the first statement, that is,

(⊥1(Fac(R(C ∩ T ))),Fac(R(C ∩ T )), (R(C ∩ T ))⊥0)

is a cotorsion torsion triple in Mod-B. For the second statement, first we show that

R(Fac(C ∩ T )) = Fac(R(C ∩ T )).

Let M ∈ R(Fac(C ∩ T )). Then M ∼= RX , where X ∈ Fac(C ∩ T ). Since X ∈ Fac(C ∩ T ),
there exists an epimorphism Y −→ X −→ 0, where Y ∈ C ∩ T . By applying the exact functor
R on this epimorphism we get RY −→ RX ∼= M −→ 0. Therefore M ∈ Fac(R(C ∩ T )).
So we have the inclusion R(Fac(C ∩ T )) ⊆ Fac(R(C ∩ T )). For the reverse inclusion, let
N ∈ Fac(R(C ∩ T )) and consider the epimorphism

RX −→ N −→ 0,

where X ∈ C ∩ T . Since E is an exact functor and T ⊆ Sperp, we conclude that N ∈
R(Fac(C ∩ T )). Hence we have the equality Fac(R(C ∩ T )) = R(Fac(C ∩ T )). On the other
hand, by Theorem 7.1, C ∩ T is a tilting subcategory of Mod-A and Fac(C ∩ T ) = T . So

R(Fac(C ∩ T )) = RT = Fac(R(C ∩ T )).
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Now we show that ⊥1(Fac(R(C ∩ T ))) = ⊥1RT = RC . We have already seen the first
equality. To see the second one, we use the fact that (C ,T ) is a cotorsion pair. Since C = ⊥1T ,
we haveRC = R(⊥1T ). To complete this part of the proof, it is enough to show that R(⊥1T ) =
⊥1RT . To see this, let M ∈ R(⊥1T ). Then M ∼= RX , where X ∈ ⊥1T . Since X ∈ ⊥1T , we
have Ext1A(X,T ) = 0. So by the statement (3) of Proposition 2.3, we get Ext1B(RX,RT ) = 0.
Therefore M ∼= RX ∈ ⊥1RT . Now let N ∈ ⊥1(RT ). Then Ext1B(N,RT ) = 0. Since
T ⊆ Sperp, by the statement (1) of Proposition 2.3, we obtain Ext1A(EN,T ) = 0. Hence
EN ∈ ⊥1T and N ∼= REN ∈ R(⊥1T ).

To complete the proof, we just need to show that (R(C ∩ T ))
⊥0 = R(F ∩ Sperp). To

this end, since C ∩ T is a tilting subcategory in Mod-A and (C ∩ T )⊥0 = F , we show that

(R(C ∩ T ))
⊥0 = R((C ∩T )⊥0∩Sperp). LetM ∈ (R(C ∩ T ))

⊥0 , then HomB(R(C ∩T ),M) =
0. But (R, E) is an adjoint pair and we get HomA(C ∩T , EM) = 0. So EM ∈ (C ∩T )⊥0 . Also
EM ∈ Sperp implies that EM ∈ (C ∩T )⊥0 ∩Sperp. HenceM ∼= REM ∈ R((C ∩T )⊥0 ∩Sperp).
For the reverse inclusion, let N ∈ R((C ∩T )⊥0 ∩Sperp). So N ∼= RX , where X ∈ (C ∩T )⊥0 ∩
Sperp. Therefore we have HomA(C ∩ T , ERX) = 0. Hence HomB(R(C ∩ T ),RX) = 0. So

N ∼= RX ∈ (R(C ∩ T ))
⊥0 .

�

Theorem 7.4. Let (C ′,T ′,F ′) be a cotorsion torsion triple in Mod-B. Then the triple

(⊥1(Fac(E(C ′ ∩ T
′))),Fac(E(C ′ ∩ T

′)⊕ S), (E(C ′ ∩ T
′)⊕ S)⊥0)

is a cotorsion torsion triple in Mod-A. Moreover, the triple (EC ′, ET ′, EF ′) is a cotorsion
torsion triple in Sperp which is equal to the triple

(⊥1(Fac(E(C ′ ∩ T
′))) ∩ Sperp,Fac(E(C ′ ∩ T

′)) ∩ Sperp, (E(C ′ ∩ T
′))⊥0) ∩ Sperp).

Proof. By Theorems 7.1 and 4.1.b we have

(⊥1(Fac(E(C ′ ∩ T
′)⊕ S)),Fac(E(C ′ ∩ T

′)⊕ S), (E(C ′ ∩ T
′)⊕ S)⊥0)

is a cotorsion torsion triple in Mod-A. But it is not hard to see that

⊥1(Fac(E(C ′ ∩ T
′)⊕ S)) = ⊥1(Fac(E(C ′ ∩ T

′)))⊕ ⊥1Fac(S),

for instance see the proof of part (a) of Proposition 3.2 of [18]. On the other hand, we have
⊥1Fac(S) = 0; indeed, if X ∈ Fac(S), then X ∼= Sk, with k ≥ 0. Since S is an injective
module, we have ⊥1Fac(S) = 0. Hence we have the first statement. Now we show the second
statement. It is plain that the triple (EC ′, ET ′, EF ′) is a cotorsion torsion triple in Sperp. So
to complete the proof, it remains to show that these two triples are the same. First we show
Fac(E(C ′∩T ′))∩Sperp = ET ′. By Theorem 7.1, C ′∩T ′ is a tilting subcategory of Mod-B and
Fac(C ′∩T ′) = T ′. So to show the equality, it is enough to note that Fac(E(C ′∩T ′))∩Sperp =
E(Fac(C ′ ∩ T ′)). Now we consider

⊥1(Fac(E(C ′ ∩ T
′))) ∩ Sperp = ⊥1(E(Fac(C ′ ∩ T

′))) ∩ Sperp = ⊥1ET
′ ∩ Sperp.

Let X ∈ ⊥1ET ′ ∩ Sperp then Ext1A(X, ET ′) = 0. By the statement (2) of Proposition 2.3, we
have Ext1B(RX,T

′) = 0. Therefore, RX ∈ ⊥1T ′. Since X ∈ Sperp, we have X ∼= ERX ∈
E(⊥1T ′). Hence we show the inclusion ⊥1ET ′∩Sperp ⊆ E(⊥1T ′). Conversely, let Y ∈ E(⊥1T ′).
Then Y ∼= EM , where M ∈ ⊥1T ′. Since M ∈ ⊥1T ′, we have Ext1B(M,T ′) = 0. Hence by the
statement (2) of Proposition 2.3, we get Ext1A(EM, ET ′) = 0. So Y ∼= EM ∈ ⊥1ET ′. We have
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already shown that ⊥1ET ′ ∩ Sperp = E(⊥1T ′). Now we note that, since (C ′,T ′) is a cotorsion
pair, then C ′ = ⊥1T ′ and hence E(⊥1T ′) = EC ′. So we get

⊥1(Fac(E(C ′ ∩ T
′))) ∩ Sperp = EC

′.

For completing the proof, it remains to show that (E(C ′ ∩ T ′))⊥0 ∩ Sperp = EF ′. First we

show that (E(C ′ ∩ T ′))⊥0 ∩ Sperp = E(C ′ ∩ T ′)⊥0 . Let X ∈ (E(C ′ ∩ T ′))⊥0 ∩ Sperp, then
HomA(E(C

′ ∩ T ′), X) = 0. Since X ∈ Sperp, by the statement (1) of Proposition 2.3, we

have HomB(C
′ ∩ T ′,RX) = 0 and hence RX ∈ (C ′ ∩ T ′)

⊥0 . Therefore X ∼= ERX ∈

E((C ′ ∩ T ′)
⊥0). Conversely, let Y ∈ E(C ′ ∩ T ′)

⊥0 . Then Y ∈ Sperp and Y ∼= EM , where

M ∈ (C ′ ∩ T ′)
⊥0 . Since M ∈ (C ′ ∩ T ′)

⊥0 , we have HomB(C
′ ∩T ′,M) = 0. By the statement

(1) of Proposition 2.3, HomA(E(C
′ ∩T ′), EM) = 0. Therefore, Y ∼= EM ∈ (E(C ′ ∩ T ′))

⊥0 . On

the other hand, by Theorem 7.1, (C ′ ∩ T ′)
⊥0 = F ′. So

(E(C ′ ∩ T
′))

⊥0 ∩ Sperp = E(C ′ ∩ T
′)
⊥0 = EF

′.

Hence the proof is complete. �

7.2. τ-cotorsion torsion triples. In this subsection we study the restriction and extension of
τ -cotorsion torsion triples, using the bijection mentioned in Theorem 7.2.

Theorem 7.5. Let (C ,T ,F ) be a τ-cotorsion torsion triple in Mod-A. Then the triple

(⊥1(Fac(R(C ∩ T ))),Fac(R(C ∩ T )), (R(C ∩ T ))⊥0)

is a τ-cotorsion torsion triple in Mod-B. If furthermore, T ⊆ Sperp then (RC ,RT ,R(F ∩
Sperp)) is also a τ-cotorsion torsion triple in Mod-B and these two are the same.

Proof. By Theorems 7.2, C ∩ T is a τ -tilting subcategory of Mod-A. So by Theorem 6.2,
R(C ∩ T ) is a support τ -tilting subcategory of Mod-B. So the first statement follows from
Theorem 7.2. The second part, follows by the similar argument as in the second part of Theorem
7.3. �

Theorem 7.6. Let (C ′,T ′,F ′) be a τ-triple in Mod-B. Then the triple

(⊥1(Fac(E(C ′ ∩ T
′))),Fac(E(C ′ ∩ T

′)⊕ S), (E(C ′ ∩ T
′)⊕ S)⊥0)

is a τ-triple in Mod-A. Moreover, the triple

(⊥1(Fac(E(C ′ ∩ T
′))) ∩ Sperp,Fac(E(C ′ ∩ T

′)) ∩ Sperp, (E(C ′ ∩ T
′))⊥0) ∩ Sperp)

is a τ-triple in Sperp and is equal to the triple (EC ′, E T ′, E F ′).

Proof. By Theorems 7.2, C ′ ∩ T ′ is a τ -tilting subcategory of Mod-B. Hence by Theorem 6.4,
E(C ′∩T ′)⊕S is a τ -tilting subcategory of Mod-A. Hence the first statement follows by another
use of Theorem 7.2. The second part, follows by the similar argument as in the proof of Theorem
7.4. �
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