Sönke Zaehle

Sönke Zaehle
Max Planck Institute for Biogeochemistry Jena | BGC · Department of Biogeochemical Integration

Dr.

About

170
Publications
106,442
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
31,182
Citations
Citations since 2017
14 Research Items
18997 Citations
201720182019202020212022202305001,0001,5002,0002,5003,000
201720182019202020212022202305001,0001,5002,0002,5003,000
201720182019202020212022202305001,0001,5002,0002,5003,000
201720182019202020212022202305001,0001,5002,0002,5003,000

Publications

Publications (170)
Article
Full-text available
The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil,...
Article
Full-text available
Plain Language Summary Soils contain a lot of carbon (C). Earth System Models (ESMs) predict that the amount of C released from soils into the atmosphere as CO2 will increase in response to increased warming and microbial activity. Soil moisture also controls microbial C decomposition, but most ESMs do not yet describe this process very well. In th...
Article
Full-text available
Plain Language Summary Nitrous oxide (N2O) is the third most important greenhouse gase (GHG) after CO2 and CH4 causing global warming. Among world regions, North America (defined herein as U.S., Canada, and Mexico) is the second largest source of N2O emissions globally, and previous source estimates for this region vary widely. This study aims to p...
Article
Full-text available
In 2018, central and northern parts of Europe experienced heat and drought conditions over many months from spring to autumn, strongly affecting both natural ecosystems and crops. Besides their impact on nature and society, events like this can be used to study the impact of climate variations on the terrestrial carbon cycle, which is an important...
Article
In Europe, three widespread extreme summer drought and heat (DH) events have occurred in 2003, 2010 and 2018. These events were comparable in magnitude but varied in their geographical distribution and biomes affected. In this study, we perform a comparative analysis of the impact of the DH events on ecosystem CO 2 fluxes over Europe based on an en...
Article
Full-text available
In summer 2018, central and northern Europe were stricken by extreme drought and heat (DH2018). The DH2018 differed from previous events in being preceded by extreme spring warming and brightening, but moderate rainfall deficits, yet registering the fastest transition between wet winter conditions and extreme summer drought. Using 11 vegetation mod...
Article
Full-text available
The Global Carbon Budget 2018 (GCB2018) estimated by the atmospheric CO 2 growth rate, fossil fuel emissions, and modeled (bottom-up) land and ocean fluxes cannot be fully closed, leading to a "budget imbalance," highlighting uncertainties in GCB components. However, no systematic analysis has been performed on which regions or processes contribute...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Article
Full-text available
A wide range of research shows that nutrient availability strongly influences terrestrial carbon (C) cycling and shapes ecosystem responses to environmental changes and hence terrestrial feedbacks to climate. Nonetheless, our understanding of nutrient controls remains far from complete and poorly quantified, at least partly due to a lack of informa...
Article
Full-text available
Interannual variations in the large-scale net ecosystem exchange (NEE) of CO2 between the terrestrial biosphere and the atmosphere were estimated for 1957–2017 from sustained measurements of atmospheric CO2 mixing ratios. As the observations are sparse in the early decades, available records were combined into a ‘quasi-homogeneous’ dataset based on...
Poster
Soil organic carbon (SOC) is the largest terrestrial carbon pool. Changes in the hydrological cycle affect C-cycle turnover, with potential effects on the global C balance’s response to global change. However, large scale model representations of the sensitivity of soil carbon to soil moisture, through decomposition and interactions with nutrient c...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Article
Full-text available
The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxe...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and m...
Article
Full-text available
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the JSBACH land-surface scheme, which is part of the MPI-Earth System Model v1. The simulated phenology and net land carbon balance were constrained by globally distributed observations of the fraction of absorbed photos...
Article
Full-text available
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models, by reducing the influence of ad hoc differences in model set-up or experimental boundary conditions. As it enters its 6th phase, the Coupl...
Article
Full-text available
Ozone is a toxic air pollutant that can damage plant leaves and substantially affect the plant’s gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic ozone on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact...
Article
Full-text available
We present a synthesis of the land-atmosphere carbon flux from land use and land cover change (LULCC) in Asia using multiple data sources and paying particular attention to deforestation and forest regrowth fluxes. The data sources are quasi-independent and include the U.N. Food and Agriculture Organization-Forest Resource Assessment (FAO-FRA 2015;...
Article
Full-text available
Global environmental change is rapidly altering the dynamics of terrestrial vegetation, with consequences for the functioning of the Earth system and provision of ecosystem services. Yet how global vegetation is responding to the changing environment is not well established. Here we use three long-term satellite leaf area index (LAI) records and te...
Article
Full-text available
Coordinated experimental design and implementation has become a cornerstone of global climate modelling. So-called Model Intercomparison Projects (MIPs) enable systematic and robust analysis of results across many models to identify common signals and understand model similarities and differences without being hindered by ad-hoc differences in mode...
Article
The response of terrestrial ecosystems to rising atmospheric CO2 concentration (Ca ), particularly under nutrient limited conditions, is a major uncertainty in Earth System models. The Eucalyptus Free-Air CO2 Enrichment (EucFACE) experiment, recently established in a nutrient-and water-limited woodland, presents a unique opportunity to address this...
Article
Nitrogen (N) deposition is impacting the services that ecosystems provide to humanity. However, the mechanisms determining impacts on the N cycle are not fully understood. To explore the mechanistic underpinnings of N impacts on N cycle processes, we reviewed and synthesised recent progress in ecosystem N research through empirical studies, concept...
Article
Full-text available
Warming making bigger CO 2 swings The combined effects of climate change and vegetation dynamics at high northern latitudes have amplified the seasonal variation of atmospheric CO 2 concentrations over the past half century. Forkel et al. combined observations and models to show that climate warming has caused the photosynthetic uptake of carbon to...
Article
Full-text available
We describe the Max Planck Institute Carbon Cycle Data Assimilation System (MPI-CCDAS) built around the tangent-linear version of the land surface scheme of the MPI-Earth System Model v1 (JSBACH). The simulated terrestrial biosphere processes (phenology and carbon balance) were constrained by observations of the fraction of photosynthetically activ...
Article
Full-text available
We modeled the carbon (C) cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers) to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000–2005), the past century (1901–2000) and the remainder of this ce...
Article
Full-text available
Including a terrestrial nitrogen (N) cycle in Earth system models has led to substantial attenuation of predicted biosphere-climate feedbacks. However, the magnitude of this attenuation remains uncertain. A particularly important, but highly uncertain process is biological nitrogen fixation (BNF), which is the largest natural input of N to land eco...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all ma...
Article
Century-long observed gridded land precipitation datasets are a cornerstone of hydrometeorological research. But recent work has suggested that observed Northern Hemisphere midlatitude (NHML) land mean precipitation does not show evidence of an expected negative response to mid-twentieth-century aerosol forcing. Utilizing observed river discharges,...
Article
Full-text available
The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 Tg N yr−1 in 2010, which is approximately equal to the sum of biological N fixation i...
Article
Full-text available
Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland...
Article
Stomatal conductance (gs) is a key variable in Earth system models as it regulates the transfer of carbon and water between the terrestrial biosphere and the lower atmosphere. Various approaches have been developed that aim for a simple representation of stomatal regulation applicable at the global scale. These models differ, amongst others, in the...
Article
Full-text available
We modelled the carbon (C) cycle in Mexico with a process-based approach. We used different available products (satellite data, field measurements, models and flux towers) to estimate C stocks and fluxes in the country at three different time frames: present (defined as the period 2000–2005), the past century (1901–2000) and the remainder of this c...
Article
The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere m...
Article
The response of the forest carbon (C) balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examined how different assumptions about the degree of flexibility of the ecosystem's C : N ratios contribute to this uncertainty, and...
Article
Full-text available
Croplands are vital ecosystems for human well-being and provide important ecosystem services such as crop yields, retention of nitrogen and carbon storage. On large (regional to global)-scale levels, assessment of how these different services will vary in space and time, especially in response to cropland management, are scarce. We explore cropland...
Article
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modelled wel...
Article
The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ens...
Article
Full-text available
Ecosystem responses to rising CO 2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO 2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model-Data Synthesis project aimed to use the information gathered in two forest FACE experi...
Article
The temperature dependence of the reaction kinetics of the Rubisco enzyme implies that, at the level of a chloroplast, the response of photosynthesis to rising atmospheric CO2 concentration (Ca ) will increase with increasing air temperature. Vegetation models incorporating this interaction predict that the response of net primary productivity (NPP...
Article
Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO2. Free-Air CO2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO...
Article
Coupled carbon cycle-climate models in the Coupled Model Intercomparison Project, phase 5 (CMIP5), Earth system model ensemble simulate the effects of changes in anthropogenic fossil-fuel emissions and ensuing climatic changes on the global carbon (C) balance but largely ignore the consequences of widespread terrestrial nitrogen (N) limitation. Bas...
Article
Full-text available
The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by...
Article
Full-text available
The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 Tg N yr−1 in 2010, which is approximately equal to the sum of biological N fixation i...
Article
The capacity of earth system models (ESMs) to make reliable projections of future atmospheric CO2 and climate is strongly dependent on the ability of the land surface model to adequately simulate the land carbon (C) cycle. Defining “adequate” performance of the land model requires an understanding of the contributions of climate model and land mode...
Article
We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against 1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, 2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by i...
Article
Full-text available
Satellite-derived Normalized Difference Vegetation Index (NDVI), a proxy of vegetation productivity, is known to be correlated with temperature in northern ecosystems. This relationship, however, may change over time following alternations in other environmental factors. Here we show that above 30°N, the strength of the relationship between the int...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all ma...
Article
Full-text available
Elevated atmospheric CO2 concentration (eCO2 ) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-ai...
Data
Modelled labile carbohydrate store at Duke and at Oak Ridge. Notes S1 Carbohydrate storage and remobilisation. Notes S2Differences among model predictions of allocation patterns at ambient CO2 concentration.
Article
Full-text available
Free Air CO2 Enrichment (FACE) experiments provide a remarkable wealth of data which can be used to evaluate and improve terrestrial ecosystem models (TEMs). In the FACE Model-Data Synthesis project (FACE-MDS), 11 TEMs were applied to two decade-long FACE experiments in temperate forests of the south eastern US—the evergreen Duke Forest and the dec...
Article
Full-text available
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C–N interactions on predictions and pe...
Article
Full-text available
Understanding the impacts of climate extremes on the carbon cycle is important for quantifying the carbon-cycle climate feedback and highly relevant to climate change assessments. Climate extremes and fires can have severe regional effects, but a spatially explicit global impact assessment is still lacking. Here, we directly quantify spatiotemporal...
Article
Full-text available
Atmospheric CO2 and climate projections for the next century vary widely across current Earth system models (ESMs), owing to different representations of the interactions between the marine and land carbon cycle on the one hand, and climate change and increasing atmospheric CO2 on the other hand. Several efforts have been made in the last years to...
Article
Full-text available
We analysed the responses of 11 ecosystem models to elevated atmospheric [CO2] (eCO2) at two temperate forest ecosystems (Duke and Oak Ridge National Laboratory (ORNL) Free-Air CO2 Enrichment (FACE) experiments) to test alternative representations of carbon (C)–nitrogen (N) cycle processes. We decomposed the model responses into component processe...