
Energy, network, and application-aware virtual
machine placement model in SDN-enabled large scale
cloud data centers

Soha Rawas1

Received: 12 March 2020 /Revised: 12 January 2021 /Accepted: 25 January 2021

The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Cloud computing has been considered a core model of elastic on-demand resource
allocation using a pay-as-you go model. One of the big challenges of this environment
is to provide high quality service (QoS) through efficient and stringent management of
cloud data center resources. With the increasing demand for cloud based services, the
traffic volume inside cloud data centers (DC) has been increased exponentially. Accord-
ingly, and to provide high QoS, a proper scheduling mechanism has to be followed by the
cloud service provider. Furthermore, accurate scheduling is necessary for advancing the
problem of energy consumption and resource utilization. In this paper, we propose an
optimal resource allocation and consolidation virtual machine (VM) placement model for
multi-tier applications in modern large cloud DCs. The proposed model targets to
optimize the DCs’ energy and communication cost that influence the overall cloud
performance through Software Defined Networking (SDN) control features. To solve
the formulated multi-objective optimization problem, a novel adaptive genetic algorithm
is proposed. The experimental results validate the efficacy of the proposed model through
extensive simulations using synthetic and real workload traces. These results show that
the proposed model jointly optimizes cloud QoS as well as energy consumption.

Keywords Virtualization . Cloud computing .Multi-tier application . Green computing .

Knapsack problem . Genetic algorithm

1 Introduction

Cloud computing, which is a model of delivering computing resources on-demand using a
pay-as-you-go model, shapes the way that information technology (IT) resources are designed

Multimedia Tools and Applications
https://doi.org/10.1007/s11042-021-10616-6

* Soha Rawas
Soha.rawas2@bau.edu.lb

1 Department of Mathematics and Computer Science, Beirut Arab University, Beirut, Lebanon

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-021-10616-6&domain=pdf
http://orcid.org/0000-0001-5128-6529
mailto:Soha.rawas2@bau.edu.lb

and purchased [14]. Therefore, it has become very popular in recent years so that organizations
and cloud customers can rent their computing resources instead of buying them. However, the
rapid evolution of cloud computing services has led to the adoption of a large-scale cloud data
centers (DCs) to meet the user’s requirements. Accordingly, DCs with thousands of computing
and storage nodes, contribute to a vast amount of energy leading to high-cost rates and carbon
dioxide (CO2) emissions to the environment [12]. Thus, the efficiency and managing of such
DCs have become a prominent problem to insure cloud sustainability.

Studies show that [5, 14] servers and storage contribute to 28% of the total DC energy
consumption, while network devices contribute to 20% (as shown in Fig. 1). Although the
cooling system is the most causative of energy consumption, however, this problem needs
mechanical and thermos technical solutions which are out of the scope of this paper. Therefore,
our focus in this paper is on servers, storage, and network hardware that are the main causative
of energy consumption. So how can we drag these factors to be energy efficient? It is
obviously through energy management and resource utilization. Studies show that an activated
server consumes 70% of its power even if idle and 80% of DCs activated servers have less than
50% of their CPU utilization. Therefore, the solution is to drag the active DC devices to be
power proportional and to set the unused devices (servers, switches) to sleep mode (only 300
milliseconds to start-up) through energy and network-aware virtual machine (VM) placement
models that enhance entire DC resource utilization.

Moreover, high energy consumption means high carbon emission, which drastically leads
to the greenhouse effect [18]. Other recent studies indicate that cloud DCs contribute to 3.5%
of the world’s CO2 emission by 2018 and predicted to be 14% by 2040 [22]. Therefore,
energy-efficient solutions are needed to ensure cloud sustainability. Greenpeace’s recent study
shows that online people are currently around 2.5 billion [3]. However, they expect this
number to increase by 60% in the next 5 years. Thus, managing Internet server systems is
an essential concern.

Although several technologies are applied for the sake of green cloud computing [14, 18],
virtualization and consolidation techniques remain the key contributor’s concept for power
improvement. Virtualization is a technology that abstracts physical resources for utilization
improvement [14]. Since cloud computing has a concept of renting resources instead of owing
it, virtualization has become a crucial demand for this environment. VM scheduling plays a
vital role in cloud resource utilization. However, two crucial facts make this concept not an
easy task: 1- heterogeneity in DCs computing resources, and 2- VM resource requirements
variations (such as CPU utilization, storage, bandwidth and memory). Moreover, cloud-hosted

Power
Conversions, 11%

Lightning, 1%

Cooling, 40%

Network
Hardware, 20%

Servers and
storage, 28%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Power
Conversions

Lightning Cooling Network
Hardware

Servers and
storage

Fig. 1 DC energy consumption

Multimedia Tools and Applications

application type and dependencies among VMs are important factors that should be considered
in the VM scheduling criterion [11].

Moreover, the evolution of cloud computing has given rise to new technologies known as
Software Defined Networking (SDN). This new technology that controls the internal cloud
data centers network elements plays an important role in optimizing the network resource
management and communication cost that influence the overall cloud performance [21].
Nowadays, the joint optimization of the system, as well as network status to perform efficient
VM placement, is an attractive problem in SDN-based cloud DCs. SDN technology can
identify the network topology in real-time. Therefore, this technology eases the process of
route configuration and delivers network load to less-used nodes and less busy paths which
lead to efficient resource utilization (servers and network devices) as well as DC management.

To overcome the resource management challenges, this paper proposes and evaluates a
novel approach in the field of resource management in SDN based cloud DCs named Energy,
Network, and Application-aware VM placement model (ENAV). ENAV employs a cost-
aware adaptive genetic algorithm for multi-tier applications to minimize the cloud provider
cost and optimize intra-DC network performance behavior. The main contributions of this
paper are as follows:

1. Develop a novel VM placement model that considers energy cost, VMs cost and the
communication cost through considering communication dependencies between VMs of
multi-tier application and the energy consumption of the hosted servers as well as the
network devices.

2. Design and implement a novel adaptive genetic algorithm ENAV-G for cost-aware VM
placement to solve the proposed multiple knapsack optimization problem.

3. Conducting extensive simulations to validate the proposed model using both synthetic and
real DC workload data.

The rest of the paper is organized as follows: Section 2 describes the related work; Section 3
illustrates the model problem and its formulation; Section 4 proposes and develops the solution
for the proposed ENAV model; Section 5 evaluates the proposed model; and Section 6
concludes the paper and introduces future work.

2 Related work

VM scheduling in large scale cloud DCs have received more attention in the recent years.
According to the literature [4, 6, 12, 13, 23], there are a number of approaches proposed to
solve this problem.

In [4], the author proposed a task scheduling model to improve cloud-based web applica-
tions cost through controlling the cloud application feature set based on the Service Level
Agreement (SLA). The proposed model achieved its targets by improving the developed cloud
application availability and minimizing its running cost. Dias et al. [6] proposed a bin-packing
scheduling algorithm to reduce traffic communication and traffic cost. The proposed algorithm
targets to group the highly communicated VMs into clusters then mapping these clusters to
several servers. Wei et al. [23], proposed an energy-efficient VM placement method to reduce
both the communication cost as well as the DC power consumption. The author used an
improved ant colony mechanism to solve the proposed optimization problem using an adaptive

Multimedia Tools and Applications

parameter setting to introduce a robust and fast convergence algorithm. Rawas et al. [15]
proposed ENAGS, energy, and network-aware genetic scheduling algorithm that takes into
account the servers’ energy consumption and communication dependency cost. In [2], Cao
et al. proposed a consolidation VM placement approach that is a communication-aware using a
modified SCAN algorithm to lower the computation cost and minimize inter-rack traffic
though they do not take into account the energy cost in placing VMs. However, in his latest
work [1], Cao et al. proposed a new VM dynamic consolidation approach to optimize both the
energy consumption and communication traffic in cloud DC. The proposed approach used a
multi-objective genetic algorithm (GA) to attain the model objectives. Zhao et al. [25]
deployed the energy-aware genetic and tabu (GATA) algorithm. GATA was able to balance
the DC load among the available resources through finding the best placement machine that
leads to energy minimization. Son et al. [8], developed a dynamic overbooking strategy which
jointly combines compute and network optimization for VM and traffic consolidation. The
proposed strategy dynamically adapts overbooking ratio depending on real-time workload for
both VM and network flows. In [26], a workload-aware revenue maximization (WARM)
approach has been proposed to maximize the cloud provider net revenue in the context of
SDN-enabled DCs. This approach combined chaotic search, simulated annealing (SA), and
particle swarm optimization (PSO) algorithms, to determine the optimal combination of a VM
and routing path for each application.

In contrast to the aforementioned, the proposed ENAV model formulates the VM place-
ment problem in terms of DC energy consumption cost (including servers, storage, as well as
switches nodes), VMs communication cost (considering the intra-DC network bandwidth), as
well as the VMs cost. Moreover, in this paper, we designed and implemented an adaptive
novel ENAV-G genetic algorithm that uses an adaptive genotype to robust the whole genetic
algorithm and achieve the ENAV model objectives. Moreover, the proposed ENAV-G
algorithm helps in solving the multi-objective optimization problem without contradiction
between each sub-objective.

3 Models and problem formulation

3.1 Problem statement

Cloud computing services increased in popularity due to the wide variety of services and
application types that have been developed. However, deploying a composite application in
cloud DCs such as multi-tier applications needs efficient assignments of VMs to some hosts.
This type of application is divided into two ormore components and the number of tiers varies by
application requirements. Cloud customers may request such an application type. On the other
hand, they may request a VM cluster of multiple computing virtual devices to deploy a
composite application and form their virtual private cloud. The main problem in such scenarios
is that these application types (multi-tier applications) or requested VM clusters have specific
traffic flow and need to exchange data in between tiers/VMs. Therefore, the performance of these
applications is influenced by the communication latency generated by the communicated data
and computing components. Consequently, appropriate placement of VMs into available hosts is
an important and well-known NP-complete problem. However, the main aim of this paper is to
optimize the total provider cost in such an environment without scarifying cloud quality of
service (QoS) as its primary objective. This paper targets to answer the following questions:

Multimedia Tools and Applications

& How to design and implement an online VM consolidation model on a large scale and
highly dynamic cloud DC.

& How to successfully coordinate communication, energy, and VMs cost without scarifying
SLA constraints and cloud customers’ satisfaction.

& How to optimize the VM placement and consolidation problem that includes multiple
objectives for all type of DC’s network topology.

3.2 System model and architecture

Figure 2 generally presents the ENAV system model architecture. Cloud users send their
application deployment requests to the cloud provider. The ENAV controller analyzes the cloud
user request to find the best VM selection type in terms of computing specifications and cost.
Since the deployed applications are of multi-tier or workflow type, the ENAV controller cluster
VMs that perform a cloud users request to form a virtual cloud for each. Then, the ENAV
controller directs the clustered virtual clouds to the best placement method through the ENAV
Host Selection Manager module. A physical cloud environment is made up of several nodes.
These nodes are of two forms: 1- Computing nodes servers denoted as Se, 2- and Storage nodes
denoted as St. Accordingly, each cluster of the user request (VMs) deployed over the cloud
physical nodes. A physical node may host multiple VMs from different clusters. Noting that
VM cluster for certain users’ requests may be served on different nodes. However, the ultimate
objective of the proposed ENAV model is to provide cloud users with ideal deployed applica-
tion performance while saving cloud energy consumption and provider operational cost.

3.3 VM placement in cloud DC

The VM placement problem is defined as the number of possible mapping of VMs to available
physical machines (PM). Our goal is to minimize the total cost that includes energy cost,

Fig. 2 Architecture design of ENAV model

Multimedia Tools and Applications

communication cost, and VM cluster cost. Noting that minimizing the communication cost
aims to minimize the volume of traffic between the communicated VMs that lead to intra-DC
network optimization. This could be attained through an optimal mapping of VMs to PMs
such as the following are achieved:

1- Minimize servers’ energy by reducing the number of active servers and consolidating
VMs to the minimum number of PMs.

2- Minimize switches’ energy by reducing the number of active switches
3- Minimize intra-DC network traffic cost by placing communicated VMs near each other

and by considering the amount of available bandwidth
4- Minimize the VMs cost by considering the appropriate VMs to allocate the requested

applications

Table 1 summarizes the various notations used in the VM scheduling problem.

3.4 Formal definition

Define an application as A = {V, D}, where V and D is the set of requested VMs and used data
respectively to process the application A: V = {vmi : 1 ≤ i ≤ nv}, D = {di : 1 ≤ i ≤ nd}. Define a
DC as DC = {Se, St, N}, where Se is the set of servers that forms the computing
nodes: Se = {sei : 1 ≤ i ≤ nse}, St is the set of storage nodes: St = {sti : 1 ≤ i ≤ nst}, and N is the
physical network topology. Let N defined as N = {Sw, L}, where Sw is the set of network
devices in a DC: Sw = {swi : 1 ≤ i ≤ nsw}, and L is the set of links in an L: L = {li : 1 ≤ i ≤ nl}.

Table 1 Notations and their semantics

Notation Description

A Application
V Set of requested VMs
D Set of requested data
N The network topology in a DC
Se Set of servers
St Set of storage nodes
Sw Set of network devices
L Set of links
vmi A single VM
nv Total number of VMs in an A
di A single data
nd Total number of data in an A
sei A single server
nse Total number of servers in a DC
sti A single storage node
nst Total number of storage nodes in a DC
swi A single switch
nsw Total number of switches in an N
li A single network link between two devices
nl Total number of links in an N
nNo Total number of computing and storage nodes for in an A
ne Total number of virtual edges
ti vmi active time slot [0, T]

Multimedia Tools and Applications

Consider that the application A deployed and hosted in a DC that has a well-designed physical
network N (as shown in Fig. 3).

Each computing node se i has four different resource capaci t ies: sei ¼
secorei ; serami ; sestoragei ; sebandwidthi

� �
, where the four-vector components represent the number of

available cores, the amount of available random access memory (RAM), the available storage
capacity, and the amount of available bandwidth. While each storage node sti has storage and
bandwidth capacity denoted as ststoragei , stbandwidthi respectively.

Each VM vmi is to be mapped into a computing node sej request four resource capacities

represented by the vector vmi; j ¼ vmcore
i; jð Þ; vm

ram
i; jð Þ; vm

storage
i; jð Þ ; vmbandwidth

i; jð Þ
� �

, where the four-vector

components represent the number of cores, RAM, storage capacity, and bandwidth
respectively.

The DC Network N connects the network devices, computing, and storage nodes using
dedicated links L (as shown in Fig. 2). Let the communication dependencies among a set of
hosted VMs running multi-tier application denoted as LG= {No, E}, where No is the set of
nodes of computing or storage type: No = {noi : 1 ≤ i ≤ nNo}, while E is the set of logical or
virtual edges among the communicated nodes: E = {ei : 1 ≤ i ≤ ne}. Figure 4 illustrates the VM
nodes communication environment in a cloud DC. Noting that ei indicates a logical/virtual
edge with available bandwidth (BA) and network distance (DS) between two communicated
nodes.

3.4.1 VM/server placement relationship

Each server sej can host more than one VM and each VM is executed at only one sej.
Let A be m x n matrix showing the mapping status of the m VMs to the n servers as
follows:

A ¼
a11 ⋯ a1n
⋮ ⋱ ⋮
am1 ⋯ amn

2
4

3
5

Fig. 3 DC 3-tier network architecture

Multimedia Tools and Applications

where aij is a binary variable (0/1) such that:

aij ¼ 1; if vmi is allocated to se j
0; otherwise

�

3.4.2 VM/VM dependency relationship

Let the communication dependency among a set of communicated VMs in an appli-
cation A represented by m x m matrix B showing the dependencies between m VMs
as follows:

B ¼
b11 ⋯ b1m
⋮ ⋱ ⋮
bm1 ⋯ bmm

2
4

3
5

where bij is a binary variable (0/1) such that:

bij ¼ 1; if vmi;k and vmj;l are dependent
0; otherwise

�

3.4.3 Intra-DC traffic cost (ITC)

Cloud providers can host different applications inside one DC. Therefore, different traffic
types can be generated such as:

& Guest traffic: traffic that generated due to communication between multiple VMs belongs
to the same tenant.

& Public traffic: traffic that generated due to and from the internet bound for VMs in DC.
& Storage traffic: traffic generated due to moving large chunks of data for running a specific

type of heavy communicated applications such as Hadoop.

Fig. 4 VM nodes communication environment in cloud DC

Multimedia Tools and Applications

This traffic should be isolated from each other to prevent intra-DC network congestion and
cloud provider service degradation. Therefore, cloud providers employ network
virtualization techniques to improve intra-DC network performance. When customers
send their application to a cloud environment, the cloud provider offers them a virtual
topology that consists of VM types and virtual links between VMs. These virtual links are
mapped to a set of physical links, while the VMs are mapped to Ses. Nevertheless, and due
to security reasons, cloud providers never give any information about these virtual
topologies [1].

Therefore, the intra-DC communication traffic cost is directly proportional to 1- the amount
of transferred data between two dependent VMs (TD), 2- the available bandwidth and capacity
between two dependent VMs (BA), 3- the network distance (DS) between dependent VMs that
is measured using the number of hops (switches).

Transferred data (TD) Let the amount of transferred data between two dependent VMs vmi,

k and vmj, l denoted as TD(vmi, k, vmj, l) such that vmi and vmj are either:

– two computing nodes hosted on sek and sel
– one computing node hosted on sek and one storage node hosted on stl

noting that TD(vmi, k, vmj, l) = 0

– if there is no dependency between vmi, k and vmj, l

– if vmi, k and vmj, l hosted on the same rack as formulated using [15].

Available bandwidth (BA) the available bandwidth between two communicated VMs affects
the total cost to transfer TD data between two computing nodes or computing and storage
nodes. Let BA(vmi, k, vmj, l) be the available bandwidth between two dependent vmi, k and vmj, l

such that vmi and vmj are either (as shown in Fig. 4):

– two computing nodes hosted on sek and sel
– one computing node hosted on sek and one storage node hosted on stl

Network distance (DS) the network distance between two dependent vmi, k and vmj, l is
denoted by DS(vmi, k, vmj, l). DS designates the number of hops between vmi, k and vmj, l such
that vmi and vmj are again either (as shown in Fig. 3):

– two computing nodes hosted on sek and sel
– one computing node hosted on sek and one storage node hosted on stl

noting that DS(vmi, k, vmj, l) = 0

– if there is no dependency between vmi, k and vmj, l

– if vmi, k and vmj, l hosted on the same rack as formulated using [15].

Multimedia Tools and Applications

Accordingly, the ITC for deploying and running an application A on a data center DC can be
defined using the following equation:

ITC A;DCð Þ ¼ ∑
i; j¼0

nv

ai; j*bi; j*TD vmi;k ; vmj;l
� �

*BA vmi;k ; vmj;l
� �

*DS vmi;k ; vmj;l
� �

;∀ k; lð Þ; k; l∈nse=st ð1Þ

3.4.4 DC energy consumption cost (DECC)

One of the important objectives of the proposed ENAV model is to optimize the energy
consumption of the whole DC when deploying application A inside a cloud DC. This could be
achieved through optimizing the number of active servers that holding the VMs processing
application A on the minimum and optimum type of energy-efficient servers and storage
devices. Consequently, DC IT devices (i.e. computing servers, storage, and network devices)
contribute to a large amount of energy consumption as shown in Fig. 1. Thus, this paper aims
to minimize the amount of energy consumption consumed by the aforementioned DC IT
devices.

3.5 Power models

Computing servers Accountable for the largest amount of DC energy consumption. Howev-
er, Dynamic voltage frequency scaling (DVFS) is an effective technique to control and adjust
the se CPU power [16]. According to studies [14], an idle server releases up to 70% of its
power consumption once it is turn on to keep I/O, memory, and disk resources active.
However, the 30% remaining changed according to CPU utilization. Therefore, one of the
ENAV model goals is to minimize the number of active servers so that it can drag the unused
ones to sleep mode and consequently save up to 90% of their power consumption. Moreover,
and to optimize the power consumption of the used servers, the ENAV model uses the
quadratic relation between the frequency adjustment and the CPU dynamic power consump-
tion as proposed by Huai et al. [5]. Consequently, the following equation is used to find the
total power consumption of a server se:

Pse ¼ Pse−static þ Pse−dynamic ð2Þ
where

– PSe − static is the static/idle power consumption known as leakage and denoted as γ.
– Pse − dynamic is the CPU dynamic power consumption determined using the quadratic

relation between the CPU power consumption and the frequency adjustment as follow

Pse−dynamic ¼ SA*C*SV2* ð3Þ
where SA, C, SV, and f are the switching activity, the physical capacitance, the supply voltage,
and the clock frequency of the processor respectively.

Storage node Is a physical server with multiple storage nodes for the sake of data availability
in case of any hardware failure. In such devices, disk storage device energy consumption
dominates other main storage node (SN) devices such as CPU, memory, I/O, etc. However,

Multimedia Tools and Applications

most of the current storage nodes platform does not allow a separate measuring of power
consumption for each SN device [5] and consider the power model as follow:

Pst ¼ PCPU þ PMemory þ Pdisk þ PIO ð4Þ
such that Pst which is the power consumed by a storage node st, expressed as the total power
consumption of st CPU, memory, disk and, I/O devices.

Network devices Are the second largest power consumer in IT devices that includes the
installed switches that form the key enabling component of the network inside cloud DC.
Based on the benchmarking suite of network devices [5], the power consumption of a switch in
a DC network is defined as:

Psw ¼ PChassis þ nline cards*Pline cards þ ∑configs
i¼0 Pconfigs i*Nportsconfigs i*Uf i

� �
ð5Þ

where PChassis is the power consumed by the chassis-based hardware, nline cards is the number of
line cards plugged into the switch, Pline cards is the power consumed by the switch line cards
with no ports turned on, configs is the number of configuration for the port line rate, Pconfigs i is
the power for a port running at line rate i (such that i = 1 (10Mbps (megabits per seconds)), i =
2 (100Mbps), i = 3 (1Gbps)), Nportsconfigs i is the number of ports using configuration type i,
and Ufi is the scaling factor to account for the utilization of each port.

3.6 Modeling the DC energy consumption cost

Using the above-defined Power models (Pse, Pst, and Psw) we can model the DECC as a
demand of used servers, storages, and switches such that

DECC ¼ ECse þ ECst þ ECsw ð6Þ
such that:

– ECse is the server energy consumption that can be modeled using the Pse quadratic power
model described in the above section. Consequently, ECse for deploying and running
application A inside cloud DC is denoted as:

ECse A;DCð Þ ¼ ∑
i¼1

nv

Pse jð Þ*ti ∀ j; j∈nse ð7Þ

where Pse(j) is the power consumption of a server j holding number of VMs during the slot
time [0, T].

– ECst is the storage node energy consumption that can be modeled using the Pst power
model (as shown in the above section). Consequently, ECst for holding application A data
inside cloud DC is denoted as:

ECst A;DCð Þ ¼ ∑
i¼1

nv

Pst jð Þ*ti ∀ j; j∈nst ð8Þ

Multimedia Tools and Applications

where Pst(j) is the power consumption of a storage node j holding number of VMs during the
slot time [0, T].

– ECsw is the switches energy consumption that can be modeled using the Psw power model
(as shown in the above section). Consequently, ECsw for s number of active switches to
deploy and run application A inside cloud DC is denoted as:

ECsw A;DCð Þ ¼ ∑
s

i¼1
Psw ið Þ*ti ð9Þ

where Psw(i) is the power consumption of i active switch during the time slot [0, T].

3.6.1 VM placement cost (VMPC)

One of the core objectives of the proposed ENAV model is to optimize the VMPC through
proper selection type of available VMs to host an application A in cloud DC. Accordingly, the
cost of assigning application A in cloud DC to the number of v VMs is formulated as follows:

VMPC A;DCð Þ ¼ ∑nv
i¼1ai; j*Cost vmi; j

� �
∀ j; j∈nse=nst ð10Þ

where Cost(vmi, sej) is the cost of assigning one of the applications A tasks to VM vmi hosted
on server/storage node sej/stj.

3.7 Modeling the optimization problem

The objective of the ENAV model is to optimize the total placement cost of the deployed
application A inside of a cloud DC which is a demand for Intra-DC traffic cost (ITC), DC
energy cost (DECC), and VM placement cost (VMPC). Consequently, ENAV objective
function f is to minimize the overall cost as the following:

f A;DCð Þ ¼ minimize
ITC

DECC
VMPC

0
@

1
A ð11Þ

subject to
1- VM Placement constraint: denotes the VM/Server relationship. It mandates that each

VM executed and assigned to only one server/storage node such that:

∑
i¼1

nv

aij ¼ 1 ∀ j; j∈nse=nst ð12Þ

2- Capacity constraints: signifies that the VMs capacity requirements cannot exceed the hosted
physical server/storage nodes total capacity (i.e. Core, RAM, storage, and bandwidth) as follow:

∑
j¼1

nse

∑
i¼1

nv

aij*vmcore
i; jð Þ≤se

core
i; jð Þ ð13Þ

∑
j¼1

nse

∑
i¼1

nv

aij*vmRAM
i; jð Þ ≤se

RAM
i; jð Þ ð14Þ

Multimedia Tools and Applications

∑
nse=nst

j¼1
∑
i¼1

nv

aij*vm
storage
i; jð Þ ≤sestoragei; jð Þ =ststoragei; jð Þ ð15Þ

∑
nse=nst

j¼1
∑
i¼1

nv

aij*vmbandwidth
i; jð Þ ≤sebandwidthi; jð Þ =stbandwidthi; jð Þ

aij; bij∈ 0; 1gf
ð16Þ

4 The ENAV methodology

ENAVmodel formulated as an optimization problem is a variant of multiple knapsacks, which
is an NP-hard problem [7]. Accordingly, this paper proposes the ENAV-G algorithm after
several strategic methods to find a near-optimum solution to the proposed problem. The main
idea behind the proposed approach is to decompose the ENAV problem into two main sub
problems. More specifically the ENAV model uses the following methodology:

1- Select a proper VM from a given set of available VM types at cloud DC through the VM
selection manager module as shown in Fig. 2. The appropriate selection based on analyz-
ing the application A requirements to identify the best VMs instance types (in terms of
Core, RAM, storage, bandwidth…) that fit to deploy and run such an application. Themain
goal of this step is to satisfy one of the ENAV model objectives, i.e. minimize VMPC.

2- Apply a novel Energy, Network, and Application-aware VM genetic-based (ENAV-G)
algorithm that aims to minimize both of the ENAV model objectives, i.e. ITC and DECC.
For more explanation, the section below illustrates the pseudocode of the proposed
algorithm.

4.1 ENAV-G algorithm

ENAV-G proposed approach is an adaptive genetic algorithm that aims to consolidate the set
of selected VMs to deploy an application A in a minimum number of servers and storage
nodes such that ENAV model objectives are minimized (i.e. ITC, DECC, VMPC) without
violating the specified model constraints.

A genetic algorithm (GA) is a heuristic random searching mechanism [9, 10]. GAworks via
the method of fittest survival. It adjusts and optimizes its searching space using a probability
optimization method. GA complexity depends on the number of generations (g), population
size (n), and the size of individuals (m). Accordingly, GA complexity is O(gnm).

Figure 5 represents the adaptive genetic operators used to form the ENAV-G algorithm:

VM 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Gene 0001 0010 1000 0100 0001 1000 0010 0010 1000 0001 0100 1000 0010 0100 1000
Rack 4 3 1 2 4 1 3 3 1 4 2 1 3 2 1

Fig. 5 VMs as chromosomes

Multimedia Tools and Applications

Encoding This is the process of representing the solution in the form of a string of bits.
Consequently, the solution for the ENAV proposed VM mapping problem represented as a
chromosome of n genes. Each gene is responsible for mapping a VM to a specific server/
storage node. Figure 5 shows an example of VMs placement including 4 racks and 15 VMs
and its corresponding chromosome.

Adaptive encoding The ENAV-G algorithm follows an adaptive encoding method to satisfy
one of the ENAV model objectives (minimize ITC). More precisely, the ENAV-G algorithm
encodes the chromosomes such that each gene represents one of the cloud customer requests,
i.e. each gene represent a set of selected VMs that are suitable to deploy and run an application
A. Accordingly, Fig. 6 shows an example of VMs placement including 4 racks and 15 VMs
and its corresponding chromosome. Noting that each of the 15 VMs used to deploy 3 different
application types (for three different cloud customers). Consequently, Fig. 6 illustrates adap-
tive encoding.

Selection This is the process of finding the best individuals/chromosomes that form the new
fittest generation. Different selection methods are used such as Boltzmann strategy, rank-based
selection, roulette wheel, and tournament selection [9]. In this paper, the roulette wheel
strategy is used where rank is given to each individual according to its fitness value.

Crossover This is one of the important GA operators that leads to a new fittest generation.
Using a crossover operator, a pair of chromosomes are selected to produce next-generation
individuals. In this paper, a random point crossover is used to exchange VMs assignment
between corresponding racks. The example shown in Fig. 7 illustrates a simple example of the
used randomly selected crossover point and the newly generated individuals.

Mutation This operator encourages GA diversity and prevents generating uniform popula-
tions that lead to GA convergence to its local minima. By applying the mutation, GA can
recover the good characteristics lost during the crossover. As a crossover, in this paper, a
random point mutation is used to modify the selected gene characteristics.

Fitness function This is an effective GA algorithm determined by its fitness function. A
successful fitness function evaluates each chromosome to guide the selection operator to find
the best individuals and consequently find the final solution to the original problem. In this
paper, the ENAV-G fitness function was chosen to be one of the ENAV model objective
functions (the DECC function).

DECC pseudocode To calculate the DC energy consumption for deploying application A on
cloud DC using Eq. 6, Algorithm 1 is used. The DECC is an important objective for the
proposed ENAV-G algorithm since it represents the ENAV-G algorithm fitness function.
Algorithm 1 shows a high-level pseudo-code to calculate the expected total energy consump-
tion in cloud DC such that the requested customers’ application is deployed and runs correctly.

Application
Name A B C
VM 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
Gene 0001 0010 1000 0100 0001 1000 0010 0010 1000 0001 0100 1000 0010 0100 1000
Rack 4 3 1

Fig. 6 Application as chromosomes

Multimedia Tools and Applications

The GetPowerConsumption() function (line 4) returns the power consumption of each sei/sti/
swi used to deploy and run application A in cloud DC (using Eq. 6).

Algorithm 1 DECC Energy Consumption DECC(A)

Input: set of applications A= {A1, A2, …, An}, DC
Output: DECC(A) value
Processing:
1:DECC=0
2: For each application Ai in A
3: For each hosted server/storage/switch sej /stj/ swj node
4: DECC+= sej /stj/ swj.GetPowerConsumption()*ActiveTime(sej /stj/ swj)
5: End For
6: End For
7: Return DECC

The high-level pseudocode of the adaptive ENAV-G algorithm is presented in Algorithm 2.
As shown in Algorithm 2, the adaptive ENAV-G algorithm receives the cloud customers’
applications hosted on a suitable VMs type and the DC components (available servers/storage
nodes) to return the best VM/server mapping for each application such that the ENAV model
objectives are satisfied. As the natural GA algorithm, the proposed adaptive ENAV-G
algorithm goes through the following phases: 1- Generate the initial random population (line
2). 2- Evaluate the fitness function (line 3) (calculated using Eq. 6 as shown in Algorithm 1). 3-
Select the top fittest chromosomes (line 6) and the other number of parents using the Roulette
Wheel used selection method (line 8). 4- Generate a new population by applying crossover and
mutation operators to the selected parents (lines 7–11). After several iterations (line 14), the
proposed adaptive ENAV-G algorithm retrieves the fittest chromosome with the highest
fitness value that forms the ENAV model solution. Moreover, the algorithm takes into account
the ENAV model constraint by checking the servers/nodes/network capacity (lines 4–5).

Algorithm 2: ENAV-G
Input: set of applications A= {A1, A2, …, An}, DC
Output: VMs-to-servers/storage nodes mapping.
Processing:

1. Start
2. Generate initial population of chromosomes
3. Evaluate the fitness function for each chromosome/individual
4. Calculate the servers/storage nodes load after application Ai VMs allocation
5. Drop individuals that violate ENAV capacity constraints
6. Find the top two fittest chromosomes and consider them elite;
7. While !(initial population size)
8. Using random Roulette Wheel method select two parents (X & Y) from the fittest

generated population
9. Perform crossover between X & Y
10. Move the newly formed individuals to the next generation
11. End While
12. Replace the current population.
13. Mutate using probability Pm=0.01- 0.02
14. go to step 3 until a specified termination condition (i.e. fitness threshold or end of

iterations)
15. End

Multimedia Tools and Applications

5 Performance evaluation

This section simulates the effectiveness of the proposed ENAV model and answers the
following questions through extensive simulation using CloudSimSDN [20] simulator.

1- Does the ENAV model guarantee deadline constraint and the workload of data-intensive
applications completed within the scheduled time given by SLA?

2- Does the ENAV model optimize the energy consumption of the cloud environment?
3- How effective is the ENAV model in reducing the intra-DC traffic?
4- Does the proposed adaptive ENAV-G provide a good solution to solve the ENAVmodel?
5- Does the ENAV-G algorithm provide a scalable and effective solution?
6- How do the objective factors (Eqs. 1, 6, 10, and 11) that form the ENAVmodel contribute

to cloud performance and QoS?
7- How does the ENAV model compare with other VM placement model?

5.1 CloudSimSDN toolkit

CloudSimSDN toolkit is an add-on library to CloudSim that has been used for the simulation
of the SDN cloud environment. It supports the development of a new SDN operating system to
control the routing protocols and new controller development besides VM scheduling, migra-
tion, and consolidation methods. It provides comprehensive modeling of the energy consumed
by the DC resources such as servers and storage nodes and different network levels (edge,
aggregation, and core network level). To model our proposed ENAV-G algorithm, we adapted
the CloudSimSDN toolkit to handle our proposed adaptive genetic algorithm.

5.2 Simulation setup

The simulation experiments conducted on Intel(R) Core(TM) i7 Processor 3.4GHz, Windows
10 platform using NetBeans IDE 8.2, and JDK 8u111. To address the efficacy of the proposed
model in handling a large scale cloud DCs and the increasing complexity of the proposed
ENAV-G algorithm, different scenarios were generated that include synthetic and real work-
load traces, varying the DC topology, the number of servers and storage nodes, the number of
VMs requested by each application type and the dependencies among them, as well as varying
the load characteristics of the servers/storage nodes and VMs.

Parent 2: 1000 0100 0110 … 0010 0001 1001 0101

Child 1: 1110 0010 1000 … 1000 0001 1001 0101

Child 2: 1000 0100 0110 … 0010 0100 0011 0100

Parent 1: 1110 0010 1000 … 1000 0100 0011 0100

Fig. 7 Chromosome crossover

Multimedia Tools and Applications

To deploy and run the requested cloud customers’ applications, we emulate Amazon VMs
specifications to set the property of RAM,MIPS (million instructions per second), storage, and
bandwidth (BW) as shown in Table 2. To measure effectively the response time metric, two
different cloud environments are tested. One considered servers are homogeneous of Type 1
while the other is considered heterogeneous hosts of types Type 1–4 (as shown in Table 3). We
assume that servers will consume the full system power when the server is on. Each host’s
power consumption is based on a power model, which is based on a benchmark result
provided by SPEC (https://aws.amazon.com/about-aws/global-infrastructure/). Table 4
presents the server’s power consumption at different load levels. Table 5 shows the
parameters setting of the genetic algorithm based on a benchmark used parameters [19].

The emulated DC network topology was generated using a three-tier network topology (as
shown in Fig. 3) that made up of 4 cores, 16 aggregation, and 32 rack switches. Thus, each
rack holds 32 servers connected using physical links of 100 Mbps. While, 1 Gbps links were
used for the interconnecting edge, aggregation, and core switches.

5.2.1 Synthetic scenario

Using synthetic workload traces, this scenario is used to practice the effect of the proposed
ENAV-G in optimizing the response time and the energy consumption using 3-tier web
applications in different environments. To imitate a real loaded DC, the number of generated
applications varies between 100 and 300 consisting of 300–900 VMs. The generated workload
is based on a web service model [20] to ensure the validity of active switches during the VMs
running time.

The effectiveness of the proposed ENAV-G algorithm shall be tested and compared to a
number of benchmark VM placement heuristic algorithms that are used usually for such types
of tested applications. Accordingly, Best Fit (BF), Worst Fit (WF), Combined Least Full First
(CLFF), and Combined Most Full First (CMFF) are used. BF and WF are VM placement
algorithms that choose the most and least full host in terms of computing power respectively.
On the other hand, CLFF and CMFF are well-known VM placement methods that used a joint
network-energy efficient policy to choose the least and full host in terms of both compute and
network bandwidth respectively.

5.2.2 Wikipedia scenario

This scenario aims to find the effect of the proposed ENAV model using a more real cloud
environment. The internal cloud configuration was the same as indicated in the previous

Table 2 Amazon VMs specifications

VM instance type VM model Cores MIPS RAM(GB) Bandwidth(Mbps)

Web Server Standard 1 2000 0.5 100 Mbps
Memory optimized 2 1500 2 100 Mbps

Application Server Large 1 1500 2 100 Mbps
XLarge 2 2400 3 100 Mbps

Database Server Medium 2 2000 8 450 Mbps
Large 4 2400 16 750 Mbps

Multimedia Tools and Applications

https://aws.amazon.com/about--aws/global--infrastructure/

synthetic scenario. However, the generated workloads based on Wikipedia traces are obtain-
able for the three-tier application model.

For both scenarios four metrics are used: 1- DC Power consumption using both servers and
network devices, 2- the application response time, 3-the Intra DC network traffic cost, and 4-
the total application deployment cost. All of the following experiments started with an empty
DC. Though, gradually the DC gets crowded due to the increase in the number of deployed
applications that imitate the reality of cloud dynamicity.

DC power consumption To assess the importance of the proposed ENAV model in reducing
the total DC power consumption, two environments are tested: homogenous and heteroge-
neous DC devices as stated in the above section. Figure 8 displays the importance of the
proposed ENAV-G algorithm in consolidating the communicated application VMs that lead to
an average of 40% energy efficiency using different scenarios, loads, and environments.
Through these experiments, the total DC power consumption was measured using the total
consumption of the servers and network devices. As shown in Fig. 8, our approach contributes
to high energy reduction due to the fact that ENAV-G algorithm always activates the minimum
number of servers. It can be observed that, with the increasing number of workloads, the
percentage of energy efficiency decreases. This is because more VMs and hosts are used to
accommodate the deployed applications. One of the interesting observations in Fig. 8a reveals
the power reduction in network devices. This depicts the fact that the ENAV-G algorithm
localizes intra-DC traffic more efficiently compared to other benchmark algorithms. Overall,
the ENAV-G algorithm has been able to contribute to be a high energy-efficient VM
placement algorithm and to be scalable and adaptive in different cloud environments.

Application response time (ART) ART that returns the time difference between cloud user
request time and application response time [17], is a key metric to evaluate the significance of
the proposed ENAV-G algorithm in achieving high cloud QoS. Moreover, this metric is a
significant factor to measure the effect of any placement algorithm on SLA degradation. One
of the important parameters to conduct this experiment is scalability. Consequently, 20-time
intervals were randomly selected. According to the experimental results, Fig. 9, the ENAV-G
algorithm achieved the best response time among the competing algorithms. This is due to the

Table 3 Server type and specifications

Server type Specifications

Type 1 IBM server ×3250 (1 x [Xeon ×3470 2933 MHz, 4 cores], 32GB)
Type 2 IBM server ×3250 (1 x [Xeon ×3480 3067 MHz, 4 cores], 64GB)
Type 3 IBM server ×3550 (2 x [Xeon ×5670 2933 MHz, 6 cores], 48GB)
Type 4 IBM server ×3550 (2 x [Xeon ×5675 3067 MHz, 6 cores], 64GB)

Table 4 IBM servers host load to energy (Watt) mapping table

Server type 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

IBM ×3470 41.6 46.7 52.3 57.9 65.4 73 80.7 89.5 99.6 105 113
IBM ×3480 42.3 46.7 49.7 55.4 61.8 69.3 76.1 87 96.1 106 113
IBM ×5670 66 107 120 131 143 156 173 191 211 229 247
IBM ×5675 58.4 98 109 118 128 140 153 170 189 205 222

Multimedia Tools and Applications

significant decrease in intra-DC communication (shown in Fig. 10) that affects and decreases
the network transmission time. Thus, it leads to an average of 72% reduction in application
response time using synthetic scenario (Fig. 9a) and 60% using Wikipedia scenario (Fig. 9b)
that is due to the use of more complex applications and workload. In short, the ENAV-G
algorithm improves the performance of the cloud DC deployed applications that could attain
high cloud QoS and low SLA violations.

Intra-DC network traffic The consolidation achieved by the ENAV-G algorithm leads
to a significant decrease in intra-DC communication traffic. Figure 10 illustrates the
impact of the proposed genetic-based consolidation algorithm in achieving a high
reduction in Intra-DC communication traffic that reaches up to an average of 90%
compared to other baseline VM placement algorithms using both scenarios. One of
the most fascinating observations, as shown in Fig. 10, is that the workload consol-
idation achieved by the ENAV-G algorithm helps the communicated VMs to be
connected and communicate using the servers’ memory instead of data center network
(DCN) devices. Moreover, reducing the intra-DC communication traffic leads obvi-
ously to reduce the intra-DC network congestion. Accordingly, the network

Table 5 Genetics parameter settings

Parameter Value

Population size 100
Number of generations 50
Crossover rate 0.8
Mutation rate 0.1

Fig. 8 Comparison of Average DC Power Consumption (a) Network devices, (b) Servers, (c) Including both
servers and network devices

Multimedia Tools and Applications

transmission time and delay decrease harshly and lead to high response time as shown
previously in Fig. 10.

Application Deployment Cost (ADC) ADC is an important metric to evaluate the usefulness
of the proposed ENAV VM placement model in achieving high revenue for the cloud
providers. Noting that to compute the ADC the VM pricing model is taken as designated
by amazon [24]. Figure 11 displays the importance of the VMPC function as an important
objective in modelling the ENAV VM placement method (Eq. 10). The results display the
usefulness of choosing optimum VM selection type through the ENAV Controller module
(VM Selection Manager as shown in Fig. 2). According to the experimental results, the
ENAV VM placement model achieves up to an average of 50% reduction in ADC and
outperforms other benchmark VM placement algorithms. Figure 11 reveals that the ADC
cost increases proportionally with the number of users reflected through the applied
workload type.

6 Conclusion and future work

This paper presents a novel VM placement method for multi-tier applications hosted in large
cloud DCs. The proposed ENAV model aims to minimize the cloud DC energy consumption,
the VM placement cost, and the intra-DC communication traffic as well as network conges-
tion. The proposed methodology to solve the ENAV model projected an adaptive genetic-
based algorithm (ENAV-G) to solve such a problem. Different scenarios are used to imitate a
real cloud environment and the proposed model proves its efficacy over a benchmark and

Fig. 9 Applications average response time (ART) using (a) Synthetic Workload, (b) Wikipedia workload

0

200

400

600

800

300 600 900

T
ra

ff
ic

 L
o

ad

#of VMs

BF

WF

CLFF

CMFF

ENAV-G

Fig. 10 Average Intra-DC communication traffic of synthetic and Wikipedia workload

Multimedia Tools and Applications

baseline approaches in this field. For further studies, application priority could be considered
for such a critical application. Moreover, it is also interesting to study the effect of the proposed
VM placement model on different parameters that affect cloud QoS such as system failure.

Declarations

Conflict of interest The authors confirm that there are no known conflicts of interest associated with this
publication and there has been no significant financial support for this work that could have influenced its
outcome.

References

1. Cao G (2019) Topology-aware multi-objective virtual machine dynamic consolidation for cloud datacenter.
Sust Comput: Inform Syst 21:179–188

2. Cao G, Zhang C, LiuW (2017) Fast communication-aware virtual machine dynamic consolidation for cloud
data center. In 2017 IEEE International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC) (pp. 237-244). IEEE

3. Cook G, Pomerantz D, Rohrbach K, Johnson B, Smyth J (2015) Clicking clean: a guide to building the
green internet. Greenpeace Inc., Washington, DC

4. Das MS, Govardhan A, Lakshmi DV (2019) Cost minimization through load balancing and effective
resource utilization in cloud-based web services. Int J Nat Comput Res (IJNCR) 8(2):51–74

5. Dayarathna M, Wen Y, Fan R (2015) Data center energy consumption modeling: a survey. IEEE Commun
Surv Tutorials 18(1):732–794

6. Dias DS, Costa LHM (2012) Online traffic-aware virtual machine placement in data center networks. In
2012 Global Information Infrastructure and Networking Symposium (GIIS) (pp. 1-8). IEEE

7. El Motaki S, Yahyaouy A, Gualous H, Sabor J (2019) Comparative study between exact and metaheuristic
approaches for virtual machine placement process as knapsack problem. J Supercomput 75(10):6239–6259

8. Ghobaei-Arani M, Souri A, Baker T, Hussien A (2019) ControCity: an autonomous approach for control-
ling elasticity using buffer Management in Cloud Computing Environment. IEEE Access 7:106912–106924

9. Jatoth C, Gangadharan GR, Buyya R (2019) Optimal fitness aware cloud service composition using an
adaptive genotypes evolution based genetic algorithm. Futur Gener Comput Syst 94:185–198

10. Kaur K, Kaur N, Kaur K (2018) A novel context and load-aware family genetic algorithm based task
scheduling in cloud computing. In Data Engineering and Intelligent Computing (pp. 521–531). Springer,
Singapore

11. Kumar P, Kumar R (2019) Issues and challenges of load balancing techniques in cloud computing: a survey.
ACM Comput Surv (CSUR) 51(6):1–35

12. Liu P, Bravo G, Guitart J (2019) Energy-aware dynamic pricing model for cloud environments. In
International Conference on the Economics of Grids, Clouds, Systems, and Services (pp. 71-80).
Springer, Cham

13. Mann ZÁ (2015) Allocation of virtual machines in cloud data centers—a survey of problem models and
optimization algorithms. ACM Comput Surv (CSUR) 48(1):1–34

0.00

0.50

1.00

1.50

Synthetic Wikipedia

H
o

u
rl

y
 C

o
st

 (
U

S
 $

)

ENAV-G Other

Fig. 11 Average application deployment cost using different workload (i.e. different number users)

Multimedia Tools and Applications

14. Rawas S, Itani W, Zaart A, Zekri A (2015) Towards greener services in cloud computing: research and
future directives. In 2015 International Conference on Applied Research in Computer Science and
Engineering (ICAR) (pp. 1-8). IEEE

15. Rawas S, Itani W, Zekri A, Zaart AE (2017) ENAGS: energy and network-aware genetic scheduling
algorithm on cloud data centers. In Proceedings of the Second International Conference on Internet of
things, Data and Cloud Computing (pp. 1-7)

16. Rawas S, Zekri A (2018) Location-aware energy-efficient workload allocation in geo distributed cloud
environment. J Comput Sci 14(3):334–350

17. Rawas S, Zekri A, El Zaart A (2018) CELA: cost-efficient, location-aware VM and data placement in geo-
distributed DCs. In international conference on cloud computing and services science (pp. 1-23). Springer,
Cham

18. Sarkar S, Chatterjee S, Misra S (2015) Assessment of the suitability of fog computing in the context of
internet of things. IEEE Trans Cloud Comput 6(1):46–59

19. Son J, Dastjerdi AV, Calheiros RN, Buyya R (2017) SLA-aware and energy-efficient dynamic overbooking
in SDN-based cloud data centers. IEEE Trans Sustain Comput 2(2):76–89

20. Son J, Dastjerdi AV, Calheiros RN, Ji X, Yoon Y, Buyya R (2015) Cloudsimsdn: modeling and simulation
of software-defined cloud data centers. In 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (pp. 475-484). IEEE

21. Vicentini C, Santin A, Viegas E, Abreu V (2019) SDN-based and multitenant-aware resource provisioning
mechanism for cloud-based big data streaming. J Netw Comput Appl 126:133–149

22. Vidal J (2017) http://www.climatechangenews.com/2017/12/11/tsunami-data-consume-one-fifth-global-
electricity-2025/

23. Wei W, Gu H, Lu W, Zhou T, Liu X (2019) Energy efficient virtual machine placement with an improved
ant colony optimization over data center networks. IEEE Access 7:60617–60625

24. Yuan H, Bi J, Zhou M, Sedraoui K (2017) WARM: workload-aware multi-application task scheduling for
revenue maximization in SDN-based cloud data center. IEEE Access 6:645–657

25. Zhao DM, Zhou JT, Li K (2019) An energy-aware algorithm for virtual machine placement in cloud
computing. IEEE Access 7:55659–55668

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Multimedia Tools and Applications

http://www.climatechangenews.com/2017/12/11/tsunami--data--consume--one--fifth--global--electricity--2025/
http://www.climatechangenews.com/2017/12/11/tsunami--data--consume--one--fifth--global--electricity--2025/
http://www.climatechangenews.com/2017/12/11/tsunami--data--consume--one--fifth--global--electricity--2025/
http://www.climatechangenews.com/2017/12/11/tsunami--data--consume--one--fifth--global--electricity--2025/

	Energy, network, and application-aware virtual machine placement model in SDN-enabled large scale cloud data centers
	Abstract
	Introduction
	Related work
	Models and problem formulation
	Problem statement
	System model and architecture
	VM placement in cloud DC
	Formal definition
	VM/server placement relationship
	VM/VM dependency relationship
	Intra-DC traffic cost (ITC)
	DC energy consumption cost (DECC)

	Power models
	Modeling the DC energy consumption cost
	VM placement cost (VMPC)

	Modeling the optimization problem

	The ENAV methodology
	ENAV-G algorithm

	Performance evaluation
	CloudSimSDN toolkit
	Simulation setup
	Synthetic scenario
	Wikipedia scenario

	Conclusion and future work
	References

