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Abstract Pomaranch [3] is a synchronous stream cipher submitted to eSTREAM,
the ECRYPT Stream Cipher Project. The cipher is constructed as a cascade clock
control sequence generator, which is based on the notion of jump registers. In this
paper we present an attack which exploits the cipher's initialization procedure to
recover the 128-bit secret key. The attack requires around 265 computations. An
improved version of the attack is also presented, with complexity 252.
Keywords: Pomaranch Stream Cipher, Jump Registers, Chosen IV Attack.

1 Introduction

Pomaranch1 is one of the 34 stream ciphers submitted to eSTREAM, the ECRYPT
Stream Cipher Project [1]. The cipher is implemented as a binary one clock pulse
cascade clock control sequence generator, and uses 128-bit keys and IVs of length
between 64 and 112 bits [3]. The construction is based on the notion of jump registers.

Jump controlled LFSRs were introduced in [2] as alternative to traditional clock-
controlled registers. In jump controlled LFSRs, the registers are able to move to
a state that is more than one step ahead without having to step through all the
intermediate states (thus the name jump registers). The main motivation for the
proposal of jump registers is to construct LFSR-based ciphers that can be e�ciently
protected against side-channel attacks while preserving the advantages of irregular
clocking.

2 Outline of Pomaranch

Pomaranch is depicted in Figure 1, where only the key stream generation phase is
represented (called Key Stream Generation Mode). The cipher consists of nine cas-
caded jump registers R1 to R9. The jump registers are implemented as autonomous

1 The cipher is also referred in the speci�cation document [3] as Cascade Jump Controlled Sequence
Generator (CJCSG).
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Linear Finite State Machine (LFSM), built on 14 memory cells, which behave either
as simple delay shift cells or feedback cells, depending on the value of the so-called
Jump Control (JC) signal. At any moment, half of the cells in the registers are shift
cells, while the other half are feedback cells. The initial con�guration of cells is de-
termined by the LFSM transition matrix A, and is used if the JC value is zero. If JC
is one, all cells are switched to the opposite mode. This is equivalent to switching
the transition matrix to (A + 1) [3].

Figure1. The Pomaranch stream cipher

The 128-bit key K is divided into eight 16-bit subkeys k1 to k8. At time t, the
current state of the registers Rt

1 to Rt
8 are non-linearly �ltered, using a function that

involves the corresponding subkey ki. These functions provide as output eight bits
ct
1 to ct

8, which are used to produce the jump control bits JCt
2 to JCt

9 controlling the
registers R2 to R9 at time t, as following:

JCt
i = ct

1 ⊕ . . .⊕ ct
i−1 for i = 2, . . . , 9.

The jump control bit JC1 of register R1 is permanently set to zero. The key stream
bit zt produced at time t is the XOR of nine bits rt

1 to rt
9 selected at �xed positions

of the current register states Rt
1 to Rt

9.

Key and IV Loading. During the cipher initialization, the content of registers
R1 to R9 are �rst set to non-zero constant 14-bit values derived from π, then the
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subkeys ki are loaded and the registers are run for 128 steps in a special mode (called
Shift Mode). The main di�erence between the Key Stream Generation Mode and the
Shift Mode is that, in the latter the output of the �ltering function of register Ri

(denoted by ci) is added to the feedback of register Ri+1, with the tap from cell 1
in the register R9 being added to the register R1, making then what can be seen as
a �big loop�. Note that the con�guration of the jump registers do not change in this
mode (they all operate as if JCi = 0). This process ensures that the states of the
registers R1 and R9 after this key loading phase depend upon the entire key K. We
denote these states by RK

1 to RK
9 .

Next the IV is loaded into the registers. The IV can have any arbitrary length
between 64 and 112 bits. If the IV length is shorter than 112 bits, it is expanded by
cyclically repeating it until a length of exactly 112 bits is obtained. This new string
is then loaded into the registers as described below. In the remaining of this paper,
for the sake of simplicity, we assume that the IV length is exactly 112 bits.

The IV is loaded into the registers in the following manner: the 112-bit IV is
split into eight 14-bit parts IV1 to IV8, which are XORed with the 14-bit states of
registers RK

1 to RK
8 obtained at the end of the key loading. If any of the resulting

states consists of 14 null bits, its lowest weight bit is set to one (this ensures that
no state will be made up entirely of null bits2). The resulting register states R1 to
R8 form together with RK

9 the nine initial states. We denote these resulting 14-bit
state values by R−128

1 to R−128
9 . The key stream generation mode of Figure 1 is now

activated, and the runup consists of 128 steps in which the produced key stream bits
are discarded.

3 Description of the Attack

We have identi�ed the following weakness in the Pomaranch IV initialization proce-
dure: if for a given key K and IV value IV , we only modify the IV part IV8 and
keep the remaining parts IV1 to IV7 unchanged (thus obtaining a modi�ed IV value
IV ′), on comparing the key stream generation under the key K with IV and IV ′,
we have that for every t ≥ −128

Rt
i(IV ) = Rt

i(IV ′) for i = 1, . . . , 7 .

In other words, the Key and IV loading procedure does not di�use all IV bits into the
whole state of the generator. Consequently, if IV and IV ′ are chosen as above, the
contributions from registers R1 to R7 cancel out on each key stream XOR zt(IV )⊕
zt(IV ′), and we obtain the relation

zt(IV )⊕ zt(IV ′) = rt
8(IV )⊕ rt

8(IV ′)⊕ rt
9(IV )⊕ rt

9(IV ′).

2 The Pomaranch speci�cation does not mention this feature, which is described in the source code
provided with the submission and has been con�rmed by one of the designers [4]. We will show
in the next section that, although the cipher can be attacked even if this feature is withdrawn,
this represents an additional weakness that leads to improved attacks.
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We now show how to exploit this weakness to recover the subkey k8 of an unknown
key K, in a chosen IV attack. Consider 3 distinct chosen IV values IV , IV ′ and IV ′′,
which only di�er by their part IV8, IV ′

8 and IV ′′
8 . We can obtain the corresponding

�rst m-bit key stream zt(IV )t=0 to m−1, zt(IV ′)t=0 to m−1, and zt(IV ′′)t=0 to m−1,
which in turn provide the pairwise XOR values

δt = zt(IV ) ⊕ zt(IV ′)t=0 to m−1,
δ′t = zt(IV ′) ⊕ zt(IV ′′)t=0 to m−1,

In order to recover the value of k8, we guess the following values:

- Subkey k8: 16 bits;
- Registers RK

8 and RK
9 : 28 bits;

- n8 = ]{t ∈ {−128, ..,−1} | JCt
8(IV ) = 1}: 129 possible values;

- n9 = ]{t ∈ {−128, ..,−1} | JCt
9(IV ) = 1}: 129 possible values;

- n′
9 = ]{t ∈ {−128, ..,−1} | JCt

9(IV ′) = 1}: 129 possible values;
- n′′

9 = ]{t ∈ {−128, ..,−1} | JCt
9(IV ′′) = 1}: 129 possible values.

The attack exploits the jump registers property that since the transition matrices
A and A + I commute, the transition matrix associated with a number s of steps
can only take one of the at most s + 1 values Ap(A + I)q, with p + q = s. Due to
this property, the knowledge of the values of (n8, n9, n′

9, n′′
9) is su�cient to derive

the R8 and R9 transition matrices of the form A128−n(A + I)n associated with the
128-step runup for IV values IV , IV ′ and IV ′′. Note that although n8, n9, n′

9, n′′
9

can take any of the 129 values in the [0 · · · 128] interval, their values are binomially
distributed, so that in practice the 25−1 middle values in the interval [49 · · · 79] have
an overwhelming occurrence probability.

Now since we have3

R−128
8 (IV ) = RK

8 ⊕ IV,

R−128
8 (IV ′) = RK

8 ⊕ IV ′,

R−128
8 (IV ′′) = RK

8 ⊕ IV ′′,

R−128
9 (IV ) = R−128

9 (IV ′) = R−128
9 (IV ′′) = RK

9 ,

it follows that knowledge of RK
8 , RK

9 , n8, n9, n
′
9 and n′′

9 allows us to compute R0
8(IV ),

R0
8(IV ′), R0

8(IV ′′), R0
9(IV ), R0

9(IV ′), and R0
9(IV ′′).

To test a (k8, R
K
8 , RK

9 , n8, n9, n
′
9, n

′′
9) assumption we need to compute the result-

ing values of R0
8(IV ), R0

8(IV ′), R0
8(IV ′′), R0

9(IV ), R0
9(IV ′), and R0

9(IV ′′) and itera-
tively try, for consecutive values of m, to guess the m-bit value JCt

8(IV )t=0 to m−1 in
order to derive the resulting values of Rt

8(IV ), Rt
8(IV ′), Rt

8(IV ′′), Rt
9(IV ), Rt

9(IV ′),
and Rt

9(IV ′′). Following we verify whether the predicted values (δt, δ′t)t=0 to m−1 are
in agreement with the observed ones. The average number of m values to be tested
until a wrong assumption is discarded (because no JCt

8(IV )t=0 to m−1 m-tuple �ts
the observed values) is about 2.

3 We are ignoring the cipher's non-zero state forcing feature at this stage.
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Indeed, for a certain (k8, RK
8 , RK

9 , n8, n9, n′
9, n′′

9) assumption and a choice of
JCt

8(IV ), the pair (δt, δ′t) can take one of four possible values. Assuming the values
are randomly generated, there are three events to consider. First the case in which
the pairs (δt, δ′t) for both the choices of JCt

8(IV ) = 0 and JCt
8(IV ) = 1 are in

agreement with the observed value. Its probability is 1/16, and it leaves us with
two possible con�gurations that need to be further tested. The second event is when
only one pair (δt, δ′t) for either the choices of JCt

8(IV ) = 0 or JCt
8(IV ) = 1 is in

agreement with the observed one. Its probability is 3/8, and it leaves us with one
possible con�guration that need to be further tested. The third event is when neither
the pairs (δt, δ′t) for the choices of JCt

8(IV ) = 0 and JCt
8(IV ) = 1 is in agreement

with the observed one (i.e. the con�guration is inconsistent). Its probability is 9/16,
and no further tests using this con�guration is necessary. Thus if X denotes the
number of tests we need to perform, then

E(X) = 1 +
1
16

· 2 · E(X) +
3
8
· 1 · E(X) +

9
16

· 0 · E(X),

and E(X) = 2.

The attack described above allows us to recover the value of k8. Its complexity
is bounded over by 216 × 228 × (25)4 × 2 = 265. Note that the attack also recovers
the correct values for RK

8 and RK
9 . To recover the other key parts, we can pro-

ceed as following: repeat the same attack for another value of (IV, IV ′, IV ′′), call it
(IV , IV ′, IV ′′), such that IV and IV only di�er by their part IV7 and IV7. Since
we know already k8, RK

8 and RK
9 , this second attack can be mounted much faster.

Finally, we can guess the values of RK
7 and n7 and check whether there exists a

sequence JCt
7(IV )t=0 to m−1 that is consistent with the already known sequences

JCt
8(IV )t=0 to m−1 and JCt

8(IV )t=0 to m−1. This can be done for all the remaining
key parts, until the entire key K has been recover. The complexity of the entire
attack remains about 265.

Improved Attack. Note that so far we have not exploited the non-zero state forcing
feature of Pomaranch, and the above attack works whether this feature is present or
not. We now show that this feature results in a low complexity distinguisher, and
also allows us to reduce the complexity of the key derivation procedure described
above.

The distinguisher works as following: given an unknown key K, we can try the
214 possible IV values obtained by keeping (say) IV1 to IV7 unchanged and taking
all possible values for (say) IV8. Now two of these 214 IVs result in exactly the same
states R−128

1 to R−128
9 after key and IV loading, namely the IV value resulting on a

14-bit R8 state equal to zero (which will have one bit switched to 1 by the cipher
non-zero state forcing procedure), and the IV value derived from the former one by
swapping the same bit position. The key streams for these two IV values are exactly
the same. If the key stream is su�cient long (e.g. more than 27 bits in order for
collisions of a pair of IV values to be unlikely), this provides an e�cient chosen IV

5



distinguisher of distinguishing probability close to 1, requiring generation of only 214

key stream sequences of length (say) 64 bits each.
This distinguisher can be used to improve the key derivation attack described

above. Indeed, the distinguisher allows us to recover the register value RK
8 up to one

single bit, so that a factor of 213 can be saved in the search of (k8, RK
8 , RK

9 , n8,
n9,n

′
9, n′′

9), and the attack complexity is reduced to 252.

4 Conclusion

We showed in this paper how to mount a chosen IV attack to recover the secret key of
Pomaranch with complexity much lower than the one expected with 128-bit keys. The
attack exploits a weakness in the cipher initialization procedure, namely the process
does not di�use all the IV bits into the whole state of the key stream generator. By
exploiting another feature of the IV loading, we were able to substantially improve
the attack.
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Abstract. Pomaranch is a synchronous bit-oriented stream cipher submitted to eSTREAM, the 
ECRYPT Stream Cipher Project. Following the recently published chosen IV [1] and correlation [7] 
key-recovery attacks, the authors changed the configuration of jump registers and introduced two new 
key-IV setup procedures for the cipher. We call the updated version as Tweaked Pomaranch vs. Origi-
nal Pomaranch [4]. In this paper we use the findings of [7] to mount a chosen IV key-recovery attack 
on the Original Pomaranch with computational complexity of O(273.5). The attack is also applicable to 
the first key-IV setup proposal for Tweaked Pomaranch with computational complexity of O(2117.7). 
The alternative key-IV setup for Tweaked Pomaranch is immune against our attack. Both versions of 
Pomaranch deal with 128 bit keys.  

Keywords. ECRYPT Stream Cipher Project, Pomaranch, CJCSG, Jump Register, Cryptanalysis, Lin-
ear Equivalence Bias, Clock-Controlled LFSR, Security Evaluation. 

1   Introduction 

Pomaranch (also known as a Cascade Jump Controlled Sequence Generator or CJCSG) [4] is a synchro-
nous bit-oriented stream cipher, one of the ECRYPT Stream Cipher Project [2] candidates. It uses 128-bit 
keys and in its original design - which we call Original Pomaranch - accommodates an Initial Value (IV) of 
64 up to 112 bits long. The algorithm uses a one-clock-pulse cascade construction of so called jump regis-
ters [3] being essentially linear finite state machines with a special transition matrix. Moreover, the charac-
teristic polynomial of the transition matrix was made to be primitive and satisfying additional constraints 
that arise from the need to use the register in a cascade jump control setup. The principal advantage of 
jump registers over the classical clock-controlled arrangements is their ability to move a Linear Feedback 
Shift Register (LFSR) to a state that is more than one step ahead but without having to step through all the 
intermediate states. The transition matrix of the jump registers in Pomaranch has been chosen so to secure 
the design against side-channel attacks while preserving all the advantages of irregular clocking. 

Following the recently published chosen IV [1] and correlation [7] key-recovery attacks, the authors 
made some tweaks on the cipher. Firstly, they changed the configuration of jump registers and then intro-
duced two different key-IV setup procedures for the cipher - one mixes the IV and key similarly to Original 
Pomaranch limiting the IV length to 78 bits and the other is totally different from the original version and 
can accommodate IV’s up to 126 bits long [6]. These changes effectively counter the attacks introduced in 
[7, 1]. We call this updated version as Tweaked Pomaranch. 

Paper [7] describes a new inherent property of jump registers that allows constructing their linear 
equivalences. This property was further investigated in [5]. In this paper we use the same idea to mount a 
resynchronization attack (IV attack) on Original Pomaranch and the first key-IV setup of Tweaked Po-
maranch. The second key-IV setup of Tweaked Pomaranch is immune against our attack. In the rest of the 
paper we just consider Tweaked Pomaranch with the first key-IV setup and refer to Tweaked Pomaranch 
for convenience. 

Our results show that the key of both Original and Tweaked Pomaranch can be found when a key is 
used with about 235 chosen IV’s. The required computational complexities are O(273.5) and O(2117.7) for 
Original and Tweaked Pomaranch respectively. There are also many tradeoffs between the number of IV’s 
and the required bit-stream from each IV.  
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2   Outline of Original and Tweaked Pomaranch 

The key-stream generator of Pomaranch is depicted in Figure 1. The cipher consists of nine cascaded JR 
denoted by R1 to R9. Each JR is built on 14 memory cells which behave either as simple delay shift cells or 
feedback cells, depending on the value of JC sequence. At any moment, half of the cells in the registers are 
shift cells, while the other half is feedback cells. The initial configuration of cells is determined by the 
transition matrix A, and is used if the JC value is zero. If JC is one, all cells are switched to the opposite 
mode. This is equivalent to switching the transition matrix to (A + I) [4].  

 
Figure 1. Schematic of the Pomaranch 

The 128-bit key K is divided into eight 16-bit sub keys k1 to k8. At time t, the current states of the regis-
ters  to  are non-linearly filtered, using a function that involves the corresponding sub key ki. These 

functions provide as output eight bits  to , which are used to produce the jump control bits  to 

 controlling the registers R2 to R9 at time t, as following: 

tR1
tR8

tc1
tc8

tJC1

tJC8

t
i

tt
i ccJC 11 −⊕⊕= L ,      92 ≤≤ i . (1)

The jump control bit JC1 of register R1 is permanently set to zero. The key-stream bit zt produced at time 
t is the XOR of nine bits  to  selected at second position of the registers R1 to R9, that is 

. 

t
 r1

t
 r 9

ttt rrz 91 ⊕⊕= L

The only difference between the key-stream generator of Original and Tweaked Pomaranch is the con-
figuration of the jump registers or equivalently the A matrix. 

Key-IV Setup of Original Pomaranch [4]: During the cipher initialization, the content of registers R1 to 
R9 is first set to non-zero constant 14-bit values derived from π, then the sub keys ki are loaded and the 
registers are run for 128 steps in a special mode (called Shift Mode). The main difference between the 
Key-Stream Generation Mode and the Shift Mode is that, in the latter the output of the filter function of 
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register Ri (denoted by ci) is added to the feedback of register Ri+1, with the tap from cell 1 in the register 
R9 being added to the register R1, making then what can be seen as a “big loop”. Note that the configuration 
of the jump registers does not change in this mode (they all operate as if JCi = 0). This process ensures that 
the states of the registers R1 to R9 after this key loading phase depend upon the entire key K. We denote 
these states by R1(K)  to R9(K). 

Next the IV is loaded into the registers. The IV can have any arbitrary length between 64 and 112 bits. 
First, the IV is expanded by cyclically repeating it until a length of exactly 126 (= 9×14) bits is obtained. 
This new string is then split into nine 14-bit parts, denoted by IV1 to IV9, which are XORed with the 14-bit 
states of registers R1(K) to R9(K) obtained at the end of the key loading. If any of the resulting states con-
sists of 14 null bits, its least significant bit is set to one (this ensures that no state will be made up entirely 
of null bits). The resulting register states R1 to R9 form the nine initial states. The key-stream generation 
mode showed in Figure 1 is now activated, and the run-up consists of 128 steps in which the produced key-
stream bits are discarded. 

Key-IV Setup of Tweaked Pomaranch [6]: Following the recently published chosen IV attack [1], the 
authors introduced two different tweaks in key-IV setup of the cipher. In the first version, the length of IV 
is limited to 78 (= 6×13) bits; all IV's are expanded by cyclically repeating IV-bits until a length of exactly 
117 (= 9×13) bits is obtained. First, the key K is loaded into the registers the same way as in the original 
version. Then for IV loading, the IV-bits are split into groups of 13 bits denoted by IVi , 1≤ i ≤ 9. These 13 
bit IV-values are XORed with the 13 most significant bits of the registers Ri, that is Ri(K), 1 ≤ i ≤ 9. Now 
all registers are checked for the all-zero state and if all-zero the least significant bit of the register is set to 
one.  

The second proposed version for key-IV setup is totally different from the old version and uses IV’s up 
to 126 bits length. Since our attack is just applicable on the first version of the newly proposed key-IV 
setup, we skip the description of this alternative and refer the reader to [6]. Both versions of key-IV setup 
effectively counter the chosen IV attack introduced in [1]. Note a slight difference between what the au-
thors of [1] considered in their paper as the IV loading procedure and what is in Original Pomaranch. 
However, this modification does not affect their attack. 

3   Description of the Attack 

In [7, 5] it has been shown that there are certain linear relations in the output sequence of a Jump Register 
Section which hold with a fixed bias. Define the correlation coefficient of a binary random variable x as ε = 
1 - 2 Pr{x = 1}. In particular, for JR’s of Original Pomaranch the correlation coefficient of the linear rela-
tion  is equal to ε = 840/214 provided that the JC sequence is purely random [7]. This 
value was called the Linear Equivalent Bias (LEB) in [5]. In [7] using this bias a correlation based key-
recovery attack mounted on Original Pomaranch which has computational complexity of O(295.4) and re-
quires 271.8 bits of the key-stream generated using a single key and IV pair. In this section we explain how 
to improve this attack using different IV’s.  

148 ++ ⊕⊕ ttt rrr

3.1   Application to the Original Pomaranch 

Suppose that we are given the first T bits of the Pomaranch key-stream generated from an unknown 
fixed key and l +1 known random IV’s whose first part corresponding to R1 (14 bits in Original Pomaranch 
and 13 bits in Tweaked Pomaranch) are the same. Let us denote the IV’s by ( ) and the output 
sequence corresponding to by .  

iIV li ≤≤0
iIV ∞

=0)}({ t
t iz

We also denote the output sequence of the nth register by when  is used, thus 

. Let introduce the following sequences: 

∞
=0)}({ t

t
n ir iIV

)()()( 91 iririz ttt ⊕⊕= L
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)()()()( 148 iriririe t
n

t
n

t
n

t
n

++ ⊕⊕= , li ≤≤0 , 92 ≤≤ n  (2)

)()()( 910 ieieiu tt
n

t
n ⊕⊕= − L , , li ≤≤0 81 ≤≤ n  (3)

)()()()( 148 iziziziZ tttt ++ ⊕⊕= , . li ≤≤0 (4)

Using this notation the following relation holds for every : li ≤≤0

)()()()()( 8
14

1
8

11 iuiriririZ ttttt ⊕⊕⊕= ++ . (5)

Since the correlation coefficient of the sequence , )(iet
n 92 ≤≤ n , is equal to , the correla-

tion coefficient of the sequence , 

142/840=ε

)(iut
n 81 ≤≤ n , is equal to εn under the independence assumption of  

sequences, , for every . 
)(iet

n

92 ≤≤ n li ≤≤0
In [7] the equation (5) has been used in a correlation attack to recover the initial sate of R1 using a single 

IV (the assumption of using just one IV has been implicitly used). The required key-stream length and 
computational complexity are  and  respectively (see [7] for 
details).  

8.728
0 2))1(5.0(/14 ≈ε−= CN 8.86

0
14 22 ≈N

The main contribution of this paper is to increase first the correlation coefficient of for a fixed 
value of i, i.e. i = 0 and then apply correlation attack. This method will considerably improve the attack. 
The idea of increasing the correlation coefficient of is based on trying to estimate it using the follow-
ing group of relations 

)(8 iu t

)0(8
tu

)()0()()()()0()0()0()()0( 88
14

1
8

11
14

1
8

11 iuuiririrrrriZZ tttttttttt ⊕⊕⊕⊕⊕⊕⊕=⊕ ++++ . (6)

Since the first part of IV’s ( ,iIV li ≤≤0 ) are the same, we have . Therefore, the rela-
tion (6) can be rewritten as 

0)()0( 11 =⊕ irr tt

)()0()( 88 iuui tt ⊕=Δ , , li ≤≤1 (7)

where  is completely known. )()0()( iZZi tt ⊕=Δ

The ML estimation of denoted by is achieved by comparing  with the threshold l/2. 

That is, we decide on , if  and on otherwise. The error probability of this 

estimation is approximately equal to 

)0(8
tu )0(ˆ8

tu ∑
=

Δ
l

i
i

1
)(

0)0(ˆ8 =tu 2/)(
1

li
l

i
<Δ∑

=

1)0(ˆ8 =tu

)( 8εlQ , where ∫
∞

−=
x

t dtexQ 2/2

2
1)(
π

. The variable  can be 

related to its estimation, , by the relation  where  is the estimation error 

whose correlation coefficient is equal to 

)0(8
tu

)0(ˆ8
tu )0()0(ˆ)0( 888

ttt wuu ⊕= )0(8
tw

)(21 8ε−=ε′ lQ . 
Using this estimation, the relation (5) for i = 0 turns into 

)0()0(ˆ)0()0()0()0( 88
14

1
8

11
tttttt wurrrZ ⊕⊕⊕⊕= ++ . (8)

Now the equation (8) can be used in a correlation attack to recover the initial state of R1 for IV 0. The re-
quired key-stream length and computational complexity are ))1(5.0(/14 ε′−= CT  and  respectively 
(see [7] for details). 

T142

Since in the first phase we must estimate for )0(8
tu 10 −≤≤ Tt  using l different IV’s, the required com-

putational complexity of this phase is Tl resulting in a total computational complexity of for 
the initial state recovery of R1. 

)2( 14+= lTC

 

10



For every value of l between 218 and 264, the minimum amount of the computational complexity is ob-
tained which is equal to C = 273.5. The required key-stream length from each IV is equal to , 
where an attacker can choose the parameter l on his/her fitness.    

lT /2 5.73=

After finding the initial state of R1, we can eliminate the portion of  from the output sequence of 

Pomaranch for each IV. Define the sequence  as an XOR of  and  which is now available. 
Then similarly to (5) we have 

)(1 ir t
 

)(1 iz t )(iz t )(1 ir t
 

)()()()()( 7
14

2
8

221 iuiriririZ ttttt ⊕⊕⊕= ++ , (9)

where 

)()()()( 14
1

8
111 iziziziZ tttt ++ ⊕⊕= . (10)

The sequence can be generated if we know both the 14-bit initial state of R2 and 
16-bit sub-key k1 (totally 30 bits). In [7] the equation (9) has been used in a correlation attack to recover 
these 30 bits using a single IV. The required key-stream length and computational complexity are 

 and  respectively (see [7] for details).  

)()()( 14
2

8
22 iririr ttt ++ ⊕⊕

4.657
0 2))1(5.0(/30 ≈ε−= CN 4.95

0
30 22 ≈N

Again we can increase the correlation coefficient of for a fixed value of i, i.e. i = 0, and then apply 
correlation attack. The following group of relations 

)(7 iu t

)()0()()()()0()0()0()()0( 77
14

2
8

22
14

2
8

2211 iuuiririrrrriZZ tttttttttt ⊕⊕⊕⊕⊕⊕⊕=⊕ ++++  (11)

can be used to estimate similarly to (6). In the first part we assumed that the IV’s  are the same in 

the first part. Here, we must force the IV’s  to be the same in the first two parts. Under this condition 
we have  Therefore we can compute an estimation of   denoted by  where 

 and  is the estimation error whose correlation coefficient is equal to 

)0(7
tu iIV

iIV
.0)()0( 22 =⊕ irr tt )0(7

tu )0(ˆ7
tu

)0()0(ˆ)0( 777
ttt wuu ⊕= )0(7

tw

)(21 7ε−=ε ′′ lQ . Using this estimation, the relation (9) for i = 0 turns into 

)0()0(ˆ)0()0()0()0( 77
14

2
8

221
tttttt wurrrZ ⊕⊕⊕⊕= ++ . (12)

Now the equation (12) can be used in a correlation attack to recover the initial state of R2 for IV 0 and 
key segment k1. The required key-stream length and computational complexity are ))1(5.0(/30 ε ′′−= CT  

and  respectively (see [7] for details). The total computational complexity of initial state recovery of 
R2 and key segment k1 is equal to . 

T302
)2( 30+= lTC

For every value of l between 235 and 255, the minimum amount of the computational complexity is ob-
tained which is equal to C = 266. The required key-stream length from each IV is equal to , where 
an attacker can choose the parameter l on his/her fitness. Similarly these parameters can be computed for 
other registers and key parts. These parameters are summarized in Table 1 for the initial state recovery of 
R1 to R5 and key segments k1 to k4.  

lT /266=

Table 1. Different parameters of finding different sections of Original Pomaranch 
Recovered 
Sections 

l T Complexity Number of fixed 
part of IV’s 

R1 218 ≤ l ≤ 264 273.5/l 273.5 1 
R2, k1 235 ≤ l ≤ 255 266/l 266 2 
R3, k2 231 ≤ l ≤ 251 257.5/l 257.5 3 
R4, k3 230 ≤ l ≤ 235 241/l 241 4 
R5, k4 l = 228 25.3 235.8 5 

After finding key parts k1 to k4, the rest part of the key can be found by exhaustive search with computa-
tional complexity O(264). Therefore the total computational complexity of our key-recovery attack is 

 

11



O(273.5),  and the required number of IV’s, the imposed condition on IV’s and the required number of key-
stream bits from each IV are determined by Table 1 which provides many tradeoffs.  

3.2   Application to Tweaked Pomaranch 

Following the recently published key-recovery attack [7], the authors changed the configuration of jump 
registers. The Linear Equivalent Bias (LEB) of new configuration of jump registers is equal to ε = 124/214 
[5] which effectively counters the attack introduced in [7]. For JR’s of Tweaked Pomaranch the LEB value 
is held for the linear relation . Although the change in configuration count-
ers the attack in [7], the chosen IV attack introduced in section 3.1 is still applicable to the first key-IV 
setup of Tweaked Pomaranch. A similar procedure to what explained in Section 3.1 leads to the following 
numbers.  

141065 ++++ ⊕⊕⊕⊕ ttttt rrrrr

Table 2. Different parameters of finding different sections of Tweaked Pomaranch 
Recovered 
Sections 

l T Complexity Number of fixed 
part of IV’s 

R1 228 ≤ l ≤ 278 2117.7/l 2117.7 1 
R2, k1 235 ≤ l ≤ 252 2104.7/l 2104.7 2 

After finding key part k1, the rest part of the key can be found by exhaustive search with computational 
complexity O(2112). Therefore the total computational complexity of our key-recovery attack is O(2117.7),  
and the required number of IV’s, the imposed condition on IV’s and the required number of key-stream  
bits from each IV are determined by Table 2 which provides many tradeoffs. 

5.  Conclusion  

In this paper we presented a chosen IV key-recovery attack on Original Pomaranch. In our attack we used 
the idea of Linear Equivalence Bias which was introduced in [7, 5]. The complexity of our chosen IV at-
tack is O(273.5) on Original Pomaranch which is not less than O(252), the complexity achieved in [1]. How-
ever, our attack is applicable to the first version of proposed key-IV setup of Tweaked Pomaranch with 
computational complexity of O(2117.7) while the attack of [1] is not applicable. The second version of the 
proposed key-IV setup for Tweaked Pomaranch is immune against our attack. 
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Abstract. Pomaranch is a synchronous, hardware-oriented stream ci-
pher submitted to eSTREAM, the ECRYPT Stream Cipher Project.
The cipher is designed as a cascade clock-controlled key-stream gener-
ator built on jump registers. This paper presents a discussion over the
attacks on Pomaranch discovered so far. Particular focus is made on a
new inherent property of jump registers that allows to construct their
linear equivalences. For the concrete configuration of the registers in Po-
maranch this allows to build an efficient key-recovery attack. Finally, a
few tweaks that secure the cipher against the known attacks are sug-
gested.

Key words: cryptanalysis, jump register, key-recovery attack, linear
equivalences, Pomaranch, stream cipher.

1 Introduction

Pomaranch (also known as a Cascade Jump Controlled Sequence Generator or
CJCSG) [3] is a synchronous bit-oriented stream cipher, one of the ECRYPT
Stream Cipher Project [4] candidates. It uses 128-bit keys and in its original
design accommodates an Initial Value (IV) of 64 up to 112 bits long.

The algorithm uses a one clock pulse cascade construction of so called jump
registers [5] being essentially linear finite state machines with a special transition
matrix. Moreover, the characteristic polynomial of the transition matrix was
made to be primitive and satisfying additional constraints that arise from the
need to use the register in a cascade jump control setup. The principal advantage
of jump registers over the classical clock-controlled arrangements is their ability
to move a Linear Feedback Shift Register (LFSR) to a state that is more than
one step ahead but without having to step through all the intermediate states.
The transition matrix of the jump registers in Pomaranch has been chosen so to

* The work of the authors from the Selmer Center was supported by the Norwegian
Research Council. The results of this paper are contained in part in [1, 2].
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secure the design against side-channel attacks while preserving all the advantages
of irregular clocking.

Pomaranch was analyzed quite intensively in the recent period of time since
it was submitted. A few efficient key-recovery attacks were found. The first one
in [6] exploits the weakness of the IV setup procedure. This attack allows finding
the key with the computational complexity O(252) if the attacker can obtain a
few key-stream sections generated using specially chosen IV’s. Another attack
described in [7] is a key-recovery correlation attack that works with the com-
plexity O(295.4) requiring about 271.8 bits of the key-stream. This computational
complexity can be decreased to O(273.5) if the chosen IV scenario is assumed (see
[8]). In this paper we analyze linear equivalences in the key-stream generated by
Pomaranch. This provides an interesting insight in the design rationale of the
cipher and allows to secure it against known correlation attacks. We also sug-
gest a new IV setup procedure that provides better diffusion of IV bits giving
protection against chosen IV attacks.

In Section 2 we outline some details of Pomaranch key-stream generator that
are important for understanding the analysis that follows. Also here we present
a new IV setup procedure that provides better security against the chosen IV
attacks. Section 3 contains main theoretical results about finding linear equiv-
alences for jump registers and calculating corresponding biases. We apply the
theory to the concrete configuration of Pomaranch registers in Section 4 that
leaded to the efficient key-recovery attack in [7]. Slight modification of the Po-
maranch jump register configuration allows to protect against this type of attacks
increasing the complexity to O(2133.4) (higher than the exhaustive key search)
and this is discussed in Section 5. In Section 6 we show the ways for an efficient
hardware implementation of the cipher. We conclude with Section 7 presenting
the list of tweaks to the original version of Pomaranch that secure the cipher
against all the so far known attacks.

2 Outline of Pomaranch

Pomaranch follows a classical design of a synchronous, additive, bit-oriented
stream cipher and consists of a key-stream generator producing a secure sequence
of bits that is further bitwise XORed with the plain text previously converted
into bits. After the initialization that comprises key setup, IV setup and the
runup, the key-stream generator of Pomaranch is run in the generation mode
showed in Fig. 1.

The generator consists of nine irregularly clocked registers R1 to R9 (also
called Jump Registers (JR)) that are combined in a cascade construction. Each
register implements an autonomous Linear Finite State Machine (LFSM) and is
built on 14 memory cells each of them acting either as a simple delay shift cell
(S-cell) or feedback cell (F-cell), depending on the value of the Jump Control
(JC) bit. At any moment, half of the cells in each register are S-cells, while the
others are F-cells which is seen as an important feature against power and side-
channel attacks. A LFSM implemented by the JR has the following transition
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Fig. 1. Key-Stream Generation Mode of Pomaranch

matrix

A =




dL 0 0 · · · 0 1
1 dL−1 0 · · · 0 tL−1

0 1 dL−2
. . .

...
...

0 0
. . . . . . 0

...
...

...
. . . 1 d2 t2

0 0 · · · 0 1 d1 + t1




(1)

over GF(2), where t1, . . . , tL−1 are defined by the positions of feedback taps and
nonzero d1, . . . , dL correspond to the positions of F-cells in the register. In the
particular case of Pomaranch L = 14, only t6 = 1 and d1 = d3 = d7 = d8 = d9 =
d11 = d13 = 1. Transition matrix A is applied if the JC value is zero, otherwise,
all cells are switched to the opposite mode which is equivalent to changing the
transition matrix to A + I with I being the identity matrix. Let Rt

i denote the
state of the register Ri at a time t ≥ 0. Then

Rt+1
i = (A + JCt

i · I)Rt
i (i = 1, . . . , 9) ,

where JCt
i denotes the jump control bit for Ri at time t.

The 128-bit key K is divided into eight 16-bit subkeys k1 to k8. The current
states of the registers Rt

1 to Rt
8 are nonlinearly filtered using a function that

involves the corresponding subkey ki (i = 1, . . . , 8). These functions provide an
output of eight bits ct

1 to ct
8 which are used to produce the bits JCt

2 to JCt
9

controlling the registers R2 to R9 at time t as follows

JCt
i = ct

1 ⊕ . . .⊕ ct
i−1 (i = 2, . . . , 9) .
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The jump control bit JC1 of register R1 is permanently set to zero. The key-
stream bit generated at time t (denoted rt) is the XOR of nine bits zt

1 to zt
9

tapped from the second cell of the register states Rt
1 to Rt

9 so rt = zt
1⊕ . . .⊕ zt

9.
Shift Mode. This mode is used during the initialization and IV setup of the

key-stream generator. In this mode the output bit ct
i from section i = 1, . . . , 8

is XORed with the feedback of the register Ri+1. The tap from cell 1 in R9 is
XORed with the feedback of R1 and this closes “the big loop”. Configuration of
the jump registers does not change in the Shift Mode, they all operate as if the
JC bit was constantly zero.

The Shift Mode is used to make the register contents depend on all initial
content bits and all key bits. This mode defines a key dependent one-to-one
mapping of the set of all 126-bit states onto itself. Indeed, let Rt

i = (rt
i,14, . . . , r

t
i,1)

(1 ≤ i ≤ 9) and ct
i = fi(Rt

i) be the output bit of the Key Map of section i
(1 ≤ i ≤ 8) at a time t. If A denotes the transition matrix (1) which is fixed for
all the registers as if the JC bit was constantly zero, then the following equations
define the Shift Mode:

Rt+1
1 = Rt

1A⊕ (0, . . . , 0, rt
9,1)

Rt+1
i = Rt

iA⊕ (0, . . . , 0, fi−1(Rt
i−1)) (i = 2, . . . , 9) .

From the concrete form of matrix A applied in the Shift Mode it is clear that
rt+1
i,2 = rt

i,1 (1 ≤ i ≤ 9). So the inverse of the above equations can be written as

Rt
1 =

(
Rt+1

1 ⊕ (0, . . . , 0, rt+1
9,2 )

)
A−1

Rt
i =

(
Rt+1

i ⊕ (0, . . . , 0, fi−1(Rt
i−1))

)
A−1 (i = 2, . . . , 9) .

This shows that the Shift Mode defines an invertible onto mapping which needs
to be a bijection. Also note that in the Shift Mode the worst case diffusion of all
IV bits is achieved after 27 steps and the IV-plus-key bits diffusion is achieved
after 36 steps.

IV Setup. The original IV setup turned out to be extremely weak against
chosen IV attacks (see [6, 8]) since it provided no diffusion of IV bits into the
whole internal state of the key-stream generator. Therefore, the setup procedure
had to be changed considerably. We skip here the description of the original IV
setup and present the following new procedure:

1. The IV can have an arbitrary length in the range from 64 to 126 bits. If
the IV length is less than 126 then extend the IV to 126 bits by cyclically
repeating its bits.

2. XOR the 126-bit (extended) IV with the Initialization Vector saved after the
key setup (see [3]) and load the result into the 9 jump registers.

3. Run the generator in the Shift Mode for 96 steps.
4. If any of the 9 registers has the all-zero state then set its least significant bit

to 1.
5. Perform a runup of 64 steps in the Key-Stream Generation Mode discarding

the output bits.
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3 Linear Equivalences of Jump Registers

Configuration of the jump registers in Pomaranch is chosen in such a way that
the characteristic polynomial C(x) of the binary transition matrix A in (1) is
primitive and is neither self-reciprocal nor self-dual nor dual-reciprocal, i.e., A
belongs to a primitive S6 set, that is a set of six primitive polynomials which
are each others reciprocals and duals (for the details see [5]). Obviously, the
characteristic polynomial of A+I is the dual C⊥(x) = C(x+1) and is primitive.
Clocking of the jump registers is implemented by multiplying the state by the
transition matrix A or A + I.

Let Z = {zt}∞t=0 denote the output sequence of a jump register being any
component in the sequence of register states. Starting from some state Rt, the
first output bit zt is not affected by the jump control bits in (JCt, . . . , JCt+L−1),
the second output bit zt+1 is defined by JCt, the third zt+2 is defined by
(JCt, JCt+1) and so on.

Every output bit can be presented as a linear combination of L bits from
the initial state R0 and thus any L + 1 bits of the output sequence are linearly
dependent. The linear relation is defined by the relevant jump control bits and
does not depend on the initial state of the register. Take such a relation that
holds on L+1 consecutive bits of Z at the shift position t. Also assume that this
relation holds for every component sequence of the register (i.e., irrespective of
position the output sequence is tapped from). This means that for some set of
binary coefficients (`0, `1, . . . , `L) and any initial state we have `0z

t + `1z
t+1 +

. . . + `Lzt+L = 0 or equivalently that the following identity holds

`0I +
L∑

i=1

`i

i−1∏

k=0

(A + JCt+kI) = 0 .

Since C(x), the characteristic polynomial of A, is in particular, irreducible, it
coincides with the minimal polynomial of A. Thus, the latter identity holds if
and only if

`0 +
L∑

i=1

`i

i−1∏

k=0

(x + JCt+k) =
L∑

i=0

`ix
i−ki(x + 1)ki = C(x) , (2)

where 0 ≤ ki ≤ i are defined by the control bits JCt, . . . , JCt+L−1, namely,
k0 = 0 and ki is equal to the binary weight of vector (JCt, . . . , JCt+i−1). Thus,
if assuming the jump control sequence is purely random, then the values of ki

are binomially distributed. Since the degree of C(x) is L and C(0) = 1 then
the coefficients at the highest-order and the constant term of the polynomial
standing on the left hand side of (2) should be nonzero, i.e., `0 = `L = 1 for
any linear relation in the jump register output. Given an arbitrary jump control
sequence (that provides the values of ki) the solution of (2) for the unknowns
`i can be found applying a simplified version of Gaussian elimination. Such a
solution always exists and, in particular, this can be easily seen from the matrix
of the system which is triangular and contains ones on the main diagonal.
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The complexity of solving the system is linear in L (if counting word op-
erations). Indeed, let the binary coefficients of the binomial expansion of an
additive term xi−ki(x + 1)ki be packed into words. Then, starting with i = 0
and x0−k0(x + 1)k0 = 1, every next term, depending on the value of JCt+i, is
equal to the previous one multiplied by x (shift the coefficient vector by one bit)
or multiplied by x + 1 (shift and add). Thus, expansions of all L + 1 terms can
be computed with O(L) word operations. Further set `L = 1 and add the coeffi-
cient vector of xL−kL(x+1)kL to C(x). If the degree of the obtained polynomial
is equal L − 1 then set `L−1 = 1, otherwise set `L−1 = 0. Proceed further in
a similar way till all the unknowns `i are found. The total complexity remains
linear in L.

Take a linear relation defined by the set of binary coefficients `0, . . . , `L with
`0 = `L = 1 and take a set of weights {ki | i = 0, . . . , L; `i = 1} with k0 = 0,
ki ≤ kj if i < j and kj − ki ≤ j − i such that

∑

i=0,...,L; `i=1

xi−ki(x + 1)ki = C(x) . (3)

Now take two neighboring additive terms from the left hand side of the last
identity being xi−ki(x+1)ki and xj−kj (x+1)kj with i < j. Then the number of
possible (j−i)-long sections of the jump control sequence leading from xi−ki(x+
1)ki to xj−kj (x+1)kj is equal to

(
j−i

kj−ki

)
(these are exactly the sequences with the

binary weight of (JCt+i, . . . , JCt+j−1) equal to kj − ki). In a similar manner,
starting from the constant term x0(x + 1)0 at `0 = 1 and proceeding till the
highest-order term at `L = 1 is reached we can find the total number of L-
long jump control sequences that correspond to the given linear relation and the
set of weights. This number is obtained as a product of the relevant binomial
coefficients for all `i 6= 0 and i > 0.

As can be seen from (2), the set of all possible linear relations that correspond
to different control sequences and the number of their occurrences only depend
on the characteristic polynomial C(x) of the jump register. As the linear relation
occurring most often plays an essential role in the key-recovery attack, we will
call its occurrence number the Linear Equivalence Bias (LEB) of the polynomial.
All occurrence numbers together form a Linear Equivalence Spectrum (LES) of
the polynomial. It can be easily seen by interchanging the roles of x and x + 1
that C(x) and C⊥(x) have the same LES. The LES value for any linear relation
can be calculated as a sum consisting of terms being the product of binomial
coefficients. Every set of weights ki satisfying (3) provides one additive term to
the sum.

Again take a linear relation and a set of weights satisfying (3). Applying the
following Doubling Rule

xa(x + 1)b =

{
xa−1(x + 1)b + xa−1(x + 1)b+1,

xa(x + 1)b−1 + xa+1(x + 1)b−1

to different additive terms xi−ki(x + 1)ki in the left hand side of (3) we can
find other relations that have a nonzero LES value. If the original relation has
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`i−1 = 0 and `i = 1 then the new one has `i−1 = `i = 1 that can be seen
as doubling of the coefficient `i. It is not difficult to see that having the LES
value of a linear relation that is expressed as a sum of products and applying
the doubling rule to any `i = 1 (assuming `i−1 = 0) gives us another relation
with `i = `i−1 = 1 and a sum with a doubled number of additive terms that is
equal to the LES value of a new relation.

The most obvious example is to apply the doubling rule to the highest-order
term at the coefficient `L = 1 when `L−1 = 0 which leaves `L unchanged and
gives rise to `L−1 = 1. Due to the binomial identity

(
n
k

)
+

(
n

k−1

)
=

(
n+1

k

)
the LES

value computed for the new linear relation will be the same as for the old one.
This, in particular, implies that all the values in an LES appear even number of
times. Applying the doubling rule to other terms results in new relations having
higher or lower LES values. This feature will be illustrated in Section 4. Applying
the doubling rule in the opposite direction results in the merge of two terms.

Note that using the presented technique we can evaluate LES values for some
linear relations of length L+1 in the output sequence of a jump control register.
In some cases this value is equal to the LEB of a polynomial meaning that we
have found a relation that belongs to the ones occurring most often. However,
we can not currently provide the algorithm for evaluating the LEB with the
complexity lower than O(L 2L) (checking through all JC sequences of length L
and each time implementing a simple version of Gaussian elimination of length
L). Finding a less complex algorithm remains an interesting open problem.

4 Key-Recovery Attack using Linear Equivalences

In this section we calculate the LEB for the concrete configuration of jump
registers in Pomaranch as well as for some minor modifications of the cipher.
We also give some intuitive technique for finding the LEB in general. The key-
recovery correlation attack suggested in [7] uses exactly those linear relations in
the key-stream with the LES value equal to the LEB.

The characteristic polynomial of the transition matrix (1) can be found di-
rectly as follows

C(x) = 1 +
L−1∑

i=0

ti

L∏

j=i+1

(dj + x) ,

where t0 = 1 is introduced for simplicity of the formula. Now assume L is even,
a jump register of length L has two feedback taps (i.e., only t0 = tn = 1 for some
0 < n < L), there are k F-cells among the first n cells (i.e., only k values from
d1, . . . , dn are nonzero) and the total number of F-cells is L/2. Then

C(x) = 1 + x
L
2 +k−n(x + 1)

L
2 −k + x

L
2 (x + 1)

L
2 . (4)

Placing this in (2) one immediately spots the evident linear relation zt+zt+L−n+
zt+L = 0 that we call basic. The corresponding equation coming from (2)

1+xL−n−kL−n(x+1)kL−n +xL−kL(x+1)kL = 1+x
L
2 +k−n(x+1)

L
2 −k+x

L
2 (x+1)

L
2
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can be shown to be satisfied only by kL = L/2 and kL−n = L/2− k. Thus, this
trinomial linear relation has the LES value given by

(
L− n
L
2 − k

)(
n

k

)
. (5)

Assuming n > 1 and applying the doubling rule to the senior term in (4) we get
another relation zt + zt+L−n + zt+L−1 + zt+L = 0 having the same LES value.

Restricting our options further to the registers of length L = 14 that have
a characteristic polynomial belonging to a primitive S6 set, we are left with
the following five alternative (n, k)-pairs of parameters (6, 2), (7, 2), (7, 3), (8, 3)
and (11, 5). Note that two polynomials corresponding to parameters (n, k) and
(n, n− k) form a dual pair. By (5), the corresponding LES values for the basic
trinomial relations are 840, 441, 1225, 840 and 1386 respectively. For all the
configurations except (7, 2) these turned out to be the LEB values of the charac-
teristic polynomials (4). For the remaining case (n, k) = (7, 2) the basic relation
is zt + zt+7 + zt+14 = 0. Applying the doubling rule to the middle term here we
obtain a new linear relation zt + zt+6 + zt+7 + zt+14 = 0 and a new LES value(
6
1

) · (7
1

)
+

(
6
2

) · (7
3

)
= 567 equal to the LEB in this case. On the other hand, for

(n, k) = (6, 2), applying the doubling rule to the middle term in the basic relation
zt +zt+8 +zt+14 = 0 we obtain a new linear relation zt +zt+7 +zt+8 +zt+14 = 0
having the LES value

(
7
5

) · (
6
1

)
+

(
7
4

) · (
6
3

)
= 826, the second largest for this

polynomial. We believe that in general, starting from the basic relation and con-
secutively applying the doubling rule, splitting and merging various terms, one
can find all linear relations that hold at least for one control sequence. Tracking
the LES values computed after each split or merge one can also find the LEB of
the characteristic polynomial.

The concrete parameters initially chosen for Pomaranch are (6, 2) giving
the basic trinomial relation zt + zt+8 + zt+14 = 0. The resulting LEB of

(
8
5

) ·(
6
2

)
= 840 is high enough to mount the key-recovery correlation attack (see

[7]). Another linear relation zt + zt+8 + zt+13 + zt+14 = 0 with the same LES
value 840 is obtained applying the doubling rule to the senior term of the basic
relation. The use of both relations makes the attack more efficient. The LES
of the corresponding characteristic polynomial contains just 334 linear relations
having nonzero occurrence numbers out of 213 = 8192 possible.

Suppose the LEB value of the characteristic polynomial of a jump register on
L memory cells is F > 0 that corresponds to the linear relation on the output
bits Z defined by ` = (`0, `1, . . . , `L). Assume that the jump control sequence
{JCt}∞t=0 is a sequence of independent and identically uniformly distributed
random variables. In our case it is convenient to define the distribution bias
of a binary random variable x as ε = 1 − 2Pr{x = 1}. Then the following
random binary sequence et =

∑L
i=0 `iz

t+i (t = 0, 1, 2, . . .) has a nonuniform
distribution with the bias ε = F/2L. Indeed, let H denote the event that a
random subsection (JCt, . . . , JCt+L−1) is one of those F that correspond to `.
The complementary event of H is denoted by H. It is clear that Pr{H} = F/2L

and Pr{et = 1 | H} = 0. The probability Pr{et = 1 | H} can be considered equal
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to 1/2 because in this case et has a uniform distribution. Therefore, by the rule
of total probability

Pr{et = 1} = Pr{et = 1 | H}Pr{H}+ Pr{et = 1 | H}Pr{H}
= 1/2(1− F/2L) .

For the characteristic polynomial in Pomaranch the LEB is equal to 840 and
ε = 840/214 ≈ 2−4.3. This number was first discovered by Khazaei in [7] using
exhaustive computations.

It can be concluded that output bits of every jump register section, except
for the first one that is clocked regularly, satisfy the following linear relations

zt + zt+8 + zt+14 = 1 and zt + zt+8 + zt+13 + zt+14 = 1

with the bias ε ≈ 2−4.3. This was used in [7] to mount a key-recovery correlation
attack on the cipher. If using both of the above relations the required minimum
amount of key-stream bits is one half of the number given by the formula

N0 = 14/C(0.5(1− ε8)) (6)

where C(p) = 1 + p log2(p) + (1− p) log2(1− p) is the Channel Capacity of the
corresponding Binary Memoryless Symmetric Channel. In total, the secret key
of Pomaranch can be found using 271.8 bits of the output sequence with the
computational complexity O(295.4). Needed amount of the key-stream can be
reduced if all 334 linear relations found in the LES are used.

5 Modified Jump Registers for Pomaranch

It is clear that the ideal configuration of a jump register should provide a lowest
possible LEB value. Note that parameter pair (7, 2) with LEB of 567 would have
been a better choice, but even with this configuration our attack recovers the key
with the complexity lower than the exhaustive key search. We conclude that all
the characteristic polynomials having two feedback taps are not secure enough
to counter the attack. Thus, in order to find a characteristic polynomial with a
sufficiently low LEB, the Pomaranch jump register has to be changed to have
three or more feedback taps.

Consider the registers having exactly three taps. Assume there is one tap,
the rightmost, at position n1 with k1 feedback cells among cells 1 to n1. The
other tap is at position n2 > n1, with k2 feedback cells among cells n1 +1 to n2.
The modified characteristic polynomial now becomes

C(x) = 1 + x
L
2 +k1+k2−n2(x + 1)

L
2 −k1−k2 + x

L
2 +k1−n1(x + 1)

L
2 −k1 + x

L
2 (x + 1)

L
2

for L = 14. The LES of this polynomial contains the basic relation zt+zt+L−n2 +
zt+L−n1 + zt+L = 0.

Searching through all relevant (n1, n2, k1, k2) quadruplets results in a set of
16 primitive S6-set polynomials, amongst which are the five polynomials already
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obtained for two taps. The polynomial with the least LEB in this set x14 +x13 +
x12 + x11 + x9 + x7 + x5 + x4 + x2 + x + 1 is obtained for n1 = 4, n2 = 8,
k1 = k2 = 1 and has an LEB equal to 124 and an LES containing 1088 nonzero
values. The linear relation zt + zt+6 + zt+10 + zt+14 = 0 occurs

(
6
1

) · (4
3

) · (4
3

)
= 96

times. Performing a doubling operation on the 6th order term yields a relation
which occurs 124 times that is equal to the LEB value.

Plugging in the bias of 124/214 ≈ 2−7.05 of the jump register in (6) results
in the attack complexity of O(2133.4) with 2116.9 bits of the key-stream required
(the latter can be reduced if all 1088 relations are used). This complexity exceeds
the one of the exhaustive search over the key space containing 2128 elements.

Note that an alternative way to secure Pomaranch against the described key-
recovery attack is to make the sections have different characteristic polynomials.
Hereupon each section would have a different most probable linear equivalence.
Thus, adding the outputs from all the sections will compensate for the bias.
However, keeping all the sections the same definitively looks like a more “elegant”
solution.

6 Efficient Hardware Implementation

In this section we consider the tweaked hardware version of Pomaranch that
consists of 6 sections and accommodates the key of 80 bits. The list of all tweaks
is presented in Section 7.

The CJCSG is ideally suited for hardware implementation since it requires
standard components and has no complex circuits causing timing bottlenecks.
The hardware version of the CJCSG consists of 6 sections with 5 of them contain-
ing the Key Map. The linear shift register part (jump register) uses 14 memory
cells, each with an XOR and a switch. Typically, this takes about 175 gates
(two-input equivalent). The 9-to-7 S-box in the Key Map is the most expensive
real-estate, followed by the 7-to-1 Boolean function and 16 XOR’s. Implementa-
tion of these components by direct synthesis of the Boolean circuitry is estimated
at 1000 gates. No attempts have been made to optimize the footprint of these
circuits by means of a silicon compiler. For the complete design a total estimate
is obtained of 5 ·1000+6 ·175 ≈ 6000 gates. Reduction of the gate-complexity of
the S-box can lower this number substantially as can be seen from the following.

First note that the 9-to-7 S-box presented in Appendix A is defined by the
inversion operation in the multiplicative group of GF(29) when the finite field
is defined by the irreducible polynomial f(x) = x9 + x + 1. Further the most
and the least significant bits (msb and lsb) of the result are deleted to obtain
a 7-bit value. We can define a more efficient (having lower gate-complexity)
implementation of the inverse in GF(29) using inverses in the subfield GF(8),
i.e., inverses are calculated in GF(83) instead. The elements of GF(83) are repre-
sented by polynomials of degree at most 2 over GF(8) and operations in the field
are carried out modulo an irreducible polynomial Q(x) = x3 + a2x

2 + a1x + a0

over GF(8). Operations in GF(8) can be implemented with low complexity by
table lookups using one of the following moduli x3 + x + 1 or x3 + x2 + 1. Sum-
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ming up all the above said, the following steps could lead to a lower complexity
implementation of the S-box:

1. Find a primitive element of GF(29) modulo x9 + x + 1 and calculate the
polynomial Q(x) (see [9]).

2. Let b2x
2+b1x+b0 be the inverse modulo Q(x) of a polynomial c2x

2+c1x+c0

over GF(8). Find analytical expressions for the coefficients b2, b1, b0 as a
function of c2, c1, c0 and a2, a1, a0. These are found as a solution of a system
of three linear equations in three unknowns that can be solved applying
Cramer’s rule. The operations required to calculate the bi from the given ci

and ai (i = 0, 1, 2) are multiplications, additions and inverse in GF(8).
3. The number of subfield operations for finding the solutions amounts to 18

multiplications, 6 constant multiplications, 8 XOR’s and 1 inverse.
4. The gate-complexity of multiplication and inverse in GF(8) is determined

by finding the ANF’s for the two irreducible polynomials and two bases
each (Galois counter and LFSR basis). This results in: inverse between (6
gates and 1 inverter) and (10 gates and 3 inverters), where inverter means
binary inverter, so say 10 gates; multiplication 17 or 18 gates; constant
multiplication costs only 1 or 2 gates (XOR’s). The total cost is therefore
18 · 17 + 6 · 2 + 8 + 10 = 336 gates.

5. A linear transform and its inverse are needed to map 9-bit vectors to vectors
over GF(83) and back, where the inverse transform is combined with the
7-to-1 Boolean function. The cost of these 9-by-9 matrices is estimated at
40 XOR’s. Hence, the total cost is estimated at 400 gates (two-input AND,
OR, XOR, etc).

We conclude that for a hardware implementation of 6 sections with 5·16 = 80 key
bits the total gate-count would amount to 5 ·400+6 ·175 ≈ 3000 gates. Note two
things here: in practice a good silicon compiler may even do better by reusing in-
termediate results at several places; the estimate for the gate-complexity needed
to implement the full inverse while deleting the msb and lsb can further reduce
the gate-count.

7 Conclusion and Tweaks to Pomaranch

We considered a jump register arrangement that proved to be a powerful and
efficient building block for stream ciphers that use irregular clocking of shift
registers. We have identified a new inherent property of such arrangements which
should always be observed in the relevant types of cipher design. Jump registers
with badly chosen parameters allow building linear equivalences providing a close
approximation of the output sequences.

Using the discovered property a 128-bit key of Pomaranch can be recovered
with the complexity O(295.4) requiring less than 271.8 bits of the key-stream.
Therefore, we have to introduce a minor change in the configuration of the jump
register section in Pomaranch that gives protection against this attack bringing
its complexity up to O(2133.4) with at most 2116.9 bits of the key-stream required
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that exceeds the complexity of the exhaustive key search. Moreover, this new
potential weakness can be exploited to attack other stream ciphers that use
irregular clocking. The suggested technique has a general character and can be
dangerous to other clock-controlled arrangements. This issue will become a focus
for our future research.

Following is the list of tweaks we apply to Pomaranch as specified in its
original version [3]. The second and the third items are the response to the
attack in [7] (these changes where discussed in all the details in Section 5) and
the last change prevents the chosen IV attacks from [6, 8].

1. Hardware-oriented 80-bit key version of the CJCSG is added. The only dif-
ference between the full 128-bit version and the 80-bit version is the total
number of jump register sections that is equal respectively to 9 and 6 and
the number of Shift Mode steps during the IV setup that is equal to 96 and
80 respectively.

2. Feedback taps of jump registers are taken now from cells number 4, 8 and 14.
The positions of the F- and S-cells in the registers are FFSFFFSSFSSFSS.

3. Input to the Key Map is taken from the cells of the jump registers number
1, 2, 3, 5, 6, 7, 9, 10, 11.

4. The new IV setup procedure is defined as described in Section 2 under the
subtitle “IV Setup”.
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Abstract. This paper describes the attack on SOSEMANUK, one of
the stream ciphers proposed at eSTREAM (the ECRYPT Stream Ci-
pher Project) in 2005. The cipher features the variable secret key length
from 128-bit up to 256-bit and 128-bit initial vector. The basic operation
of the cipher is performed in a unit of 32 bits i.e. “word”, and each word
generates keystream.
This paper shows the result of guess-and-determine attack made on
SOSEMANUK. The attack method enables to determine all of 384-bit
internal state just after the initialization, using only 24-word keystream.
This attack needs about 2224 computations. Thus, when secret key length
is longer than 224-bit, it needs less computational effort than an exhaus-
tive key search, to break SOSEMANUK. The results show that the cipher
has still the 128-bit security as claimed by its designers.
Key words: SOSEMANUK, ECRYPT, eSTREAM, stream cipher, pseudo-
random number generator, guess-and-determine attack

1 Introduction

Everywhere, cipher standardization project has been encouraged vigorously. It
is exemplified by the Advanced Encryption Standard (AES) [1], or the New
European Schemes for Signatures, Integrity, and Encryption (NESSIE) project
whose goal is to establish European standard cipher [3]. NESSIE project aims
to choose secure cipher primitives, and in fact, they chose a stream cipher. How-
ever, many attacks against the stream ciphers proposed for NESSIE project were
proposed during the 3-year evaluation phase, and finally, no stream cipher can-
didate remained. Thus, widespread attention is focused on stream cipher design
and attacks against them.
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In February 2004, European Network of Excellence for Cryptology (ECRYPT)
was established. Its goal is to encourage the cooperation among European re-
searchers on information security. In 2005, Symmetric Techniques Virtual Lab
(STVL), a working group for ECRYPT established the ECRYPT Stream Ci-
pher Project (eSTREAM), to call for papers on new stream ciphers [2]. Finally,
34 candidates were submitted to eSTREAM, which will complete 2 evaluation
phases for those candidates by January 2008.

Stream ciphers submitted to eSTREAM include SOSEMANUK, which is
proposed by Berbain et al. and features variable secret key length from 128-bit
up to 256-bit and 128-bit initial vector [4]. The cipher allows faster software
implementation, since its basic operation is performed in a unit of 32 bits i.e.
“word”, to generate keystreams. The structure and the name of SOSEMANUK
are based on SNOW 2.0 stream cipher [6] and Serpent block cipher [5]. Berbain et
al. assert that SOSEMANUK has overcome the vulnerability of SNOW 2.0, while
reducing it in internal state size. However, they also assert that SOSEMANUK
guarantees up to 128-bit security, regardless of the secret key length.

According to the evaluation made by designers of SOSEMANUK, with 2256

computations or less, guess-and-determine attack can not be made on the cipher.
However, this paper reports that the attack can be made on it, with less compu-
tations than the necessary computational effort that those designers claim. This
attack can recover all of 384 bits of internal state just after the initialization. The
amount of data required for this attack is only about 24 words, which attackers
can easily collect. The needed amount of computation is approximately 2224.
Thus, when secret key length is longer than 224-bit, it needs less computational
effort than an exhaustive key search, to break SOSEMANUK.

Section 2 describes the structure of SOSEMANUK stream cipher and Sec-
tion 3 is about how to make guess-and-determine attack against SOSEMANUK.
Section 4 considers the structural vulnerability of SOSEMANUK and the coun-
termeasure to the attack. Section 5 concludes this paper.

2 Description of SOSEMANUK

This section describes the structure of SOSEMANUK stream cipher. Since it
employs the techniques originally used for Serpent, explanation on Serpent and
its derivatives is given for the first, and then that on SOSEMANUK.

2.1 Serpent and Derivatives

Serpent [5] is the block cipher proposed by Biham et al. in 1998, and one of
AES candidates. Serpent performs the operation called bit-slice to divide 32-bit
4-word data. Divided data are mixed and then, reunited into 32-bit 4-word data.
SOSEMANUK defines two functions, Serpent1 and Serpent24, as its derivatives.

Serpent1 is the round function of Serpent, with neither subkey addition by
bitwise exclusive OR nor linear transformation. 8 distinct S-boxes (S0, · · · , S7)
are used for Serpent, while Serpent1 uses S2 only. Serpent1 performs bit-slice to
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divide 32-bit 4-word data, mix the divided data using S2, and reunite them into
32-bit 4-word data, which is used as an output data.

Under full round, Serpent takes 32 round, and Serpent24 is a reduced function
of Serpent, which takes 24 rounds. Note that Serpent24 inserts the 25th subkey
after performing a linear transformation in the round function at the 24th round.
Thus, Serpent24 uses twenty-five 128-bit subkeys.

2.2 Keystream Generation

This subsection explains the keystream generation of SOSEMANUK, which can
be grouped under roughly 3 parts; Linear Feedback Shift Register (LFSR), Finite
State Machine (FSM), and Output Transformation.

LFSR consists of ten 32-bit registers, and is defined by the feedback polyno-
mial over GF (232) as follows;

π(X) = αX10 + α−1X7 + X + 1

Here, α is a root of primitive polynomial P (X) over GF (28).

P (X) = X4 + β23X3 + β245X2 + β48X + β239

β is a root of primitive polynomial Q(X) over GF (2).

Q(X) = X8 + X7 + X5 + X3 + 1

Since LFSR consists of primitive polynomial over GF (232), its 32-bit output
sequence {st} offers the maximal length cycle of 2320 − 1.

FSM consists of two 32-bit registers. (R1t, R2t) denotes the FSM registers
at the given time t (t ≥ 1). With the equations described below, FSM updates
registers (R1t, R2t) and generates 32-bit output ft. Hereafter, ⊕ denotes bit-wise
exclusive OR, whereas + and × mean addition and multiplication over mod 232.

R1t = (R2t−1 + mux(lsb(R1t−1), st+1, st+1 ⊕ st+8))
R2t = Trans(R1t−1)

ft = (st+9 + R1t)⊕R2t

Here, lsb(x) means the least significant bit of data x, and mux(c, x, y) means
the function where x is output, if c = 0, while y is output, if c = 1. The function
Trans(x) is defined as follows;

Trans(x) = (M × x) ≪ 7

Here, constant M = 0x54655307, and x ≪ 7 denotes that 32-bit data x is 7-
bit rotated to the left (towards the most significant bit). Figure 1 is an overview
of SOSEMANUK.

Using FSM output ft and LFSR register st, Output Transformation gener-
ates keystreams. zt represents the keystream at given time t (t ≥ 1). Output
Transformation processes 32-bit 4-word data, i.e. the data for 4 different ts at a
time, and uses the equation below to generate the keystream for 4 different ts
(zt+3, zt+2, zt+1, zt);

(zt+3, zt+2, zt+1, zt) = Serpent1 (ft+3, ft+2, ft+1, ft)⊕ (st+3, st+2, st+1, st)
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st+9 st+8 st+3 st+1 st

R1 R2

mux

Trans

Serpent1

α-1α-1 αα

outputft(×4)

Fig. 1. An overview of SOSEMANUK

2.3 Initialization

This subsection describes the initialization of SOSEMANUK. As initialization,
SOSEMANUK generates the initial value of internal state, using the key schedule
of Serpent and Serpent24. Figure 2 illustrates the initialization of SOSEMANUK.

Serpent24 KEY(128～256)

IV(128)

Serpent Key Schedule

25×128-bit 
subkeys

Y12(128)

Y18(128)

Y24(128)

(s7, s8, s9, s10)

(R10, s5, R20, s6)

(s1, s2, s3, s4)

Fig. 2. Initialization of SOSEMANUK

SOSEMANUK takes secret key KEY as an input to key schedule of Serpent,
to generate twenty-five 128-bit subkeys. Though the secret key of SOSEMANUK
is variable, ranging from 128-bit up to 256-bit, Serpent’s secret key is also vari-
able, ranging from 1-bit from 256-bit. Thus, key scheduler can be operated in
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accordance with the secret key length. After the subkey generation, initial vector
IV is taken as an input to Serpent24. Then, intermediate data of rounds 12 and
18 of Serpent24, and output data of round 24 of Serpent24 are used as initial
values of internal state. Providing that Y 12, Y 18, and Y 24 denote the outputs
of rounds 12, 18, and 24, respectively, these three data are substituted in the
equations below, as the initial values of their respective registers. Here, LFSR
register and FSM register at the completion of initialization are represented by
(s10, s9, · · · , s1) and (R10, R20), respectively.

s7 ‖ s8 ‖ s9 ‖ s10 = Y 12

R10 ‖ s5 ‖ R20 ‖ s6 = Y 18

s1 ‖ s2 ‖ s3 ‖ s4 = Y 24

3 Cryptanalysis of SOSEMANUK

This subsection explains how to apply guess-and-determine attack against SOSE-
MANUK whose secret key size is 256-bit. Followings are the preconditions for
the attack;

– Fixed secret key value during the attack.
– Attackers can obtain some quantity of keystream.

Assume that time t satisfies the assumption given below, when guess-and-
determine attack is made against SOSEMANUK.

Assumption : lsb(R1t−1) = 0

If the Assumption is satisfied, register R1t is updated with the following
equation;

R1t = R2t−1 + st+1

As is apparent from the equation given above, R1t is not influenced by st+8,
when the Assumption is satisfied. Thus, it can be used for cryptanalysis.

Assuming that t = 1 satisfies the Assumption, guess the internal state just
after the initialization described below.

Guess 1 : s1, s2, s3, s4, R10, R20

Since lsb(R10) = 0, from Assumption, 191 bits need to be guessed. Eqs. (1)
and (2) are the ones to update registers (R11, R21), respectively, where t = 1,
while Eqs. (3) and (4) are used to update register s11, and to generate FSM
output f1.

R11 = (R20 + s2) (1)
R21 = Trans(R10) (2)
s11 = s10 ⊕ α−1(s4)⊕ α(s1) (3)
f1 = (s10 + R11)⊕R21 (4)
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Based on Guess 1, the values of registers R11 and R21 can be calculated.
(f1, f2, f3, f4), FSM outputs for 4 consecutive times can also be obtained, using
the equation of Output Transformation, where the inverse function of Serpent1
is represented by Serpent1−1.

(f4, f3, f2, f1) = Serpent1−1(z4 ⊕ s4, z3 ⊕ s3, z2 ⊕ s2, z1 ⊕ s1)

Thus, s10 and s11 can be determined, using Eqs. (4) and (3), respectively. In
this way, guessing a part of internal state allows determining remaining undeter-
mined part of internal state. Figure 3 shows how the cryptanalysis is performed,
where t = 1.

TransTrans

Serpent1

α-1α-1 αα

(f4, f3, f2, f1)

s4 s2 s1

R10 R20

s10s11 s3

R11 R21

Guess

Determine

Assumption is lsb(R10) = 0

(z4, z3, z2, z1)

(s4, s3, s2, s1)

Fig. 3. Cryptanalysis steps where t = 1

Then, calculate (R12, R22) where t = 2, using the equation to update FSM.
Now, pay attention to the equation to generate FSM output f2.

f2 = (s11 + R12)⊕R22 (5)

Here, s11 is known data determined where t = 1. As f2, R12, and R22

are also the data determined by Guess 1, any errors in Guess 1 must result in
contradiction in Eq. (5). Thus, if any contradiction is found in Eq. (5), it means
some error in Guess 1. Then, attackers can drop the candidate data. These steps
narrow down the candidates for Guess 1 to about 2−32 of its original number.

Similarly, the data for t = 3 can be determined. Using the equation to update
FSM, calculate R13, and R23. With equation to generate FSM output f3, it is
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possible to calculate s12. Now, substituting s12 into equation to update LFSR,
where t = 2, it becomes as follows;

s5 = α(s12 ⊕ s11 ⊕ α(s2))

Thus, s5 can be determined, too.
Taking similar steps to above allows to determine unknown internal state

where t = 4, and then, R14, R24, s6, and s13 can be calculated. So far, 191 bits
needed to be guessed, and candidates for those were narrowed down to about
2159

Take similar steps to determine the internal state where t = 5 through 8.
Since s5, and s6 are known data where t = 1 through 4, Guess 2 given below is
to be done.

Guess 2 : s7, s8

Beside the bits determined already, 64 bits need to be guessed. With Guess 2,
(f5, f6, f7, and f8) can be determined, using Output Transformation equation.
Also, in the course of determining the internal state in a similar way, attackers
can check to see if there is any contradiction in Guess 1 and/or Guess 2 at 3
times, using the equation to generate FSM output ft. This step narrow down
the number of candidates to around 2−96 of its original number. Thus, attackers
have guessed 223 bits so far, and the candidates for them can be narrowed down
to 2127. Consecutive registers of internal state, i.e. R1t, R2t (t = 1, . . . , 8) and
st (t = 1, . . . , 18) can also be determined.

Take similar steps to determine the internal state where t = 9 through 12.
Since s9, s10, s11, and s12 are known data where t = 1 through 8 no more guess
has to be performed. As attackers can check to see if there is any contradic-
tion at 4 times, using the equation to generate FSM output ft, In the course
of determining the internal state, guessed candidates at Guess 1 and Guess 2
can be narrowed down to about 2−128 of its original number. This means that
theoretically, all the 384 bits of internal state just after the initialization can be
determined uniquely. Table 1 lists determined registers at each t and the number
of candidates to be narrowed down at Guess 1 and Guess 2.

Finally, the amount of computation required for this attack is estimated. At
Guess 1 and Guess 2, 223 bits at most have to be guessed. The success proba-
bility of Assumption is the probability that the least significant bit of register
R10 becomes 0. Thus, it becomes 1/2, if initialization of SOSEMANUK offers
completely random transformation. Consequently, the amount of computation
required for the cryptanalysis T is determined as follows; 1

T = 2223 × 21 = 2224

1 Large memory is not needed for this attack, because the candidates for the registers
are tried one by one.
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Table 1. Registers determined at t and number of candidates at Guess 1 and Guess 2

t Registers to Guess Determined Registers Contradiction Number of

Check Candidates

1 s1, s2, s3, s4, R10, R20 s10, s11, R11, R21 2191

2 R12, R22
√

2159

3 s5, s12, R13, R23

4 s6, s13, R14, R24

5 s7, s8 s14, s15, R15, R25
√

2191

6 R16, R26
√

2159

7 s9, s16, s17, R17, R27

8 s18, R18, R28
√

2127

9 s19, R19, R29
√

295

10 s20, R110, R210
√

263

11 s21, R111, R211
√

231

12 s22, R112, R212
√

1

If Assumption is not satisfied at t = 1, the attack will fail. However, assuming
that Assumption is satisfied at t = 5, that is shifted from t = 1 by 4 times, the
similar attack seems to break the cipher, successfully.

Guess-and-determine attack needs to compare the keystream that attack-
ers obtained with keystreams output by cipher for 12 times, in order to deter-
mine candidates for Guess 1 and Guess 2, uniquely. Thus, taking the probability
that Assumption is satisfied at any given t into account, only about 24 word of
keystream is enough for success of the attack.

4 Discussion

This section discusses the vulnerability in SOSEMANUK structure and coun-
termeasures to guess-and-determine attack. Designers of SOSEMANUK claimed
that they eliminated the weakness in SNOW 2.0 structure and reduced the in-
ternal state size, in order to increase the suitability of SOSEMANUK to be
implemented on a processor of any kind. They also employ reduced version of
Serpent block cipher, as initialization process in SOSEMANUK, to increase its
security.

However, when SOSEMANUK uses a longer than 224-bit secret key, guess-
and-determine attack could be made successfully, with less amount of computa-
tion than an exhaustive key search. This indicates that the security provisions for
SOSEMANUK made against existing attacks were not enough. It is considered
that guess-and-determine attack was made successfully, directly because of

– smaller internal state size
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– less LFSR feedback polynomial taps

To increase the suitability to be implemented, internal state size of SOSE-
MANUK is 384 bits, rather smaller than 576 bits, that of SNOW 2.0. It is
considered that this modification allows attackers guess most part of internal
state by guessing less bit-size than secret key size. Thus, the change in internal
state size helps attackers to apply guess-and-determine attack. It is also consid-
ered that more registers in LFSR feedback polynomial, which are responsible
for data updating, perhaps provide SOSEMANUK with more security, because
they increase the required amount of bits to be guessed. Though the design-
ers regard using reduced version of Serpent for initialization as a refinement in
SOSEMANUK, it does not seem to work, as far as the attack proposed in this
paper concerns, because even completely random transformation as initialization
has no effect on the attack.

Hereafter, countermeasures to the attack proposed in this paper is discussed.
Countermeasures described below are suggested;

– Elongate the internal state size enough.
– Increase LFSR feedback polynomial taps in number.

As described earlier, taking two countermeasures makes it difficult for attack-
ers to make guess-and-determine attack, since those countermeasures increase
amount of computation that is required for cryptanalysis. The countermeasures
described above merely aim to provide the cipher with more resistance to guess-
and-determine attack. We have not studied how they work on other existing
attacks. When making improvements to the cipher, application of the counter-
measure must be examined, so that it may not reduce the resistance to each of
existing attacks.

5 Conclusion

This paper describes the attack on SOSEMANUK proposed as an improved
algorithm of SNOW 2.0 in 2005. It is true that those who proposed the cipher
added more security to SOSEMANUK. However, we demonstrated that guess-
and-determine attack can be made on SOSEMANUK. This attack method can
determine all of 384-bit internal state just after the initialization, using only
24-word keystream, the amount of data that attackers can easily collect. This
attack needs about 2224 computations. Thus, when secret key length is longer
than 224-bit, it needs less computational effort than an exhaustive key search,
to break SOSEMANUK.

Our way of applying guess-and-determine attack proposed in this paper
breaks SOSEMANUK more efficiently than the designers of SOSEMANUK ex-
pected. However, note that our method does not break the cipher whose security
level is 128-bit, with 2128 computations or less. Since this attack method requires
very large amount of computation, it can not be a practical threatening to SOSE-
MANUK. But, in the terms of extremely little amount of data needed for the
attack, it can be said a very strong attack.
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This paper discusses not only the structural vulnerability of SOSEMANUK
but also countermeasures to guess-and-determine attack. Designers of SOSE-
MANUK pursued the advantages in implementation, to reduce the internal
state size. This, however, resulted in vulnerability to guess-and-determine at-
tack. Judging from existing attacks against stream ciphers, the size of internal
state is a critical point for the security. Consequently, in terms of security as well
as implementation.
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Abstract. WG and LEX are two stream ciphers submitted to eStream
– ECRYPT stream cipher project. In this paper, we point out security
flaws in the resynchronization of these two ciphers. The resynchroniza-
tion of WG is vulnerable to the differential attack. For WG with 80-bit
key and 80-bit IV, 48 bits of the secret key could be recovered with about
231.3 chosen IVs . For each chosen IV, only the first four keystream bits
are needed in the attack. The resynchronization of LEX is vulnerable to
the slide attack. If a key is used with about 260.8 random IVs, and 20,000
keystream bytes are generated from each IV, then the key of the strong
version of LEX could be recovered easily with the slide attack. The resyn-
chronization attack on WG and LEX shows that the block cipher related
attacks are powerful in analyzing the non-linear resynchronization.

Keywords: cryptanalysis, stream cipher, resynchronization attack, dif-
ferential attack, slide attack, WG, LEX

1 Introduction

For the research on stream cipher, the resynchronization is not studied as thor-
oughly as the keystream generation algorithm. Ten years ago, Daemen et al. an-
alyzed the weakness related to the linear resynchronization with known output
Boolean function [4]. Recently Golić and Morgari studied the problem related to
the linear resynchronization with unknown output function [6]. However almost
all the stream ciphers proposed recently use non-linear resynchronization, so the
previous attacks on the linear resynchronization could no longer be applied. In
this paper, we apply the differential attack and slide attack to stream ciphers
with non-linear resynchronization. And it shows that the cryptanalysis tech-
niques used to attack block ciphers are also useful in the analysis of non-linear
resynchronization.

WG [10] and LEX [3] are two stream ciphers submitted to eStream, the
ERYPT stream cipher project [5]. The keystream generation algorithms of WG
and LEX are quite strong. The keystream generation of WG is based on the
WG transformations which have excellent cryptographic properties [7]. The
keystream generation of LEX is based on the Advanced Encryption Standard
[9]. However, the resynchronization of WG and LEX are insecure. The resyn-
chronization of WG is vulnerable to the differential attack [1] and that of LEX
is vulnerable to the slide attack [2]. Breaking WG requires 231.3 chosen IVs, and
breaking the strong version of LEX requires about 260.8 random IVs.
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This paper is organized as follows. WG and LEX are introduced in Section
2. The differential attack on WG is given in Section 3, and the slide attack on
LEX is given in Section 4. Section 5 concludes this paper.

2 Description of WG and LEX

WG and LEX are described in Subsection 2.1 and 2.2, respectively.

2.1 Stream cipher WG

WG is a hardware oriented stream cipher with key length up to 128 bits. And
it supports IV size range from 32 bits to 128 bits. The main feature of the WG
stream cipher is the use of the WG transformation to generate keystream from
the LFSR.

Keystream Generation

Fig. 1. Keystream Generation Diagram of WG [10]

The keystream generation diagram of WG is given in Fig. 1. WG has a regularly
clocked LFSR which is defined by the feedback polynomial

p(x) = x11 + x10 + x9 + x6 + x3 + x + γ (1)

over GF (229), where γ = β464730077 and β is the primitive root of g(x)

g(x) = x29 + x28 + x24 + x21 + x20 + x19 + x18 + x17 +
x14 + x12 + x11 + x10 + x7 + x6 + x4 + x + 1 (2)

Then the non-linear WG transformation, GF (229) → GF (2), is applied to gen-
erate the keystream from the LFSR.

36



Resynchronization (Key/IV setup)

The key/IV setup of WG is given in Fig. 2. After the key and IV being loaded
into LFSR, the LFSR is clocked 22 steps. During each of these 22 steps, 29 bits
from the middle of the WG transformation are XORed to the feedback of LFSR,
as shown in Fig. 2.

One step of the key/IV setup could be expressed as follows.

T = S(1)⊕S(2)⊕S(5)⊕S(8)⊕S(10)⊕ (γ×S(11))⊕WG′(S(11))
S(i) = S(i− 1) for i = 11 · · · 2; S(1) = T

where the WG′(S(11)) denotes the 29 bits extracted from the WG transforma-
tion, as shown in Fig. 2.

The WG cipher supports a number of key and IV sizes. The key size can
be 80 bits, 96 bits, 112 bits and 128 bits. The IV sizes can be 32 bits, 64 bits,
80 bits, 96 bits, 112 bits, and 128 bits. Slightly different resynchronizations are
used for different IV sizes. The details are given in Section 3.

Fig. 2. Key/IV setup of WG [10]
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2.2 Stream cipher LEX

LEX is based on block cipher AES. The keystream bits are generated by ex-
tracting 32 bits from each round of AES in the 128-bit Output Feedback (OFB)
mode [8]. The LEX is about 2.5 times faster than AES. Fig. 3 shows how the
AES is initialized and chained. First a standard AES key-schedule for a secret
128-bit key K is performed. Then a given 128-bit IV is encrypted by a single
AES invocation: S = AESK(IV ). The S and the subkeys are the output of the
initialization process.

Fig. 3. Initialization and stream generation [3]

S is encrypted by K in the 128-bit OFB mode (for more secure variant, K
is changed every 500 AES encryptions). At each round, 32 bits of the middle
value of AES are extracted to form the keystream. The bytes b0,0, b0,2, b2,0, b2,2

at every odd round and the bytes b0,1, b0,3, b2,1, b2,3 at every even round are
selected, as shown in Fig. 4.

Fig. 4. The positions of leak in the even and odd rounds [3]
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3 Differential Attack on the Resynchronization of WG

The resynchronization of WG could be broken with the chosen IV attack based
on the differential cryptanalysis technique. WG with 32-bit IV size is not vul-
nerable to the attack given in this section (since no special differential could be
introduced into this short IV). In Subsection 3.1 the attack is applied to break
the WG with 80-bit key and 80-bit IV. The attacks on the WG with IV sizes
larger than 80 bits are given in Subsection 3.2. The attack on the WG with
64-bit IV size is given in Subsection 3.3.

3.1 Attack on WG with 80-bit key and 80-bit IV

In this subsection, we will investigate the security of the key/IV setup of WG
with 80-bit key and 80-bit IV. For this version of WG, denote the key as K =
k1, k2, k3, · · · , k80 and the IV as IV = IV1, IV2, IV3, · · · , IV80. They are loaded
into the LFSR as follows.

S1,...,16(1) = k1,...,16 S17,...,24(1) = IV1,...,8

S1,...,8(2) = k17,...,24 S9,...,24(2) = IV9,...,24

S1,...,16(3) = k25,...,40 S17,...,24(3) = IV25,...,32

S1,...,8(4) = k41,...,48 S9,...,24(4) = IV33,...,48

S1,...,16(5) = k49,...,64 S17,...,24(5) = IV49,...,56

S1,...,8(6) = k65,...,72 S9,...,24(6) = IV57,...,72

S1,...,8(7) = k73,...,80 S17,...,24(7) = IV73,...,80

All the remaining bits of the LFSR are set to zero. Then the LFSR is clocked
22 steps with the middle value from the WG transformation being used in the
feedback.

The chosen IV attack on WG goes as follows. For each secret key K, we
choose two IVs, IV ′ and IV ′′, so that IV ′ and IV ′′ are identical at 8 bytes, but
are different at two bytes: IV ′

17,...,24 6= IV ′′
17,...,24 and IV ′

49,...,56 6= IV ′′
49,...,56. The

differences satisfy IV ′
17,...,24 ⊕ IV ′′

17,...,24 = IV ′
49,...,56 ⊕ IV ′′

49,...,56.
Denote the S(i) (1 ≤ i ≤ 11) at the end of the j-th step as Sj(i), and

denote loading the key/IV as the 0th step. After loading the key and the chosen
IV into LFSR, we know that the difference at S(2) and S(5) are the same,
i.e., S′0(2) ⊕ S′′0(2) = S′0(5) ⊕ S′′0(5). We denote this difference as 41, i.e.,
41 = S′0(2)⊕ S′′0(2) = S′0(5)⊕ S′′0(5).

We now examine the differential propagation during the 22 steps in the
key/IV setup. The complete differential propagation is shown in Table 1, where
the differences at the i-th step indicate the differences at the end of the i-th step.
The difference42 = (γ×S′6(11)⊕WG′(S′6(11))⊕(γ×S′′6(11)⊕WG′(S′′6(11)) =
(γ × S′0(5) ⊕ WG′(S′0(5)) ⊕ (γ × S′′0(5) ⊕ WG′(S′′0(5)). Similarly, we obtain
that 43 = (γ × S′0(2)⊕WG′(S′0(2))⊕ (γ × S′′0(2)⊕WG′(S′′0(2)).

From Table 1, we notice that at the end of the 22th step, the difference at
S22(10) is 42 ⊕43. From the above description of 42 and 43, we know that

42 ⊕43 = ((γ × S′0(5)⊕WG′(S′0(5))⊕ (γ × S′′0(5)⊕WG′(S′′0(5)))⊕
((γ × S′0(2)⊕WG′(S′0(2))⊕ (γ × S′′0(2)⊕WG′(S′′0(2))) (3)
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It shows that the value of 42⊕43 is determined by k17,...,24, k49,...,64, IV ′
9,...,24,

IV ′′
49,...,56, IV ′′

9,...,24, IV ′′
49,...,56.

From the keystream generation of WG, we notice that the first keystream
bit is generated from S22(10) (after the key/IV setup, the LFSR is clocked, and
the S23(11) is used to generate the first keystream bit). If 42 ⊕ 43 = 0, then
the first keystream bits for IV ′ and IV ′′ should be the same. This property is
applied in the attack to determine whether the value of 42 ⊕43 is 0.

Table 1. The differential propagation in the key/IV setup of WG

S(1) S(2) S(3) S(4) S(5) S(6) S(7) S(8) S(9) S(10) S(11)
step 0 0 41 0 0 41 0 0 0 0 0 0
step 1 0 0 41 0 0 41 0 0 0 0 0
step 2 0 0 0 41 0 0 41 0 0 0 0
step 3 0 0 0 0 41 0 0 41 0 0 0
step 4 0 0 0 0 0 41 0 0 41 0 0
step 5 0 0 0 0 0 0 41 0 0 41 0
step 6 41 0 0 0 0 0 0 41 0 0 41

step 7 42 41 0 0 0 0 0 0 41 0 0
step 8 41⊕42 42 41 0 0 0 0 0 0 41 0
step 9 0 41⊕42 42 41 0 0 0 0 0 0 41

step 10 41⊕42
⊕43

0 41⊕42 42 41 0 0 0 0 0 0

step 11 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0 0 0 0

step 12 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0 0 0

step 13 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0 0

step 14 43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0 0

step 15 41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41 0

step 16 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42 41

step 17 41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42 42

step 18 43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0 41⊕42

step 19 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

0

step 20 44⊕46 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43 41⊕42
⊕43

step 21 44⊕45
⊕47

44⊕46 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42 42⊕43

step 22 42⊕43
⊕44⊕
45⊕46
⊕47
⊕48

44⊕45
⊕47

44⊕46 41⊕42
⊕43⊕
45⊕46

43⊕44
⊕45

41⊕44 41⊕42
⊕43

41⊕42
⊕43

43 42⊕43 41⊕42

Assume that the value of 42⊕43 is randomly distributed, then 42⊕43 = 0
with probability 2−29. We thus need to generate about 229 pairs (42,43) in
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order to obtain a pair satisfying 42 ⊕ 43 = 0. Note that the key is fixed and
that S′0(2) ⊕ S′′0(2) = S′0(5) ⊕ S′′0(5) must be satisfied. There are 3 bytes of
IV and one-byte difference can be chosen, so there are about 224 × 255/2 ≈ 231

pairs of (42,43) are available. Thus there is no problem to generate 229 pairs
of (42,43).

Then we proceed to determine which pair (42,43) satisfies42⊕43 = 0. For
each pair (42,43), we modify the values of IV ′

1,...,8 and IV ′′
1,...,8, but we ensure

that IV ′
1,...,8 = IV ′′

1,...,8. This modification does not affect the value of 42 ⊕43,
but it effects the value of S22(10). We generate keystream and examine the first
keystream bits. If the values of the first keystream bits are the same, then the
chance that 42 ⊕43 = 0 is improved. In that case, we modify the IV ′

1,...,8 and
IV ′′

1,...,8 again and observe the first keystream bits. This process ends when the
first keystream bits are not the same or this process is repeated for 40 times.
If one (42,43) passes the test for 40 times, then we know that 42 ⊕ 43 = 0
with probability extremely close to 1. (Each wrong pair could pass this filtering
process with probability 2−40. One pair of 229 wrong pairs could pass this process
with probability 2−11.) Thus with about 2 × 229 × ∑40

i=1
i
2i = 231 chosen IVs,

we can find a pair (42,43) satisfying 42 ⊕43 = 0. Subsequently according to
Eqn. (3) and 42 ⊕ 43 = 0, we recover 24 bits of the secret key, k17,...,24 and
k49,...,64.

The above attack can be improved if we consider the differences at S22(7) and
S22(8). The differences there are both41⊕42⊕43. If the value of41⊕42⊕43

is 0, then the third and fourth bits of the two keystreams would be the same. If
we only observe the third and fourth keystream bits, the k17,...,24 and k49,...,64

can be recovered with 2× 229 ×∑20
i=1(

1
2i−1 − 1

2i )× i = 230.4 chosen IVs.
In the attack, we observe the first, third and fourth keystream bits, then

recovering k17,...,24 and k49,...,64 requires about 2×228×21.13 = 230.1 chosen IVs
(the value 21.13 is obtained through numerical computation).

By setting the difference at S0(3) and S0(6) and observing the second and
third bits of the keystream, we can recover another 24 bits of the secret key,
k25,...,40 and k65,...,72. We need 230.4 chosen IVs.

So with about 230.1 + 230.4 = 231.3 chosen IVs, we can recover 48 bits of
the 80-bit secret key. It shows that the key/IV setup of WG stream cipher is
insecure.

3.2 Attacks on WG with key and IV sizes larger than 80 bits

The WG ciphers with the key and IV sizes larger than 80 bits are all vulnerable
to the chosen IV attack. The attacks are very similar to the above attack. We
omit the details of the attacks here. The results are given below.

1. For WG with 96-bit key and 96-bit IV, 48 bits of the key can be recovered.
2. For WG with 112-bit key and 112-bit IV, 72 bits of the key can be recovered.
3. For WG with 128-bit key and 128-bit IV, 72 bits or 96 bits of the key can

be recovered.
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3.3 Attacks on WG with 64-bit IV size

We use the WG with 80-bit key and 64-bit IV as an example to illustrate the
attack. For the WG cipher with 80-bit key and 64-bit IV, the key and IV are
loaded into the LFSR as follows:

S1,...,16(1) = k1,...,16 S1,...,16(2) = k17,...,32

S1,...,16(3) = k33,...,48 S1,...,16(4) = k49,...,64

S1,...,16(5) = k65,...,80 S1,...,16(9) = k1,...,16

S1,...,16(10) = k17,...,32 ⊕ 1 S1,...,16(11) = k33,...,48

S17,...,24(1) = IV1,...,8 S17,...,24(2) = IV9,...,16

S17,...,24(3) = IV17,...,24 S17,...,24(4) = IV25,...,32

S17,...,24(5) = IV33,...,40 S17,...,24(6) = IV41,...,48

S17,...,24(7) = IV49,...,56 S17,...,24(8) = IV57,...,64

In the attack, we set the differences at S(2) and S(5), we can only generate about
223 pairs of (42,43) since we can only modify IV9,...,16 and IV33,...,40. Thus we
can obtain a pair (42,43) satisfying 42 ⊕43 = 0 or 41 ⊕42 ⊕43 = 0 with
probability 2−5. Once we know42⊕43 = 0 or41⊕42⊕43 = 0, we can recover
29-bit information of k17,...,32 and k65,...,80. It shows that 29-bit information of
the secret key could be recovered with probability 2−5. This attack requires
about 225.1 chosen IVs.

The attack on WG with 96-bit key and 64-bit IV is similar to the above
attack. We can set the differences at S(2) and S(5) or at S(3) and S(6). In
the attack 29-bit information of k17,...,32 and k65,...,80 can be recovered with
probability 2−5, and another 29-bit information of k33,...,48 and k81,...,96 can be
recovered with probability 2−5.

The attack on WG with 112-bit key and 64-bit IV is also similar. The result is
that 29-bit information of k17,...,32 and k65,...,80 can be recovered with probability
2−5, 29-bit information of k33,...,48 and k81,...,96 can be recovered with probabil-
ity 2−5, and 29-bit information of k49,...,64 and k97,...,112 can be recovered with
probability 2−5.

The attack on WG with 128-bit key and 64-bit IV is also similar. The result
is that 29-bit information of k17,...,32 and k65,...,80 can be recovered with prob-
ability 2−5, 29-bit information of k33,...,48 and k81,...,96 can be recovered with
probability 2−5, 29-bit information of k49,...,64 and k97,...,112 can be recovered
with probability 2−5, and 29-bit information of k64,...,80 and k113,...,128 can be
recovered with probability 2−5.

4 Slide Attack on the Resynchronization of LEX

The security of LEX depends heavily on the fact that only small amount of
information is released for each round (including the input and output) of AES.
The slide attack intends to retrieve all the information of one AES round input
(or output) in LEX.
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Denote Si = Ei
K(IV ), where Ei(m) means that m is encrypted by i times,

S0 = IV . And denote the 320 bits extracted from the i-th encryption as ki

for i ≥ 2. For two IVs, IV ′ and IV ′′, if k′2 = k′′j (j > 2), then we know that
S′1 = S′′j−1. Immediately, we know that S′′j−2 = S′0 = IV ′. Note that k′′j−1 are
extracted from EK(S′′j−2), so k′′j−1 are extracted from EK(IV ′), it means that
we know the input to AES, and we know 32 bits from the output of the first
round. In the following, we show that it is easy to recover the secret key from
this 32-bit information of the first round output.

Denote the 16-byte output of the r-th round of AES as mr
i,j (0 ≤ i, j ≤ 3).

And denote the 16-byte round key at the end of the r-th round as wr
i,j (0 ≤

i, j ≤ 3). Now if m1
0,0, m1

0,2, m1
2,0, m1

2,2 are known, i.e, four bytes of the first
round output are known, then we obtain the following four equations:

m1
0,0 ⊕ w1

0,0 = MixColumn((m0
0,0 ⊕ w0

0,0)||(m0
1,3 ⊕ w0

1,3)

||(m0
2,2 ⊕ w0

2,2)||(m0
3,1 ⊕ w0

3,1))&0xFF (4)

m1
2,0 ⊕ w1

2,0 = (MixColumn((m0
0,0 ⊕ w0

0,0)||(m0
1,3 ⊕ w0

1,3)

||(m0
2,2 ⊕ w0

2,2)||(m0
3,1 ⊕ w0

3,1)) >> 16)&0xFF (5)

m1
0,2 ⊕ w1

0,2 = MixColumn((m0
0,2 ⊕ w0

0,2)||(m0
1,1 ⊕ w0

1,1)

||(m0
2,0 ⊕ w0

2,0)||(m0
3,3 ⊕ w0

3,3))&0xFF (6)

m1
2,2 ⊕ w1

2,2 = (MixColumn((m0
0,2 ⊕ w0

0,2)||(m0
1,1 ⊕ w0

1,1)

||(m0
2,0 ⊕ w0

2,0)||(m0
3,3 ⊕ w0

3,3)) >> 16)&0xFF (7)

Each equation leaks one-byte information of the secret key. In the above four
equations, 12 bytes of the subkey are involved. To recover all those 12 bytes, we
need three inputs to AES and the related 32-bit first round outputs so that we
could obtain 12 equations. Those 12 equations can be solved with about α× 232

operations, where α is a small constant. With 96 bits of the key being recovered,
the rest of the 32 bits of AES could be recovered by exhaustive search.

We now compute the number of IVs required to generate three collisions.
Suppose that a secret key is used with about 265.3 random IVs, and each IV i

is used to generate a 640-bit keystream ki
2, k

i
3. Since the block size of AES is

128 bits, we know that with high chance there are three collisions ki
2 = kj

3 for
different i and j since 265.3×(265.3−1)

2 × 2−128 ≈ 3.
The number of IVs could be reduced if more keystream bits are generated

from each IV. In [3], it is suggested to change the key every 500 AES encryptions
for strong variant of LEX. Suppose that each IV is applied to generate 500 320-bit
outputs, then with 260.8 IVs, we could find three collisions ki

2 = kj
x (2 < x < 500)

and recover the key of LEX. For the original version of LEX, the AES key is
not changed during the keystream generation. Suppose that each IV is used to
generate 250 keysteam bytes, then the key could be recovered with about 243

random IVs (here we need to consider that the state update function of LEX is
reversible; otherwise, the amount of IV required in the attack could be greatly
reduced).
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5 Conclusion

In this paper, we show that the resynchronizations of WG and LEX are vulner-
able to the differential cryptanalysis and the slide attack, respectively. It shows
that the block cipher cryptanalysis techniques are powerful in analyzing the
non-linear resynchronization of stream cipher.
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Abstract. The stream cipher Self-Synchronizing Sober (SSS) is a can-
didate in the ECRYPT stream cipher competition. In this paper, we
describe a chosen ciphertext attack on SSS. Our implementation of the
attack recovers the entire secret state of SSS in around 10 seconds on a
2.8 GHz PC, and requires a single chosen ciphertext of less than 10 kByte.
The designers of SSS state that chosen ciphertext attacks were considered
to fall outside of the threat model. Hence the relevance of such attacks
is also discussed in this paper.

1 Introduction

In the ECRYPT Stream Cipher Project [6], 34 stream cipher primitives
have been submitted for evaluation. Of these 34 proposals, 31 are syn-
chronous, 2 are self-synchronizing, and one design, Phelix, is neither syn-
chronous nor self-synchronizing. This division reflects the fact that syn-
chronous stream ciphers have been more widely studied in the past years.

In a synchronous stream cipher, the internal state of the stream cipher
is independent of the plaintext and ciphertext. Hence the only relevant
attack model is the known plaintext attack. Also, the attacker can influ-
ence the internal state through a resynchronization attack with chosen
or known IV [3, 1]. A strong resynchronization mechanism is therefore
needed to prevent such attacks.

Another attack model applies to the self-synchronizing stream ci-
phers, where the ciphertext needs to enter the state to ensure the self-
synchronization property. This makes chosen plaintext (at encryption)
and chosen ciphertext (at decryption) attacks interesting. Because of this
property, the design and analysis of self-synchronizing stream ciphers is
much closer related to the field of block ciphers than to the field of syn-
chronous stream ciphers [4]. Note that the same applies to the design of

⋆ Research financed by a Ph.D. grant of the Institute for the Promotion of Innovation
through Science and Technology in Flanders (IWT-Vlaanderen)
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a good resynchronization mechanism for synchronous stream ciphers, as
evidenced by several ECRYPT candidates.

In this paper, we describe such a chosen ciphertext attack on the
ECRYPT candidate Self-Synchronizing Sober (SSS) [8]. We also imple-
mented the attack in C. Our implementation recovers the secret key with a
chosen ciphertext of around 10 kByte and runs in 10 seconds on a 2.8 GHz
PC.

The designers of SSS state that chosen ciphertext attacks were con-
sidered to fall outside of the security model. However, chosen cipher-
text attacks have previously been considered when evaluating the secu-
rity of self-synchronizing stream ciphers. Self-synchronizing stream en-
cryption with DES in CFB mode was analyzed with respect to chosen
ciphertext attacks in [7]. The stream cipher KNOT [2] has been bro-
ken by differential attacks using chosen ciphertext in [5]. The other self-
synchronizing ECRYPT stream cipher candidate is MOSQUITO, the suc-
cessor of KNOT. In the paper on MOSQUITO [4], the security analysis is
mainly devoted to differential and linear attacks using chosen ciphertext.
We will give arguments for the importance of this type of attacks in this
paper.

The outline of this paper is as follows. A brief explanation on self-
synchronizing stream ciphers is given in Sect. 2 and the design of SSS is
briefly presented in Sect. 3. A chosen ciphertext attack on SSS is described
in Sect. 4, and the relevance of such an attack on self-synchronizing stream
ciphers is discussed in Sect. 5. The paper concludes in Sect. 6.

2 Self-Synchronizing Stream Ciphers

A simplified representation of a self-synchronizing stream cipher is given
in Fig. 1. In such a design, the next key stream bit zt is fully determined
by the last nm ciphertext bits and the cipher key K. This can be modelled
as the key stream symbol being computed by a keyed cipher function fc

operating on a shift register that contains the last nm ciphertexts. This
conceptual model can be implemented in various ways, with the design
of SSS described in Sect. 3 as an example.

For the first nm plaintext or ciphertext symbols, the previous nm ci-
phertexts do not exist. Hence the self-synchronizing stream cipher must
be initialized by loading nm dummy ciphertext symbols, called the ini-
tialization vector IV .
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Fig. 1. Self-synchronizing stream encryption.

3 Brief Description of SSS

We only describe the aspects of the design that are relevant for the anal-
ysis performed in this article. For a complete description of the design,
including the initialization and authentication mechanism, we refer to [8].
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Fig. 2. Layout of SSS at the decryption side

A layout of SSS at the decryption side can be found in Fig. 2. In this
figure, ⊕ represents exclusive or, ⊞ represents addition and ≫ represents
a rotation by 8 positions to the right (or byteswap). The internal state
of SSS consists of a 17-word shift register r0, . . . , r16, where each word is
16 bits in size. The main building block is the key-dependent function f ,
which can be seen as a key-dependent permutation of a 16-bit word. The
function f is built as follows:

f(x) = SBox(xH) ⊕ x , (1)
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where xH stands for the Most Significant Byte (MSB) of x and where
SBox is a key-dependent substitution box from 8 to 16 bits determined
at key setup. In the rest of the paper we will assume that this SBox is a
random unknown table of 256 16-bit words.

4 The Chosen Ciphertext Attack on SSS

From the description of SSS follows that its secret key consists of a table
of 256 values of 16 bits. The aim of our attack is to recover this secret
table.

We are going to decrypt a single ciphertext string that consists of a
succession of 263 similar patterns and obtain the corresponding plaintext
(and hence the key stream). The pattern i (i = 0, 1, 2, . . . , 263) consists
of 18 16-bit words and always has the following format:

{

ci
t = 0 for t = 0, . . . , 12, 14, . . . 18

ci
13

= bi,
(2)

where bi takes some value in each pattern, to be determined as explained
below. Note that the values that we have chosen to be 0 could take any
value for our attack to work, as long as they are constant across all pat-
terns.

When generating key stream word zi
18

, we can see from Fig. 2 that
the following words are needed3:

zi
18

= f((f(r[0] + r[16]) + r[1] + r[6] + r[13]) ≫ 8) ⊕ r[0] . (3)

It is easy to derive that these registers have the following content at
t = 18:























r[0] = f2(0) ≫ 8
r[1] = f2(0) ≫ 8
r[6] = f2(0)
r[13] = f(0) + bi

r[16] = 0 .

(4)

In other words, all these registers are constant for each pattern i except
for register r[13]. We can hence regroup all the constants inside f() of (3)
into a single (yet unknown) constant a as follows:

a = f(r[0] + r[16]) + r[1] + r[6] + f(0)
= f(f2(0) ≫ 8) + (f2(0) ≫ 8) + f2(0) + f(0) ,

(5)

3 At first sight, one may think that this should be z17, but the designers have built
a delay into their design, as can be deducted from the source code, which can be
obtained at [8].
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and then (3) simplifies to:

zi
18 = f((a + bi) ≫ 8) ⊕ r0 . (6)

We use the notation r0 to indicate that the content of r[0] is also constant
for all patterns. a is a two-byte word and we denote its MSB byte by aH

and its LSB byte by aL. In the same way we split bi in its two bytes bi
H

and bi
L.

In a first phase, we will determine the 7 least significant bits of aH .
We will not be able to recover the most significant bit of aH , but this
is not a problem as the value of this bit is irrelevant to our analysis. To
recover these 7 bits, we need 8 patterns of the type described above with
bi
L = 0, b0

H = 0 and bi
H = 2i−1 for i = 1, 2, . . . , 7.

We now rewrite the above equation by splitting up the f function and
some words of interest to get:

zi
18 = SBox(aL) ⊕ (28 · aL + aH + 2i−1) ⊕ r0 , (7)

By XORing the above equation for each i 6= 0 with the equation for i = 0
and eliminating terms we obtain:

zi
18,L ⊕ z0

18,L = aH ⊕ (aH + 2i−1) . (8)

In these equations aH is the only unknown, and we can easily deduce its
7 least significant bits from the above equations bit by bit: A difference
in vi

18,L ⊕ v0

18,L equal to 2i−1 implies that the corresponding bit of aH is
0, otherwise it is 1.

Now that the relevant bits of aH have been recovered, we will try to
extract the entire secret SBox table in the second phase of our attack.
In short, this phase operates as follows. First we guess the value of aL

and SBox(aL) (24 bits in total). Then we reconstruct the remaining 255
entries of SBox using key stream symbols z

j
18,L obtained from decrypting

256 patterns. We then use this value to decrypt some ciphertext from
the above patterns and check whether the plaintext matches. We now
describe this reconstruction phase into more detail.

Our ciphertext contains 256 patterns that have b
j
L = j and b

j
H = 0 for

j = 0, 1, . . . , 255. We obtain the following equations, again after XORing
with the equation for j = 0:

z
j
18

⊕ z0

18
=

SBox(aL) ⊕ SBox(aL + j)⊕
(((28 · aH + aL) ⊕ (28 · aH + aL + j)) ≫ 8) .

(9)
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Assuming a guess for aL and SBox(aL) we can deduce SBox(aL + j)
from this equation:

SBox(aL + j) =
z

j
18

⊕ z0

18
⊕ SBox(aL)⊕

(((28 · aH + aL) ⊕ (28 · aH + aL + j)) ≫ 8) .
(10)

Because j takes all 255 nonzero values we recover the entire SBox. We
then verify whether, for the current guess of aL and of SBox(aL) and the
deduced SBox, the ciphertext decrypts to the corresponding plaintext. If
it does, we have found the entire secret key.

We have implemented this attack in C. It recovers the entire secret
key in on average 10 seconds on a 2.8 GHz Pentium IV PC running gcc
under Linux. The single chosen ciphertext consists of 263 patterns of 36
bytes (note that the patterns for i = 0 and for j = 0 are the same),
or 9468 byte in total. It is possible to reduce the data complexity even
further by overlapping the patterns.

5 On the Relevance of Chosen Ciphertext Attacks

In the security claims for SSS [8], the authors state that they did not
consider chosen ciphertext attacks in their threat model. One of the secu-
rity requirements for their design is that “the result of decrypting altered
ciphertext is not made available to the attacker”. They motivate this re-
quirement as follows: “This should be a standard requirement for any self-
synchronizing stream cipher, since the attacker has complete control over
the state of the cipher.” However, it seems to be logical to us to include
chosen ciphertext attacks in the security model of a self-synchronizing
stream cipher, both from a theoretical as from a practical perspective.

From a theoretical perspective, a self-synchronizing stream cipher is
functionally equivalent to a block cipher used in CFB mode. Chosen ci-
phertext attacks do apply on this mode of operation of a block cipher,
an example is a chosen ciphertext attack on DES in CFB mode [7]. To
enable a fair comparison of primitives aiming at the same applications,
we believe that a uniform threat model should apply.

From a practical perspective, we see several scenarios where chosen
ciphertext attacks can apply, just like with block ciphers. Preventing such
an attack would require authenticating the plaintext before it is released.
This suffers from two serious problems. First, buffering and secure storage
of large amounts of texts is necessary, and this is impractical in several
environments of interest. Second, this authentication requirement is or-
thogonal to the concept of self-synchronization: we do not see the point
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of designing self-synchronizing stream ciphers when transmission errors
are not allowed.

Another remark is that a self-synchronizing stream cipher resistant to
chosen ciphertext attacks will result in a more elegant design. No special
IV loading mechanism will be necessary as in SSS; loading a nonce into
the state will be sufficient to start encryption and decryption.

6 Conclusion

In this note, we have described an attack on the ECRYPT candidate SSS,
a self-synchronizing stream cipher. Our attack recovers the secret key of
the design with a single chosen ciphertext of less than 10 kByte in about
ten seconds on a modern PC. We believe that our attack is a practical
attack on SSS. SSS is hence insecure and should not be used.
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Abstract We improve on the best known cryptanalysis of the stream cipher
Py by using a hidden Markov model for the carry bits in addition operations
where a certain distinguishing event takes place, and constructing from it an
“optimal distinguisher” for the bias in the output bits which makes more use of
the information available. We provide a general means to efficiently measure the
efficacy of such a hidden Markov model based distinguisher, and show that our
attack improves on the previous distinguisher by a factor of 216 in the number of
samples needed. Given 272 bytes of output we can distinguish Py from random
with advantage greater than 1

2
, or given only a single stream of 264 bytes we have

advantage 0.03.
Keywords: Py, symmetric cryptanalysis, hidden Markov model

1 Introduction

Py [2] is a candidate in the eSTREAM project to identify new stream ciphers that
might be suitable for widespread adoption. It is a synchronous stream cipher with a
1300-byte internal state, and at each step produces eight bytes of output, organised as
two four-byte words. Py is one of the fastest eSTREAM candidates in software.

[6] presents a distinguisher against this cipher. It defines an event L in the internal
state of the cipher which occurs with probability roughly 2−41.91. When this event occurs,
two output values can be guaranteed to be equal. This results in a very small linear bias
in the output of Py, which can be detected with on the order of Pr[L]−2 samples.

Specifically, when the event occurs, two output words O1,1 and O2,3 are generated
from three words of the internal state S, A, and B as follows:

O1,1 = (S ⊕B) + A

O2,3 = (S ⊕A) + B

This implies that the least significant bits of O1,1 and O2,3 are equal. [6] goes on to
observe that there will also be biases in the more significant bits of O1,1 ⊕O2,3.

In this paper, we show that a more effective distinguisher can be built using the
same model of the cipher as the above by making use of all of the bits of O1,1 and O2,3

in concert rather than considering them separately. We use a hidden Markov model to
trace the propogation of the unknown carry bits from least to most significant bit to
calculate the exact probability that a given O1,1, O2,3 pair will be seen given that the
event L takes place, and from this construct a distinguisher optimal for this model with
the method described in [1]. We show that this results in a reduction in the number of
samples needed by a factor of approximately 60552.

2 Description of Py

An understanding of the exact workings of Py is not needed to follow how our work
builds on the work of [6], but we describe the round function here for completeness. Py
operates on 32-bit words (treated as members of Z/232Z) and (8-bit) bytes. Its internal
state in round i comprises
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Algorithm 1 Py round function

O1,i = (ROTL32(si, 25)⊕ Yi[256]) + Yi[Pi[26]]

O2,i = (si ⊕ Yi[−1]) + Yi[Pi[208]]

Yi+1 = Yi[−2 . . . 256] ‖ ((ROTL32(si, 14)⊕ Yi[−3]) + Yi[Pi[153]])

Pi+1 =


Pi[1 . . . k − 1] ‖Pi[0] ‖Pi[k + 1 . . . 255] ‖Pi[k] k 6= 0
Pi[1 . . . 255] ‖Pi[0] k = 0

where k = Yi+1[185] mod 256

si+1 = ROTL32(si + Yi+1[Pi+1[72]]− Yi+1[Pi+1[239]], (Pi+1[116] + 18) mod 32)

“‖” represents array concatenation.

– a 260-word array Yi, indexed from -3 to 256
– a 256-byte array Pi indexed from 0 to 255 which always contains a permutation, and
– a word si.

The specification of Py in [2] describes the round function as two state-update functions
with an output function inbetween. To simplify cryptanalysis, we mark the boundaries
between rounds differently, so that we can consider the round function to be an output
function followed by a state-update function combining both parts. This is consistent
with the conventions of [6]. Algorithm 1 defines the output and state update functions;
it produces two 32-bit output words O1,i, O2,i in round i.

We do not specify the key/IV setup; like [6], for all of our results we model P1, Y1

and s1 as independent and uniformly distributed, with P1 uniformly distributed over
permutations of bytes.

3 Sekar et al attack

[6] presents a distinguisher against Py that requires 8 bytes of output from each of
283.82 distinct keystreams. The authors define an event L which is the combination of
the following six conditions:

– P2[116] ≡ −18 (mod 32)
– P3[116] ≡ 7 (mod 32)
– P2[72] = P3[239] + 1
– P2[239] = P3[72] + 1
– P1[26] = 1
– P3[208] = 254

They show that Pr[L] ≈ 2−41.91 (with the initial state is modelled as random as always).
Defining

A = Y1[1]
B = Y1[256]
S = ROTL32(s1, 25)

they show that where L occurs,

O1,1 = (S ⊕B) + A

O2,3 = (S ⊕A) + B
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In particular, where [A]0 is the low bit of A, this implies that [O1,1 ⊕ O2,3]0 =
([S]0⊕ [B]0⊕ [A]0)⊕ ([S]0⊕ [A]0⊕ [B]0) = 0. The authors show that Pr[[O1,1⊕O2,3]0 =
0|¬L] = 1

2 , and thus that

Pr[[O1,1 ⊕O2,3]0 = 0] = Pr[[O1,1 ⊕O2,3]0 = 0|L] Pr[L] +
Pr[[O1,1 ⊕O2,3]0 = 0|¬L] Pr[¬L]

= Pr[L] +
1
2
(1− Pr[L])

=
1
2
(1 + Pr[L])

The authors go on to estimate that this bias can be used to construct an effective
distinguisher given roughly Pr[L]−2 ≈ 283.82 samples.

[6] defines a second event with the same probability which we term L′, which is
identical to L except that P2[72] = P3[72] + 1 and P2[239] = P3[239] + 1. The au-
thors assert [4] that where L′ occurs, O1,1 = (ROTL32(S, 25) ⊕ B) + A and O2,3 =
(ROTL32(S +2K, 25)⊕A)+B where S, K, A and B are all independent and uniformly
random under the assumption of independent uniform randomness in the initial state.
Where neither L nor L′ occur, O1,1 and O2,3 are independent and uniformly random.

We now measure the exact efficacy of this distinguisher using [1] and show how to
improve on it with a hidden Markov model.

4 Optimal distinguishers

[1] describes a general means to construct an efficient distinguisher between distributions
D0 and D1 over a shared alphabet Z, given n independent and identically distributed
samples drawn from the unknown distribution D. PrDj

[X] is shorthand for Pr[X|D = Dj ]
and Pj(z) = PrDj [D = z] where D is a random variable drawn from D. We consider
only the case where P0(z) > 0 and P1(z) > 0 for all z ∈ Z. Where Z = z1 . . . zn is the
vector of samples, the efficacy of a distinguisher A is measured by its “advantage”:

Adv(A) = Pr
D1

[A(Z) = 1]− Pr
D0

[A(Z) = 1]

and [1] shows that the distinguisher Aopt defined here maximizes advantage given the
information available:

Aopt(Z) =
{

1 where P1(Z) > P0(Z)
0 otherwise

If we define the log-likelihood ratio function LLR below then (since each zi is inde-
pendent) Aopt can be expressed in a different way:

LLR(z) = log
(

P1(z)
P0(z)

)
Aopt(Z) =

{
1 where

∑
i LLR(zi) > 0

0 otherwise

Appealing to the central limit theorem, the authors show that where n is large,
PrDj

[Aopt(Z)= 1] ≈ Φ
(√

nµj

σj

)
where µj = E[LLR(Dj)] and σ2

j = Var[LLR(Dj)]. Next
they define for every z ∈ Z:

εz = P1(z)− P0(z)
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Where D0 and D1 are close (ie where εz � P0(z) for all z ∈ Z), they state that

−µ0 ≈ µ1 ≈
β

2
, σ2

0 ≈ σ2
1 ≈ β where β =

∑
z∈Z

ε2z
P0(z)

and thus that

Adv(Aopt) = Pr
D1

[Aopt(Z) = 1]− Pr
D0

[Aopt(Z) = 1]

≈ Φ

(√
nµ1

σ1

)
− Φ

(√
nµ0

σ0

)
≈ Φ

(√
nβ

2
√

β

)
− Φ

(
−
√

nβ

2
√

β

)
= 1− 2Φ

(
−
√

nβ

2

)
For the distinguisher of [6] we have that

Pj(z) j = 0 j = 1 εz

z = 0 1
2

1
2 (1 + Pr[L]) 1

2 Pr[L]
z = 1 1

2
1
2 (1− Pr[L]) − 1

2 Pr[L]

where Dj is the distribution of [O1,1]0 ⊕ [O2,3]0, from which we can deduce that
in this instance β = Pr[L]2. Thus where n = Pr[L]−2 the advantage is approximately
1 − 2Φ

(
− 1

2

)
≈ 0.3829; for an advantage greater than 1

2 , around 285 samples (or 288

bytes) are required. The presence of event L′ makes no difference to the efficacy of this
distinguisher.

5 Hidden Markov models

We can construct a more efficient distinguisher for Py by using a hidden Markov model
[7,5]. We briefly reprise the theory of hidden Markov models here.

Consider a sequence of n + 1 random variables Q0 . . . Qn drawn from an alphabet
of states Ψ = {S1 . . . SN}. We say this sequence is generated by a first-order Markov
process if the probability that Qi+1 is in state Sk depends only on the previous state
Qi, or in other words, if for all 0 ≤ i < n and for all q0 . . . qi+1 ∈ Φi+1

Pr[Qi+1 = qi+1|Q0 . . . Qi = q0 . . . qi] = Pr[Qi+1 = qi+1|Qi = qi]

We define the initial state vector π such that πi = Pr[Q0 = Si], and the transition
matrix Mi such that (Mi)jk = Pr[Qi+1 = Sk|Qi = Sj ]. The entries of π must sum to 1,
as must each column of each Mi. For all the processes we consider here, each Mi will
be the same and we drop the subscript i. π and M completely characterize the Markov
process.

In a hidden Markov model, we also consider each transition1 to also generate an
output Yi from an output alphabet Y. We therefore define a transition matrix My for
each possible output symbol y ∈ Y such that (My)jk = Pr[Yi = y∧Qi+1 = Sk|Qi = Sj ].
For each state the probabilities of each output/next-state pair must sum to 1 as before,
so each column of

∑
y∈Y My must sum to 1.

Given this matrix representation, if we define the vector x = Myn−1 . . .My0π then
xi = Pr[(Y0 . . . Yn−1) = (y0 . . . yn−1) ∧Qn = Si] and thus the sum of the elements of x
gives the probability of the output sequence y0 . . . yn−1. This is known as the “forward
algorithm”.
1 Following the practice described in section IV.C of [5], we specify outputs as produced on

transitions, not from states
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6 Applying the hidden Markov model to Py

In order to build a more efficient distinguisher using this method, we now consider the
problem of calculating Pr[(O1,1, O2,3) = (o1, o3)|L]. A naive algorithm for this, based on
the observation that Pr[(O1,1, O2,3) = (o1, o3)|L] = Pr[(S⊕B)+A = o1∧ (S⊕A)+B =
o2] = |{a, b, s ∈ (Z/232Z)3|(s⊕b)+a = o1∧(s⊕a)+b = o3}|/296, will take approximately
296 operations. We use a hidden Markov model to calculate this exactly and efficiently.

Define
carry(x, y) = (x + y)⊕ x⊕ y

it is well known (see eg [3]) that if z = carry(x, y) then [z]0 = 0 and [z]i+1 = maj([x]i, [y]i, [z]i)
for i ∈ 0 . . . 30 where maj is the binary majority function.

[c1]i

[c3]i

[c1]i+1

[c3]i+1

maj

maj

[A]i

[B]i

[S]i

[O1,1]i

[O2,3]i

Figure 1. Calculating [O1,1]i, [O2,3]i

Following [6] we define c1 = carry(S⊕B,A) and c3 = carry(S⊕A,B). Our sequence
of hidden states is the sequence of pairs of carry bits ([c1]i, [c3]i) for each bit i; the initial
state is ([c1]0, [c3]0) = (0, 0) with probability 1, and the hidden Markov model tracks the
propogation of these carry bits from least to most signficant bit in parallel across the
two addition operations. Our outputs are pairs of bits [O1,1]i, [O2,3]i. Both the states
and the outputs are drawn from the alphabet Ψ = Y = {(0, 0), (0, 1), (1, 0), (1, 1)}. A
transition is represented in figure 1.

Each transition depends on the three independent uniform random bits [A]i, [B]i
and [S]i. This gives us enough information to exactly specify the probability that a
particular output and next state will result from a given state; it is determined by the
number of ([A]i, [B]i, [S]i) triples of bits that can produce this output/next state from
that state. Given this model, the forward algorithm [5,7] can straightforwardly be used
to exactly calculate Pr[(O1,1, O2,3) = (o1, o3)|L] for any (o1, o3) pair.

We determine the transition matrices below.
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[c1]i

[c3]i

[c1]i+1

[c3]i+1

[S ⊕A⊕B]i

[O1,1]i

[O2,3]i

[A]i

[B]i

Figure 2. Simplification of figure 1

Pr
[

[O1,1]i, [O2,3]i = w1, w3

∧ [c1]i+1, [c3]i+1 = v1, v3

∣∣∣∣ L ∧ [c1]i, [c3]i = u1, u3

]

=

∣∣∣∣{a, b, s ∈ {0, 1}3
∣∣∣∣ w1 = s⊕ b⊕ a⊕ u1 ∧ w3 = s⊕ a⊕ b⊕ u3

∧ v1 = maj(s⊕ b, a, u1) ∧ v1 = maj(s⊕ a, b, u3)

}∣∣∣∣
8

=

∣∣∣∣{a, b, s′ ∈ {0, 1}3
∣∣∣∣ w1 = s′ ⊕ u1 ∧ w3 = s′ ⊕ u3

∧ v1 = maj(s′ ⊕ a, a, u1) ∧ v1 = maj(s′ ⊕ b, b, u3)

}∣∣∣∣
8

=

∣∣∣∣{a, b, s′ ∈ {0, 1}3
∣∣∣∣ w1 = s′ ⊕ u1 ∧ w3 = s′ ⊕ u3

∧ v1 = IF(s′, a, u1) ∧ v1 = IF(s′, b, u3)

}∣∣∣∣
8

=


1
2 if (u1, u3) = (v1, v3) = (¬w1,¬w3)
1
8 if (u1, u3) = (w1, w3)
0 otherwise

where

IF(a, b, c) =
{

b if a = 0
c if a = 1

This simplification (illustrated in figure 2) is achieved by defining s′ = a⊕b⊕s. This
yields the following transition matrices:

M(0,0) =


1
8 0 0 0
1
8 0 0 0
1
8 0 0 0
1
8 0 0 1

2

, M(0,1) =


0 1

8 0 0
0 1

8 0 0
0 1

8
1
2 0

0 1
8 0 0

,

57



M(1,0) =


0 0 1

8 0
0 1

2
1
8 0

0 0 1
8 0

0 0 1
8 0

, M(1,1) =


1
2 0 0 1

8
0 0 0 1

8
0 0 0 1

8
0 0 0 1

8


Finally, we apply the forward algorithm described above, to yield the formula

Pr[(O1,1, O2,3) = (o1, o3)|L] = (1 1 1 1 )M([o1]31,[o3]31) . . .M([o1]0,[o3]0)


1
0
0
0


This more sophisticated model of O1,1, O2,3 yields some surprising results. For ex-

ample if O1,1 ends with the suffix 01k for any k, then O2,3 must end with the same
suffix.

7 The Markov distinguisher

Now that we can efficiently calculate Pr[(O1,1, O2,3) = (o1, o3)|L], we can use the tech-
niques from [1] presented in section 4 to directly construct a distinguisher from the
probability model.

We examine n streams from n distinct key/IV pairs, and from each stream i we take a
sample zi = O1,1, O2,3, so our alphabet Z consists of all pairs of 32-bit words2. As above,

we define LLR(z) = log
(

P1(z)
P0(z)

)
and our distinguisher returns 1 iff

∑
i LLR(zi) > 0.

We do not yet take account of event L′; where L does not occur, we model O1,2, O2,3

as independent and uniformly random. This introduces a small error; we believe that
the distinguisher will nevertheless be roughly as effective as advertised, but it is likely
that a very slightly more effective distinguisher could be built by taking L′ into account.
Instead, we approximate P1(z) as Pr[(O1,1, O2,3) = z|L] Pr[L] + P0(z) Pr[¬L].

To find β for this distinguisher and thus discover the number of samples required for
a given advantage, we proceed as follows:

β =
∑
z∈Z

(P1(z)− P0(z))2

P0(z)

= |Z|
∑
z∈Z

(P1(z)− 1
|Z|

)2

= |Z|
∑
z∈Z

 PrD1 [(O1,1, O2,3)=z|L] Pr[L]
+ PrD1 [(O1,1, O2,3)=z|¬L] Pr[¬L]
− 1

|Z|

2

= |Z|
∑
z∈Z

 PrD1 [(O1,1, O2,3)=z|L] Pr[L]
+ 1

|Z| (1− Pr[L])
− 1

|Z|

2

= |Z|Pr[L]2
∑
z∈Z

(
Pr
D1

[(O1,1, O2,3)=z|L]− 1
|Z|

)2

2 Two alphabets are at work in this distinguisher. The hidden Markov model works over
an alphabet of pairs of bits Y = {0, 1}2 to find the probability of a given pair of words;
the optimal distinguisher constructed from it works on an alphabet of pairs of words Z =
(Z/232Z)2. Note that |Z| = |Y|32.
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We cannot directly compute this sum in reasonable time because Z has 264 elements.
However, we can define the following function family:

fk(x) =
∑

y∈Yk

(( 1 1 1 1 )My0My1 . . .Myk−1x−
1
|Z|

)2

and from our formula for Pr[(O1,1, O2,3) = z|L] we see that

β = |Z|Pr[L]2f32




1
0
0
0




Furthermore, we can define f recursively:

f0(x) = ((1 1 1 1 )x− 1
|Z|

)2

fk+1(x) =
∑
y∈Y

fk(Myx)

This by itself does not yield an efficient algorithm for finding β, since each evaluation
of fk+1 requires four evaluations of fk. However, we now show by induction that there

exists a series of matrices A0 . . . A32 such that fk(x) =
(

x
− 1
|Z|

)T

Ak

(
x

− 1
|Z|

)
. A0 is

simply a 5x5 matrix whose every entry is 1, and

fk+1(x) =
∑
y∈Y

fk(Myx)

=
∑
y∈Y

(
Myx
− 1
|Z|

)T

Ak

(
Myx
− 1
|Z|

)

=
∑
y∈Y

(
x

− 1
|Z|

)T (
My 0
0 1

)T

Ak

(
My 0
0 1

) (
x

− 1
|Z|

)

=
(

x
− 1
|Z|

)T
∑

y∈Y

(
My 0
0 1

)T

Ak

(
My 0
0 1

) (
x

− 1
|Z|

)

=
(

x
− 1
|Z|

)T

Ak+1

(
x

− 1
|Z|

)
where

Ak+1 =
∑
y∈Y

(
My 0
0 1

)T

Ak

(
My 0
0 1

)
We can therefore use this algorithm to find A32 recursively, from which we find that

β ≈ 60552 Pr[L]2. For a distinguisher with the same advantage as that of [6], we therefore
need only n =

⌈
1
β

⌉
≈ 1

60552 Pr[L]−2 samples.

8 Conclusions and further work

We have shown that Py can be distinguished from a random function given roughly a
factor of 216 fewer samples than the previous best attack in [6]. We prefer to state the
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number of samples needed to gain advantage greater than 1
2 ; with 269 samples—ie 272

bytes—the attack has an advantage of around 0.53. Like that attack, this attack is not
restricted to using words at the start of the stream to build the distinguisher; it may use
nearly the entire stream. This means that there will be correlations between samples,
but those correlations are unlikely to affect the efficacy of the attack. Py is limited to
producing 264 bytes from a single key/IV pair, which is equivalent to just under 261

samples, so we gain advantage greater than 1
2 once the complete streams from roughly

28 different key/IV pairs are used. Surprisingly, this attack is disallowed by the security
goals set out in [2], which limit the attacker to at most 264 bytes of keystream total.
Against a single complete stream, our attack offers advantage 0.03, which is low but
perhaps not negligible.

We did not take account of event L′ defined in section 3. We anticipate that if we
did so, we would need fewer samples still. Extending the hidden Markov model to find
Pr[(O1,1, O2,3) = (o1, o3)|L ∨ L′] is not hard—a single bit may be added to the state
indicating which of L or L′ took place—but we have not yet done the work of estimating
β for this extended model.
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Abstract

DICING is a synchronous stream cipher submitted to the eSTREAM
project. Two versions of the cipher actually exist: the first one can be
found in the proceedings of the SKEW conference, while the second
is available from the web site. In this paper we describe practical dis-
tinguishing and key recovery attacks against the first version. These
attacks do not apply as such to the web site version of DICING.

Keywords stream cipher cryptanalysis, eSTREAM, DICING, irreg-
ular clocking.

1 Introduction

The eSTREAM project [1] aims at identifying new stream ciphers that
might become suitable for widespread adoption. For this purpose, a
public call for primitives has been made in November 2004. In May
2005, it resulted in 34 stream cipher submissions.

DICING is one of them. It is based on four Galois-style LFSRs, two
of which are used to clock the other two. While such irregular clocking
is a good way to obtain non-linearity at a low cost, the security of
primitives based on this principle is often difficult to analyze.

It happens to be two versions of DICING. The first one [2] can be
found in the proceedings of the SKEW conference, that took place in
Åarhus, Denmark, on May 26-27, 2005. The second [3] is available
from the eSTREAM web site; it differs from [2] by several changes to
the output function. In this paper, we are concerned with the security
of the first version. We show that the way variable clocking is applied
in it leads to very serious weaknesses.

2 Notations

Throughout this paper, we use the following notations:

1
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• F2n is the Galois field with 2n elements.

• ⊕ denotes exclusive or, that is bitwise addition.

• & denotes bitwise AND.

• ∼X denotes the bit by bit complement of X.

• X � a denotes the right shift of X by a bits.

• X[a, b] denotes the substring of binary string X, going from bit
position a to bit position b (bit positions are numbered from 0).
X[i]byte denotes the ith byte of X, starting from 0.

3 Description of DICING

3.1 State Update Function

The DICING stream cipher is based on four Galois-style LFSRs Γ1, Γ2,
Γ3, Γ4. Let αt ∈ F2127 , βt ∈ F2126 , ωt ∈ F2128 , τt ∈ F2128 denote the state
of LFSR Γ1,Γ2,Γ3,Γ4 respectively. We can represent the elements of
a Galois field of characteristic 2 as polynomials in F2[x]/p(x), where
p(x) is an irreducible polynomial over F2. As an example, αt will be
denoted as αt,126 ·x126⊕αt,125 ·x125⊕...⊕αt,0. If the polynomial chosen
corresponds to the feedback polynomial of the LFSR, then shifting the
LFSR is equivalent to multiplication by x in F2[x]/p(x). We do not
give the feedback polynomials pi(x) of LFSRs Γi(i = 1...4) here as they
are not relevant for our attacks. Moreover, we often omit the modulo
in our equations, as it is obvious from the context.

LFSRs Γ1 and Γ2 are shifted 8 bits per clock cycle, and are used to
clock the other two LFSRs. More precisely, the state update process
is the following:

1. The last eight bits of αt and βt are stored in dices D′
t and D′′

t :

D′
t = (αt,126, ..., αt,119) ∈ F8

2

D′′
t = (βt,125, ..., βt,118) ∈ F8

2

(1)

Then Γ1 and Γ2 are updated:

αt+1 = x8 · αt mod p1(x)

βt+1 = x8 · βt mod p2(x)
(2)

2.

Dt = D′
t ⊕D′′

t , at = Dt&15 ∈ F4
2, bt = Dt � 4 ∈ F4

2 (3)

3. Two memories ut, vt ∈ F2128 are updated by XORing the states
ωt and τt to them:

ut = ut−1 ⊕ ωt

vt = vt−1 ⊕ τt

(4)

2
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4. Γ3 and Γ4 are updated by shifting them from 0 to 15 bits de-
pending on the value of at and bt:

ωt+1 = xat · ωt mod p3(x)

τt+1 = xbt · τt mod p4(x)
(5)

3.2 Output Function

At each clock cycle, the output function produces a 128-bit value zt,
depending on values ut, vt, D

′
t, D

′′
t . The function used depends on how

D′
t and D′′

t compares:

zt =


C0(ut)⊕ vt if D′

t > D′′
t

C0(vt)⊕ ut if D′
t < D′′

t

ut ⊕ vt if D′
t = D′′

t

(6)

where C0 is a non-linear and key-dependent function.

3.3 Initialization

The initialization of the generator is done in four phases:

1. The key and IV material are used to compute the initial states
α−64, β−64, ω−64, τ−64 of the four LFSRs.

2. The state update function is applied to them 32 times without
any output.

3. The resulting state is used to construct the function C0 used in
the output function (see [2] for more details).

4. The state update function is applied another 32 times. We obtain
α0, β0, ω0, τ0, the initial states of Γ1,Γ2,Γ3,Γ4 before keystream
generation.

The key and IV loading proceeds as follows:

1. KI = K ⊕ IV

2. K ′ =

{
KI if K has length 256
KI |(∼KI) if K has length 128

3. KICS = S0(K ′ ⊕ c), where S0 denotes the parallel application of
a fixed S-box S0 : F28 → F28 and c is a constant.

4. α−64 = KICS [0, 126] β−64 = KICS [128, 253]

5. s =
⊕

0≤i<32 KICS [i]byte ∈ F8
2 σ = (s, s, ..., s) ∈ F256

2

6. KII = S0(KICS ⊕ σ ⊕ (∼c))

7. ω−64 = KII [0, 127] τ−64 = KII [128, 255]

It is remarkable that the knowledge of ω−64 and τ−64 is enough to
retrieve KI .

3
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4 A Practical Distinguisher

Assume that during cycle t both dices D′
t and D′′

t have the same value.
Due to statistical properties of the LFSRs this event happens exactly
with probability 1/256. Then (at, bt) = Dt = D′

t ⊕D′′
t = 0. Therefore

states ωt and τt do not change during this cycle: ωt+1 = ωt and τt+1 =
τt. It implies ut+1 = ut⊕ωt+1 = ut−1⊕ωt⊕ωt+1 = ut−1 and similarly
vt+1 = vt−1. Finally if the output function used is the same for cycles
t− 1 and t+1, we have zt+1 = zt−1. It will happen whenever (D′

t−1 <
D′′

t−1 and D′
t+1 < D′′

t+1), or (D′
t−1 = D′′

t−1 and D′
t+1 = D′′

t+1), or

(D′
t−1 > D′′

t−1 and D′
t+1 > D′′

t+1), thus with probability 2 ·
(

28−1
29

)2

+
1

216 ' 1
2 .

The conclusion is that two 128-bit output words produced at cycles
t− 1 and t + 1 are equal with probability ' 1

512 (instead of 2−128 for a
truly random sequence). So the amount of keystream necessary for our
distinguisher to work is about 512 · 128 bits = 64 Ko. The processing
time is negligible.

5 A Key Recovery Attack

Instead of assuming D′
t = D′′

t , suppose that D′
t and D′′

t agree on their
4 right-most (or left-most) bits only. Then (assuming at = 0, the other
case bt = 0 is similar) {

ωt+1 = ωt

τt+1 = xbt · τt 6= τt

, (7)

which implies {
ut+1 = ut−1

vt+1 6= vt−1

. (8)

If D′
t−1 > D′′

t−1 (resp. D′
t+1 > D′′

t+1) then zt−1 = C0(ut−1) ⊕ vt−1

(resp. zt+1 = C0(ut+1)⊕ vt+1). As both events occur with probability
' 1/2, and at = 0 with probability 1/16, we conclude that

zt−1 ⊕ zt+1 = vt−1 ⊕ vt+1 = τt ⊕ τt+1 = τt · (1⊕ xbt) (9)

is satisfied with probability ' 1/64. Similarly (considering the case
bt = 0 instead of at = 0),

zt−1 ⊕ zt+1 = ut−1 ⊕ ut+1 = ωt ⊕ ωt+1 = ωt · (1⊕ xat) (10)

is satisfied with probability ' 1/64 as well.
Assume the attacker has got a long enough keystream sequence

(zt)t≥0. The idea of the attack is the following: each time at = 0
(resp. bt = 0) and the conditions on D′

t−1, D
′′
t−1, D

′
t+1, D

′′
t+1 are sat-

isfied, by guessing correctly the value of bt (resp. at), we can obtain
the actual value of τt (resp. ωt) by using equation (9) (resp. equation
(10)). From this value we can compute the sequence of the past states
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of the LFSR (with two consecutive elements of the sequence differing
by one bit shift of the LFSR). As equations (9) and (10) are satisfied
relatively often, by considering enough positions t we will observe sev-
eral similar sequences (provided we “align” them correctly). On the
other hand, when equation (9) (resp. (10)) is not satisfied, or we do
not guess correctly, the value τt (resp. ωt) we deduce can be considered
as random (see Appendix A). So the observed similar sequences highly
probably correspond to the right one. The best way to identify them
is to use two hash tables (or sorted lists) Ω and T.

Once the actual past history of Γ3 and Γ4 has been identified, it
remains to identify the actual initial states ω−64 and τ−64 of these
registers. Knowing the state of one LFSR at cycle t, the number of
bit shifts separating it from the initial state could roughly go from 0
to 15 · (t + 64) depending on how the LFSR has been clocked, with
an expectancy of 7.5 · (t + 64). So we guess this distance for both
LFSRs, beginning with values close to the expectancy (which are the
most probable ones, as the distance is a random variable with roughly
a normal distribution). The computed initial states allow us to retrieve
the key from which we can compute a keystream. Comparison with the
actual keystream is used to accept or reject the guess on the distances.

More precisely, the attack goes as follows:

1. Ω,T = ∅. For t = 1, 2, ...:

(a) Compute zt−1 ⊕ zt+1.
(b) Assume at = 0. For bt = 1, 2, ..., 15:

Deduce the supposed value τ
(bt)
t using (9). Use it to com-

pute the history of Γ4: more precisely, we compute a se-
quence of values (τ (bt)

t,s )−15t+15≤s≤0, such that τ
(bt)
t,0 = τ

(bt)
t

and τ
(bt)
t,s = x · τ (bt)

t,s−1. The bound on s is chosen such that,
assuming the guesses on at and bt were right, all values in
the actual sequence (τt)t≥1 are also in (τ (bt)

t,s )−15t+15≤s≤0.
The difference between both sequences is that the latter is
regularly clocked (shifts of one bit at a time), while the for-
mer results from variable clocking. For −15t + 15 ≤ s ≤ 0,
check whether τ

(bt)
t,s is in the hash table T.

• If yes, let (τ (bt∗ )
t∗ , t∗) ∈ T be this element. It is probably

part of the true history of Γ4. From (τ (bt∗ )
t∗ , t∗) recon-

struct the history (τ (bt∗ )
t∗,s )−15·(t∗+64)≤s≤0.

• Else store (τ (bt)
t , t) in T.

(c) Similarly, we can assume bt = 0 and compute a supposed
value ω

(at)
t for each at ∈ {1, 2, ..., 15} using (10). We de-

duce candidate sequences (ω(at)
t,s )−15t+15≤s≤0, and use an-

other hash table Ω to identify similar sequences. The only
difference with step (b) is that computations are performed
modulo p3(x), instead of modulo p4(x).

(d) Stop the loop as soon as the true history of both Γ3 and Γ4

has been found.

5
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2. Let (τ∗s )s and (ω∗
s )s be the two sequences we computed at step 1,

and t′, t′′ be the respective corresponding indexes of the clock
cycle corresponding to s = 0. Let s′ := b−7.5 · (t′ + 64)c and
s′′ := b−7.5·(t′′+64)c. Let us denote by Try(s1, s2) the following
computation:

• Assume that s1 and s2 are the indexes of the initial state of
Γ4 and Γ3 in (τ∗s )s and (ω∗

s )s respectively.
• Deduce the initial key.
• Check it by generating a keystream from it and comparing

it to the actual keystream.

First we perform Try(s′, s′′). Then we set i = 1 and repeat:

(a) For j = s′′ − i to j = s′′ + i, Try(s′ − i, j) and Try(s′ + i, j).
(b) For j = s′ − i + 1 to j = s′ + i− 1,

Try(j, s′′ − i) and Try(j, s′′ + i).
(c) i++

We stop as soon as Try gives a positive answer.

Remark that step 1 is another distinguisher for DICING: as a mat-
ter of fact, performing this computation on a truly random sequence
is very unlikely to lead to discovery of a collision in Ω or T. As we
will see, this distinguisher requires less data than the previous one, but
more computation.

We now look at the complexity of the attack. For it to succeed, we
need equations (9) and (10) to be satisfied in two distinct positions t.
As these equations are satisfied with probability 1/64, a keystream of
about 128 words= 16 Ko is necessary.

Regarding the time complexity of the first phase of the attack (and
hence of the distinguisher), about 128 · 15 sequences (τ (bt)

t,s )−15·t≤s≤0

and 128 · 15 sequences (ω(at)
t,s )−15·t≤s≤0 need to be computed. Their

average length is 15 · 64, so the total time complexity of this phase is
about 27 · 15 · 2 · 15 · 64 ' 222 LFSR shifts and 222 hash table lookups
(which are assumed to be feasible in constant time).

As for the second phase, assuming the first occurrence of the actual
history roughly took place for t = 64, the number of pairs of initial
states we have to test is at most (15 · 128)2 ' 222, which is still practi-
cal (each test requires computation of the initialization of the stream
cipher, and of a few words of keystream). Note that most of the time
less than 216 pairs will be tested before finding the right combination
of indexes, and hence the key (as the right index is a random normal
variable).

6 The Other Version of DICING

The second version of DICING, available from the ECRYPT web site [3],
differs from the description made in section 3 in its output function,
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which becomes

zt =


C(ut, vt) if D′

t−1 > D′′
t−1

C(vt, ut) if D′
t−1 < D′′

t−1

∅ if D′
t−1 = D′′

t−1

(11)

We remark three changes:

• The choice of the output function no longer depends on the com-
parison of the current dices, but rather of the previous ones. Note
that although it does not formally change the state update func-
tion, its computation order is modified. As a matter of fact, this
change amounts to updating LFSRs Γ3 and Γ4 before updating
memories ut and vt.

• If both dices are equal, the output function outputs nothing (in-
stead of ut ⊕ vt).

• The new output function C used whenever both dices are dif-
ferent is no longer linear in any of its component; it is still key-
dependent.

The first two changes prevent use of the distinguisher described in
section 4. As a matter of fact, we still have D′

t = D′′
t ⇒ (ut−1 =

ut+1 and vt−1 = vt+1). But as D′
t = D′′

t , there is no output corre-
sponding to ut+1 and vt+1. Otherwise said, one of the two repeating
values does not appear anymore.

Our second attack (in section 5) obviously exploits partial linearity
in the output function. As this linearity has been removed, it no longer
works.

7 Conclusion

In this paper we have shown that one of the two versions of DICING
is so weak that practical attacks can be mounted against it. The
second version obviously appears more secure, and is not vulnerable to
these attacks as such. However it is not clear whether the new output
function C is strong enough to prevent a distinguishing attack derived
from our attack of Section 5 (but probably much less efficient than this
last).

A major characteristic of our attacks is that they exploit the fact
that one of the LFSRs can stay unchanged for two consecutive cycles.
This property of the cipher is easy to prevent; for example, we can
replace equation (3) by

Dt = D′
t ⊕D′′

t , at = 1 + (Dt&15), bt = 1 + (Dt � 4)

This change has been suggested by the author of DICING herself,
but has not been integrated into a new specification of the cipher.
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A About Possible False Alarms

In this appendix, we consider the case where the attacker falsely as-
sumes at = 0 (resp. bt = 0), or falsely guesses the value of bt (resp.
at) when the first assumption is correct.

In the first case, i.e. if neither at nor bt equals 0, zt−1⊕zt+1 is non-
linear in either ωt or τt, which makes very unlikely that the computed
candidates for τt and ωt have anything to do with their actual values.
They can be considered as random.

The case where the assumption at = 0 (resp. bt = 0) is correct and
equation (9) (resp. (10)) is satisfied, but the guess on bt (resp. at) is
wrong, is more interesting. Consider two cycles t and t′ such that (9)
is satisfied. For the actual values bt and bt′ we have{

τt = (zt−1 ⊕ zt+1) · (1⊕ xbt)−1

τt′ = (zt′−1 ⊕ zt′+1) · (1⊕ xbt′ )−1
(12)

with
τt = xn · τt′ (13)

for some n. For false guesses b∗t and b∗t′ , the attacker computes wrong
values τ∗t and τ∗t′ :{

τ∗t = (zt−1 ⊕ zt+1) · (1⊕ xb∗t )−1

τ∗t′ = (zt′−1 ⊕ zt′+1) · (1⊕ xb∗
t′ )−1

(14)

Putting equations (12), (13), (14) together, we obtain:

τ∗t ·
1⊕ xb∗t

1⊕ xbt
= xn · τ∗t′ ·

1⊕ xb∗
t′

1⊕ xbt′
(15)

So when bt = bt′ , there are 14 wrong guesses on the history of Γ4: those
corresponding to b∗t = b∗t′ 6= bt. However it happens with probability
1/15 only, and this problem can be solved by neglecting cycle t′, and
finding another clock cycle t′′ such that (9) is satisfied, with bt 6= bt′′ .
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Abstract. In this talk, we review the software performance testing ef-
forts conducted by eSTREAM during the first phase of the project. We
give an overview of the testing framework that was developed to stream-
line the evaluation, and briefly comment on the timing results observed
on different software platforms for the various stream cipher candidates.

More information can be found online at http://www.ecrypt.eu.org/

stream/perf/.
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Comparison of 256-bit stream ciphers
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Daniel J. Bernstein ?
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Abstract. This paper evaluates and compares several stream ciphers
that use 256-bit keys: counter-mode AES, CryptMT, DICING, Dragon,
FUBUKI, HC-256, Phelix, Py, Py6, Salsa20, SOSEMANUK, VEST, and
YAMB.

1 Introduction

ECRYPT, a consortium of European research organizations, issued a Call for
Stream Cipher Primitives in November 2004. A remarkable variety of ciphers
were proposed in response by a total of 97 authors spread among Australia,
Belgium, Canada, China, Denmark, England, France, Germany, Greece, Israel,
Japan, Korea, Macedonia, Norway, Russia, Singapore, Sweden, Switzerland, and
the United States.

Evaluating a huge pool of stream ciphers, to understand the merits of each
cipher, is not an easy task. This paper simplifies the task by focusing on the
relatively small pool of ciphers that allow 256-bit keys. Ciphers limited to 128-
bit keys (or 80-bit keys) are ignored. See Section 2 to understand my interest in
256-bit keys.

The ciphers allowing 256-bit keys are CryptMT, DICING, Dragon, FUBUKI,
HC-256, Phelix, Py, Py6, Salsa20, SOSEMANUK, VEST, and YAMB. I included
256-bit AES in counter mode as a basis for comparison. Beware that there are
unresolved claims of attacks against Py (see [4] and [3]), SOSEMANUK (see [1]),
and YAMB (see [5]).

ECRYPT, using measurement tools written by Christophe De Cannière, has
published timings for each cipher on several common general-purpose CPUs.
The original tools and timings used reference implementations (from the cipher
authors) but were subsequently updated for faster implementations (also from
the cipher authors). I extended the list of CPUs and then wrote a few extra
tools, now available from http://cr.yp.to/streamciphers.html#timings, to
convert ECRYPT’s timings into the tables and graphs shown in Section 3.

Section 4 discusses several other interesting cipher features. For example,
some ciphers have “free” built-in message authentication, so users can avoid the
cost of computing a separate authenticator. One can and should quantify this
benefit by making a separate table of timings for authenticated encryption; I
plan to do this in subsequent comparison papers.

? Permanent ID of this document: eff0eb8eebacda58462948ab97ca48a0. Date of this
document: 2006.01.23. This document is final and may be freely cited.
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2 Why use 256-bit keys?

Some readers may wonder why I am not satisfied with 128-bit keys. Haven’t I
heard that—without massive advances in computer technology—a brute-force
attack will never find a 128-bit key? After all, if checking about 220 keys per
second requires a CPU costing about 26 dollars, then searching 2128 keys in a
year will cost an inconceivable 289 dollars.

Answer: Even without advances in computer technology, the attacker does
not need to spend 289 dollars. Here are three reasons that lower-cost attacks are
a threat:

• The attacker can succeed in far fewer than 2128 computations. He reaches
success probability p after just 2128

p computations.

• More importantly, each key-checking circuit costs far less than 26 dollars,
at least in bulk: 210 or more key-checking circuits can fit into a single chip,
effectively reducing the attacker’s costs by a factor of 210.

• Even more importantly, if the attacker simultaneously attacks (say) 240 keys,
he can effectively reduce his costs by a factor of 240.

One can counter the third reduction by putting extra randomness into nonces,
but putting the same extra randomness into keys is less expensive.

See [2] for a much more detailed discussion of these issues.

3 Speed

Ciphers in the tables in this section are sorted by a low-level feature, namely
the number of bytes of state recorded between blocks. At one extreme is HC-
256, which expands a key and nonce into a pair of 4096-byte arrays, making
several array modifications for each block. At the other extreme is Salsa20, which
simply records a key, nonce, and block counter in a 64-byte array, performing
computations anew for each block. Most ciphers lie somewhere in the middle.

This ordering is not meant to imply that one extreme is better than the
other. A large state has both advantages and disadvantages: it is expensive to
set up and maintain, but it is also expensive for the attacker to analyze.

Table entries measure times for key setup, nonce setup, and encryption. All
times are expressed as the number of cycles per encrypted byte. Smaller numbers
are better here. Lines vary in how much setup they include, how many bytes are
encrypted, and which CPU is measured. Bonus for readers using color displays:
red means slower than AES; blue means faster than AES; lighter blue means
twice as fast as AES; green means three times faster than AES.

FUBUKI has been omitted from the tables in this section. VEST has been
omitted from the tables and graphs in this section. The cycle counts for FUBUKI
and VEST are too large to be interesting.
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Sal Phe AES Dra YA SOS Py6 Cry Py DIC HC-
sa lix gon MB EMA pt ING 256
20 NUK MT

Bytes 64 132 260 284 424 452 1124 3020 4196 4396 8396
Set up key, set up nonce, and encrypt 40-byte packet:

A64 28.1 29.1 39.9 61.6 644.7 54.2 91.9 675.6 224.3 254.3 2236.5
PPC G4 15.0 69.1 52.2 70.2 465.1 77.0 83.7 834.4 221.9 362.6 1800.6
PM 695 34.4 67.8 56.1 83.7 659.4 67.6 136.0 919.0 294.1 422.1 1638.4
Athlon 25.4 33.6 65.8 105.5 974.3 50.0 95.3 714.5 268.1 385.0 2733.0
HP 37.0 74.7 38.4 62.7 478.0 46.8 66.3 1345.9 168.4 266.9 1481.0
P4 f41 44.9 33.5 51.6 88.4 1227.6 64.2 117.3 1066.9 320.6 416.2 2429.0
P3 68a 34.0 40.6 56.4 109.5 849.0 71.8 166.0 868.8 353.4 525.5 1964.3
SPARC 34.5 92.0 55.1 98.8 560.0 83.0 113.7 1292.1 303.7 444.7 2728.8
P4 f29 51.2 61.5 69.2 107.4 1914.6 143.9 126.4 2134.2 354.8 688.6 2953.2
P4 f12 42.0 57.3 57.8 94.5 1504.0 119.2 122.2 6560.6 325.6 555.3 3811.1
Alpha 51.4 115.7 68.8 118.7 667.8 95.7 106.5 1327.2 334.1 7660.2
P1 52c 46.6 62.3 135.5 157.2 1967.1 90.1 125.4 1452.1 371.0 766.7 3822.1
Set up nonce and encrypt 40-byte packet:

A64 26.6 20.9 32.2 58.6 639.7 24.3 62.5 673.5 155.0 252.6 2234.7
PPC G4 13.6 52.3 44.6 66.9 459.8 31.9 62.4 832.3 169.2 361.2 1798.4
PM 695 32.5 53.8 47.3 80.1 656.0 36.0 94.0 917.2 168.8 420.0 1636.8
Athlon 23.4 24.9 56.7 99.9 970.2 27.9 65.7 712.2 196.6 382.6 2730.6
HP 35.0 59.9 31.9 58.1 473.5 29.7 42.4 1343.3 111.0 265.4 1478.8
P4 f41 42.1 23.6 43.6 83.0 1221.5 39.3 83.3 1064.7 230.3 414.7 2427.0
P3 68a 32.6 30.0 48.0 103.1 845.2 38.3 97.2 867.0 164.7 524.0 1963.1
SPARC 33.0 67.4 40.9 91.4 554.0 43.4 76.4 1288.7 227.4 442.9 2726.0
P4 f29 48.5 43.9 55.9 98.8 1902.8 51.2 84.3 2131.6 245.6 686.0 2950.6
P4 f12 39.6 39.6 46.0 86.3 1497.3 46.1 90.1 6556.6 256.4 552.6 3808.6
Alpha 49.7 83.6 57.7 109.6 661.7 50.7 70.3 1322.3 237.2 7647.3
P1 52c 42.5 46.0 113.2 148.6 1959.9 54.2 76.0 1449.3 252.8 763.6 3818.9
Set up nonce and encrypt 576-byte packet:

A64 9.2 6.1 25.4 24.0 62.0 8.3 10.0 60.1 16.5 27.4 159.3
PPC G4 4.4 17.1 35.0 28.9 44.7 10.3 9.2 74.6 16.6 38.9 130.5
PM 695 12.1 14.9 35.1 27.8 64.9 9.6 9.1 74.8 14.1 41.5 117.5
Athlon 10.7 7.3 44.7 37.3 90.0 8.8 10.4 64.6 19.5 39.5 194.7
HP 11.6 16.4 22.5 26.0 47.5 8.8 6.6 113.7 11.3 28.4 107.2
P4 f41 14.3 7.0 33.5 32.6 106.7 12.4 9.3 94.6 19.0 42.1 171.6
P3 68a 14.5 9.0 37.7 35.4 81.7 12.0 9.8 73.4 14.5 50.7 142.0
SPARC 14.5 21.0 31.8 46.2 54.7 14.0 11.4 110.8 22.6 45.4 197.4
P4 f29 19.8 12.6 40.2 34.6 165.7 13.5 9.0 164.3 20.0 72.5 206.2
P4 f12 17.3 12.0 37.2 31.0 143.4 12.8 11.7 471.5 24.0 66.8 270.0
Alpha 22.6 28.3 43.2 52.3 64.4 16.9 11.0 128.0 23.2 549.5
P1 52c 19.8 14.2 85.7 60.3 181.5 17.3 17.4 136.2 28.3 82.4 275.4

72



Sal Phe AES Dra YA SOS Py6 Cry Py DIC HC-
sa lix gon MB EMA pt ING 256
20 NUK MT

Bytes 64 132 260 284 424 452 1124 3020 4196 4396 8396
Set up nonce and encrypt 1500-byte packet:

A64 9.4 5.4 25.4 22.3 35.5 7.3 7.7 28.0 10.1 17.2 64.2
PPC G4 4.5 15.5 35.0 27.1 25.6 8.9 6.8 38.4 9.7 24.4 54.2
PM 695 12.3 13.1 35.0 25.4 37.8 8.1 5.2 34.6 7.0 24.4 48.0
Athlon 10.9 6.5 44.7 34.2 49.5 7.5 7.8 32.1 11.2 24.1 78.5
HP 12.0 14.4 22.5 24.6 28.0 7.4 5.0 59.7 6.7 17.7 44.6
P4 f41 14.7 6.0 33.2 30.3 49.4 10.7 5.9 44.2 9.8 25.6 68.9
P3 68a 14.8 8.0 37.6 32.3 46.7 10.2 5.8 35.6 7.6 29.3 58.6
SPARC 14.9 18.9 31.8 44.0 31.8 12.2 8.5 54.7 13.2 27.4 81.6
P4 f29 20.0 11.0 39.5 32.1 79.2 10.8 5.5 72.4 10.3 41.7 82.7
P4 f12 20.1 10.9 37.2 28.9 80.8 10.6 8.6 200.5 13.6 36.8 106.7
Alpha 23.2 26.0 43.2 49.6 36.9 15.0 8.4 70.7 13.1 222.7
P1 52c 20.1 12.7 89.4 51.2 95.6 15.2 15.7 65.3 20.3 51.3 113.1
Encrypt one long stream:

A64 8.9 4.9 25.2 8.1 18.9 4.4 3.9 9.3 4.0 10.8 4.4
PPC G4 4.2 9.6 34.8 8.4 13.7 6.2 5.3 16.4 5.4 15.2 6.2
PM 695 11.8 12.1 34.7 12.9 20.8 5.2 2.9 10.2 2.7 13.6 4.4
Athlon 10.5 6.0 44.4 13.4 24.3 5.6 4.4 13.1 5.0 14.3 5.7
HP 11.4 23.0 22.3 6.2 15.3 6.1 4.3 24.6 4.2 10.9 5.3
P4 f41 13.9 5.6 33.1 12.3 16.5 5.7 3.8 16.1 3.7 14.7 5.0
P3 68a 14.3 7.5 37.4 14.3 24.9 6.2 3.3 12.6 3.2 15.7 6.5
SPARC 14.3 16.9 31.6 8.8 17.6 8.3 6.5 20.7 6.7 16.2 9.0
P4 f29 17.0 10.1 39.3 12.9 29.2 6.5 3.5 15.3 3.8 23.5 4.8
P4 f12 17.0 10.1 36.8 12.9 37.9 6.2 4.5 16.1 4.8 21.7 5.0
Alpha 22.5 19.9 42.9 12.7 19.7 13.9 6.7 38.0 6.9 18.6
P1 52c 20.8 12.1 88.4 26.0 43.1 11.0 9.4 25.0 10.8 30.5 11.6
Encrypt many parallel streams in 256-byte blocks:

A64 10.2 7.2 27.6 10.4 23.6 5.7 12.0 12.7 25.0 24.5 18.2
PPC G4 4.9 12.3 37.7 10.1 17.2 7.2 13.4 23.7 31.3 35.6 27.6
PM 695 12.8 14.5 37.7 15.1 25.5 6.3 10.7 17.1 26.7 31.1 21.3
Athlon 12.4 9.5 48.6 16.8 31.2 7.4 16.8 26.5 41.2 41.9 34.7
HP 12.1 24.7 24.9 8.1 18.4 7.3 8.3 28.8 14.7 23.1 17.8
P4 f41 16.4 9.3 37.1 16.2 24.0 7.5 12.8 23.8 26.4 38.4 28.6
P3 68a 15.8 11.6 43.3 19.9 37.6 7.8 25.3 41.1 77.3 58.4 55.2
SPARC 15.4 20.0 36.1 12.1 23.0 10.2 14.6 32.9 21.6 66.6 57.2
P4 f29 19.4 14.6 44.2 18.4 42.8 8.8 12.3 25.0 27.2 48.2 29.8
P4 f12 19.2 14.2 42.0 17.6 45.6 8.1 14.8 24.4 28.2 43.8 27.1
Alpha 23.4 22.4 49.2 15.5 24.9 15.0 15.1 38.4 36.0 50.0
P1 52c 21.3 14.7 85.8 27.2 47.1 12.1 18.0 29.3 39.5 50.3 33.5
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Set up key, set up nonce, and encrypt 40-byte packet

HC HC HC HC FUB HC HC HC FUB Cry HC
FUB FUB FUB FUB HC FUB FUB FUB HC HC HC FUB
Cry Cry Cry YA Cry YA Cry Cry Cry FUB FUB YA
YA YA YA Cry YA Cry YA YA YA YA Cry Cry
DIC DIC DIC DIC DIC DIC DIC DIC DIC DIC YA DIC
Py Py Py Py Py Py Py Py Py Py Py Py
Py6 Py6 Py6 Dra Phe Py6 Py6 Py6 SOS Py6 Dra Dra
Dra SOS Dra Py6 Py6 Dra Dra Dra Py6 SOS Phe AES
SOS Dra Phe AES Dra SOS SOS Phe Dra Dra Py6 Py6
AES Phe SOS SOS SOS AES AES SOS AES AES SOS SOS
Phe AES AES Phe AES Sal Phe AES Phe Phe AES Phe
Sal Sal Sal Sal Sal Phe Sal Sal Sal Sal Sal Sal

A64 PPC PM Athl HP P4 P3 SP P4 P4 Alpha P1
G4 695 f41 68a f29 f12 52c
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Set up nonce and encrypt 40-byte packet

HC HC HC HC FUB HC HC HC FUB Cry HC
FUB FUB FUB FUB HC FUB FUB FUB HC HC HC FUB
Cry Cry Cry YA Cry YA Cry Cry Cry FUB FUB YA
YA YA YA Cry YA Cry YA YA YA YA Cry Cry
DIC DIC DIC DIC DIC DIC DIC DIC DIC DIC YA DIC
Py Py Py Py Py Py Py Py Py Py Py Py
Py6 Dra Py6 Dra Phe Py6 Dra Dra Dra Py6 Dra Dra
Dra Py6 Dra Py6 Dra Dra Py6 Py6 Py6 Dra Phe AES
AES Phe Phe AES Py6 AES AES Phe AES SOS Py6 Py6
Sal AES AES SOS Sal Sal SOS SOS SOS AES AES SOS
SOS SOS SOS Phe AES SOS Sal AES Sal Sal SOS Phe
Phe Sal Sal Sal SOS Phe Phe Sal Phe Phe Sal Sal

A64 PPC PM Athl HP P4 P3 SP P4 P4 Alpha P1
G4 695 f41 68a f29 f12 52c
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Set up nonce and encrypt 576-byte packet

HC FUB FUB HC FUB FUB FUB FUB FUB Cry FUB
FUB HC HC FUB Cry HC HC HC HC FUB HC HC
YA Cry Cry YA HC YA YA Cry YA HC FUB YA
Cry YA YA Cry YA Cry Cry YA Cry YA Cry Cry
DIC DIC DIC AES DIC DIC DIC Dra DIC DIC YA AES
AES AES AES DIC Dra AES AES DIC AES AES Dra DIC
Dra Dra Dra Dra AES Dra Dra AES Dra Dra AES Dra
Py Phe Phe Py Phe Py Sal Py Py Py Phe Py
Py6 Py Py Sal Sal Sal Py Phe Sal Sal Py Sal
Sal SOS Sal Py6 Py SOS SOS Sal SOS SOS Sal Py6
SOS Py6 SOS SOS SOS Py6 Py6 SOS Phe Phe SOS SOS
Phe Sal Py6 Phe Py6 Phe Phe Py6 Py6 Py6 Py6 Phe

A64 PPC PM Athl HP P4 P3 SP P4 P4 Alpha P1
G4 695 f41 68a f29 f12 52c
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Set up nonce and encrypt 1500-byte packet

FUB FUB FUB FUB FUB FUB FUB FUB FUB FUB FUB
HC HC HC HC Cry HC HC HC HC Cry FUB HC
YA Cry YA YA HC YA YA Cry YA HC HC YA
Cry AES AES AES YA Cry AES Dra Cry YA Cry AES
AES Dra Cry Dra Dra AES Cry YA DIC AES Dra Cry
Dra YA Dra Cry AES Dra Dra AES AES DIC AES DIC
DIC DIC DIC DIC DIC DIC DIC DIC Dra Dra YA Dra
Py Phe Phe Py Phe Sal Sal Phe Sal Sal Phe Py
Sal Py Sal Sal Sal SOS SOS Sal Phe Py Sal Sal
Py6 SOS SOS Py6 SOS Py Phe Py SOS Phe SOS Py6
SOS Py6 Py SOS Py Phe Py SOS Py SOS Py SOS
Phe Sal Py6 Phe Py6 Py6 Py6 Py6 Py6 Py6 Py6 Phe

A64 PPC PM Athl HP P4 P3 SP P4 P4 Alpha P1
G4 695 f41 68a f29 f12 52c
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Encrypt one long stream

FUB FUB FUB FUB FUB FUB FUB FUB FUB FUB FUB
AES AES AES AES Cry AES AES AES AES YA FUB AES
YA Cry YA YA Phe YA YA Cry YA AES AES YA
DIC DIC DIC DIC AES Cry DIC YA DIC DIC Cry DIC
Cry YA Dra Dra YA DIC Sal Phe Sal Sal Sal Dra
Sal Phe Phe Cry Sal Sal Dra DIC Cry Cry Phe Cry
Dra Dra Sal Sal DIC Dra Cry Sal Dra Dra YA Sal
Phe SOS Cry Phe Dra SOS Phe HC Phe Phe HC Phe
SOS HC SOS HC SOS Phe HC Dra SOS SOS SOS HC
HC Py HC SOS HC HC SOS SOS HC HC Dra SOS
Py Py6 Py6 Py Py6 Py6 Py6 Py Py Py Py Py
Py6 Sal Py Py6 Py Py Py Py6 Py6 Py6 Py6 Py6

A64 PPC PM Athl HP P4 P3 SP P4 P4 Alpha P1
G4 695 f41 68a f29 f12 52c
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Encrypt many parallel streams in 256-byte blocks

FUB FUB FUB FUB FUB FUB FUB FUB FUB FUB FUB
AES AES AES AES Cry DIC Py DIC DIC YA FUB AES
Py DIC DIC DIC AES AES DIC HC AES DIC HC DIC
DIC Py Py Py Phe HC HC AES YA AES AES YA
YA HC YA HC DIC Py AES Cry HC Py Cry Py
HC Cry HC YA YA YA Cry YA Py HC Py HC
Cry YA Cry Cry HC Cry YA Py Cry Cry YA Cry
Py6 Py6 Dra Py6 Py Sal Py6 Phe Sal Sal Sal Dra
Dra Phe Phe Dra Sal Dra Dra Sal Dra Dra Phe Sal
Sal Dra Sal Sal Py6 Py6 Sal Py6 Phe Py6 Dra Py6
Phe SOS Py6 Phe Dra Phe Phe Dra Py6 Phe Py6 Phe
SOS Sal SOS SOS SOS SOS SOS SOS SOS SOS SOS SOS

A64 PPC PM Athl HP P4 P3 SP P4 P4 Alpha P1
G4 695 f41 68a f29 f12 52c
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Notes on the timings

The tables and graphs use the following representative set of 12 machines, all
with version 156 (2006.01.16) of ECRYPT’s timing suite except where otherwise
noted:

• A64: 2000MHz (one of two CPU cores) AMD Athlon 64 X2 (CPU identifier
15/43/1) named cph (gcc 4.0.2, Ubuntu 5.10).

• PPC G4: 533MHz (one of two CPUs) Motorola PowerPC G4 7410 named
gggg (gcc 4.0.2, Ubuntu 5.10).

• PM 695: 1300MHz Intel Pentium M (695) named whisper (Fedora).
• Athlon: 900MHz AMD Athlon (622) named thoth (gcc 4.0.2, Ubuntu 5.10).
• HP PA: 440MHz (one of two CPUs) HP 9000/785 J5000 named hp400

(HP/UX).
• P4 f41: 3000MHz Intel Pentium 4 (f41) named pentium4b, timings collected

by Christophe De Cannière.
• P3 68a: 1000MHz (one of two CPUs) Intel Pentium III (68a) named neumann

(gcc 2.95.4 and gcc 3.0.4, Debian).
• SPARC: 900MHz Sun UltraSPARC III named wessel (SunOS 5.9).
• P4 f29: 2800MHz (one of two CPUs) Intel Pentium 4 (f29) named rzitsc (gcc

3.2.3, Red Hat).
• P4 f12: 1900MHz Intel Pentium 4 (f12) named fireball (gcc 4.0.2, Ubuntu

5.10).
• Alpha: 400MHz DEC Alpha EV5.6 21164A named alpha, using version 140

(2005.12.21), timings collected by Christophe De Cannière.
• P1 52c: 133MHz Intel Pentium (52c) named cruncher (gcc 4.0.2, Ubuntu

5.10).

The machines are sorted by the geometric average of all cipher cycle counts.
This sorting accounts for the overall left-to-right upward trend in the graphs on
previous pages.

See my web page http://cr.yp.to/streamciphers.html#timings for more
comprehensive data. The web page includes speed reports for 24 machines; I’d
also like to include timings for 8-bit CPUs and for ASICs. I will continue to
update the web page as I receive newer information.

The graphs use cycles per byte, with a logarithmic scale, for the vertical axis.
The labels below the graphs list ciphers in speed order. Consider, for example,
the first graph: “Set up key, set up nonce, and encrypt 40-byte packet.” The first
column of the graph is labelled, from top to bottom, HC FUB Cry YA DIC Py
Py6 Dra SOS AES Phe Sal A64. This column shows that, for setup and 40-byte
encryption on an Athlon 64 (A64), HC-256 (HC) takes the most cycles per byte,
and Salsa20 (Sal) takes the fewest cycles per byte. The graph shows that HC-
256 takes about 2 · 103 cycles per byte while Salsa20 takes about 3 · 101 cycles
per byte. The earlier table shows that HC-256 takes 2236.5 cycles per byte (i.e.,
89460 cycles for 40 bytes) while Salsa20 takes 28.1 cycles per byte (i.e., 1124
cycles for 40 bytes).
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4 Additional features

Bonus for readers using color displays: in this section, blue means an advantage
compared to AES, and red means a disadvantage compared to AES.

AES in counter mode

Encryption. Unpatented. Variable time. 256-bit security conjecture. Security
margin: has faster reduced-round versions; Ferguson et al. reported an attack
on 7 out of 14 rounds; as far as I know, all claimed attacks on 8 rounds actually
have worse price-performance ratio than brute-force search; there are no public
claims of attacks on 9 rounds.

CryptMT

Encryption. Patented. Constant time. 256-bit security conjecture. No explicit
security margin.

DICING

Encryption. Unpatented. Variable time. 256-bit security conjecture. No explicit
security margin.

Dragon

Encryption. Unpatented. Variable time. 256-bit security conjecture. No explicit
security margin.

FUBUKI

Encryption. Patented. Variable time. 256-bit security conjecture. No explicit
security margin.

HC-256

Encryption. Unpatented. Variable time. 256-bit security conjecture. No explicit
security margin.

Phelix

Authenticated encryption. Unpatented. Constant time. 128-bit security conjec-
ture. No explicit security margin.
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Py

Encryption. Unpatented. Variable time. 256-bit security conjecture. No explicit
security margin. Attacks: Sekar, Paul, and Preneel in [4] reported an attack on
Py using 288 output bytes and comparable time. Crowley in [3] reduced 288 to
272. The authors have not yet responded.

Py6

Encryption. Unpatented. Variable time. 256-bit security conjecture. No explicit
security margin. Attacks: The attacks on Py by Sekar et al. can, presumably, be
extended to Py6.

Salsa20

Encryption. Unpatented. Constant time. 256-bit security conjecture. Security
margin: has faster reduced-round versions; Crowley reported an attack on 5 out
of 20 rounds; there are no public claims of attacks on 6 rounds.

SOSEMANUK

Encryption. Unpatented. Variable time. 128-bit security conjecture. No explicit
security margin. Attacks: Ahmadi, Eghlidos, and Khazaei in [1] reported an
attack on SOSEMANUK using 2226 simple operations—but this doesn’t disprove
the original 128-bit security conjecture for SOSEMANUK. The authors have not
yet responded.

VEST

Authenticated encryption. Patented. Variable time. 256-bit security conjecture.
No explicit security margin.

YAMB

Encryption. Unpatented. Variable time. 256-bit security conjecture. No explicit
security margin. Attacks: Wu and Preneel in [5] reported an attack on YAMB
requiring 258 output blocks and comparable time. There has been no response
from the authors after six months.

5 Recommendations

Py, Py6, SOSEMANUK, and YAMB don’t appear to provide 256-bit security.
Unless there’s a dispute regarding the attacks on these ciphers, they should be
eliminated from consideration, at least as competition for 256-bit AES.
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FUBUKI has no apparent advantages over AES and is several times slower.
Unless there are dramatic speedups in the FUBUKI software, FUBUKI should
be eliminated from consideration.

VEST is painfully slow in software but is claimed to provide considerably
better performance in hardware. I haven’t seen a careful evaluation of hardware
performance, so I won’t make any recommendations now regarding VEST.

The remaining 256-bit stream ciphers are CryptMT, DICING, Dragon, HC-
256, Phelix, and Salsa20. Each of these ciphers provides better performance than
AES for long streams, and some of them provide better performance than AES
in other situations.

I recommend keeping all six ciphers—CryptMT, DICING, Dragon, HC-256,
Phelix, and Salsa20—under consideration. One might be tempted to say, e.g.,
“CryptMT is practically always slower than Phelix and should be eliminated,”
but this will sound quite silly in retrospect if Phelix turns out to be breakable.
The initial stream-cipher submission deadline was only eight months ago; the
Py and SOSEMANUK attacks were published only a month ago; obviously we
need more time for cryptanalysis.
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Abstract. Synchronous stream ciphers produce long keystreams to be
XORed with plaintext. The output keystreams should be indistinguish-
able from truly random sequences and should not leak any information
about the secret key and the internal state of the cipher. In this study,
we propose six new statistical tests to evaluate the randomness proper-
ties of synchronous stream ciphers. We applied four of these tests to the
ciphers presented to ECRYPT and tabulated the results.
Keywords: Synchronous stream ciphers, statistical randomness testing

1 Introduction

Synchronous stream ciphers are an important class of symmetric encryption al-
gorithms. Their basic design philosophy is inspired by the perfectly secure One
Time Pad cipher in which the plaintext is encrypted with a random keystream
using the XOR operation. It is the only cipher known to be unconditionally
secure provided that keystream is truly random. Truly random keystreams re-
move the statistical weaknesses of the plaintext. The requirement of a keystream
not shorter than the plaintext, distributing it securely in advance and not recy-
cling the key make the cipher impractical. The motivation of generating a long
pseudo-random keystream using a short random key is employed to overcome
these disadvantages. Stream ciphers are used as an approximation to the action
of One Time Pad. They do not provide the theoretical security of One Time
Pad, but they are very practical. Therefore, the design goal of a synchronous
stream cipher is to efficiently generate pseudo-random bits which are practically
indistinguishable from truly random bits.

For a truly random generator, the number of ones and zeros in the output
are equal. It is possible to formulate many other statistical properties that de-
scribe the keystream generated by a random source. Golomb [1] proposed three
postulates for the structure of periodic pseudo-random sequences. It is clear that
these three postulates are not sufficient to describe random looking sequences.
A variety of different statistical tests can be applied to a keystream to evaluate
the statement that the stream is generated by a truly random source.

Various test suites [2–5] are available in the literature. Knuth [2] presented
several empirical tests including; frequency, serial, gap, poker, coupon collec-
tor’s, permutation, run, maximum-of-t, collision, birthday spacings and serial
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correlation. DIEHARD Battery of Tests consists of 18 independent statistical
randomness tests including; birthday spacings, overlapping 5-permutations, bi-
nary rank, bitstream test, monkey tests on 20-bit Words, monkey tests OPSO,
OQSO, DNA, count the 1’s in a stream of bytes, count the 1’s in specific bytes,
parking lot, minimum distance, 3D spheres, squeeze, overlapping sums, runs
and craps [3]. Also, Crypt-X [4] suite which was developed in the Information
Security Research Centre at Queensland University of Technology consists of
frequency, binary derivative, change point, runs, sequence complexity and lin-
ear complexity tests. Lastly, NIST [5] Statistical Test Suite consists of 16 tests
namely; frequency, block frequency, runs, longest run, matrix rank, spectral,
non-overlapping template matchings, overlapping template matchings, univer-
sal test, Lempel-Ziv complexity, linear complexity, serial cumulative sums, runs,
approximate entropy, random excursions and variants.

These statistical tests are designed to evaluate the randomness properties of
a finite sequence. For the evaluation of block ciphers presented for AES, Soto
[6] proposed nine different ways to generate large number of data streams from
a block cipher and tested these streams using the statistical tests available in
NIST test suite.

While testing the randomness properties of stream ciphers, the general ap-
proach is to generate a large amount of keystream and apply certain statistical
tests. The keystream itself is directly used in the tests. Failing from these tests
do not usually lead to key or internal state recovery, but can be used for dis-
tinguishing the keystream from a truly random one. This kind of testing can be
considered as a black box approach, since the internal structure, key or Initial-
ization Vector (IV) loading phases of the cipher is not taken into account.

In this study, we propose six new statistical tests to analyze the randomness
properties of synchronous stream ciphers. These tests, rather than examining the
randomness properties of the keystream solely, concentrate on the correlations
between key, IV, internal state and keystream.

In 2005, a call for stream cipher primitives has been announced by European
Network of Excellence for Cryptology (ECRYPT). From the synchronous stream
ciphers presented for ECRYPT, we analyzed the followings; ABC [7], Achterbahn
[8], CryptMT/Fubuki [9], Decim [10], Dicing [11], Dragon [12], Edon80 [13], F-
FCSR [14], Frogbit [15], Grain [16], HC-256 [17], Hermes8 [18], Lex [19], Mag
[20], Mickey [21], Mickey-128 [22], Mir-1 [23], NLS [24], Phelix [25], Polar Bear
[26], Pomaranch [27], Py [28], Rabbit [29], Salsa20 [30], Sfinks [31], Sosemanuk
[32], Trivium [33], TSC-3 [34], Vest [35], WG [36], Yamb [37] and ZK-Crypt [38].

In the next section, different statistical randomness testing approaches used
by the candidates of ECRYPT are summarized. In Section 3, our approach is
given in detail. The experimental results are presented in Section 4. Finally, the
conclusion is given in Section 5.
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2 Randomness Testing

A summary of the randomness testing approaches performed by the authors of
the ciphers presented for ECRYPT is given in this section.

Anashin et al. [7] proved that the distribution of 32-bit words in the keystream
of ABC is uniform. The empirical statistical test results given in NIST suite did
not indicate any deviation from a random sequence. Also, the authors applied
some statistical randomness tests to evaluate the propagation property of the
cipher using both Hamming Distance and naive correlation. For a fixed key and
for a key varying with each IV pair, 384 such sequences of length 106 were ob-
tained and empirically evaluated. Results of NIST Statistical Test Suite and
DIEHARD Battery of Tests did not show any deviation from random behavior.
As a result of these tests, ABC shows strong propagation properties [7].

In [9], Fubuki and AES have been tested according to their bit diffusion
property with small number of rounds. Using 4-round AES and 2-round Fubuki,
the diffusion bias is eliminated.

In [12], the keystream of Dragon is tested by the statistical randomness tests
given in Crypt-X. Authors applied the frequency, binary derivative, change point,
subblock and runs tests to 30 keystreams of length 8 megabits. Additionally, the
sequence and linear complexity tests were applied to 30 streams with 200 kilobits
each. Dragon showed no deviation from randomness according to these results.
Also, the output of the F-FCSR generator is tested using the NIST Statistical
Test Suite [14].

Theoretical validation for diffusion criteria in the initialization state has been
done for Grain to defeat statistical chosen-IV attacks [16].

Wu [17] concentrated on distinguishing attacks while analyzing the random-
ness of HC-256. Keystreams with no linear masking and weakened feedback func-
tion are analyzed and it is concluded that distinguishing 2128 bits of keystream
of HC-256 from a truly random sequence is computationally infeasible.

In [18], it is reported that the output of Hermes8 is tested using the FIBS
140-2 and DIEHARD Battery of Tests and no deviation from randomness is
observed.

Vuckovac [20] reported that the output of Mag is tested for patterns in every
stage of development by using statistical randomness tests available in ENT,
DIEHARD and Crypt-X test suites. According to the results, no deviation from
randomness is observed. The cipher Py had also been tested using statistical
randomness tests [28]. It is claimed that the output keystream is uncorrelated
and statistical tests should not succeed even when more extensive tests are made.

For the cipher Rabbit, the statistical tests from NIST, DIEHARD and ENT
suites was applied. The tests were done for both the internal state and the
keystream [29]. Also, various statistical tests were applied to the key setup func-
tion and also to the reduced version of Rabbit where each state variable has
been given in 8 bits. Authors did not find any statistical weakness in any of
these cases.

Hong et al. [34] reported that they had applied statistical randomness tests
similar to the ones in NIST suite and had not found any weaknesses.
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Bigeard et al. [35] tested the output of each component of Vest and claimed
that individual streams of any of the outputs of Vest accumulators, combined
Vest counters and complete Vest ciphers were indistinguishable from truly ran-
dom sequences.

The randomness property of WG is given in terms of high period, balance,
two-level autocorrelation, t-tuple distribution and linear complexity [36].

The keystream generated using ZK-Crypt passed from the statistical ran-
domness tests of NIST and DIEHARD [38].

No statistical analyses are reported for the ciphers Achterbahn, Decim, Dic-
ing, Edon80, Lex, Mickey, Mickey-128, Mir-1, NLS, Phelix, Polar Bear, Po-
maranch, Salsa20, Sfinks, Sosemanuk, TRBDK3/YAEA, Trivium and Yamb in
algorithm specification documents.

As summarized above, different testing approaches have been applied to the
ciphers. While statistical analyzing, it is important to consider the relation-
ship between key, IV, internal state and the keystream, since availability of the
keystream and IV should not leak any information about the internal state or
secret key.

In this study, we propose six new statistical tests for analyzing synchronous
stream ciphers. The first test, Key/Keystream Correlation Test, considers the
correlation between key and the corresponding keystream using a fixed IV. Sim-
ilarly, the second test, IV/Keystream Correlation Test, considers the correlation
between IV and the corresponding keystream using a fixed key. The third test,
Frame Correlation Test, considers the correlation between keystreams using dif-
ferent IV values. The fourth test, Diffusion Test, examines the diffusion property
of each bit of key and IV.

These four tests take key and IV as inputs and do not consider the internal
state of the cipher. The following two tests, Internal State Correlation Test and
Internal State/Keystream Correlation Test, consider the internal structure of
the ciphers after key and IV loading phases. Internal State Correlation Test
concentrates on the effect of similar IV values on the internal state using a
fixed key and Internal State/Keystream Correlation Test examines the effect of
internal state with low/high weight on the keystream weight.

3 Proposed Tests

Let S be a stream cipher with k-bit key, v-bit IV and n-bit internal state and
let zi and (s1, . . . , sn) represent the keystream and internal state, respectively.

Key/Keystream Correlation Test : The purpose of this test is to evaluate the
correlation between the key and the first k bits of keystream. Firstly, m random
keys are generated and IV is fixed. Next, a keystream of length k, z1, . . . , zk is
produced for each key. Then, to evaluate their correlation, key and its corre-
sponding keystream are XORed and weight of the resulting sequence is calcu-
lated. For a secure cipher, distribution of the weights is Binomial with parameters
k and 1/2. Low and high weight values indicate a correlation between ith bit of
key and ith bit of keystream for i = 1, . . . , k. However, the test does not consider
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the correlations between ith bit of key and jth bit of keystream when i 6= j. The
Chi-Square Goodness of Fit test is applied to evaluate this correlation. If the
cipher fails from this test, key loading part of the initialization phase should be
revised.

IV/Keystream Correlation Test : The purpose of this test is to evaluate the
correlation between IV and the first v bits of keystream. Firstly, m random IVs
are generated and key is fixed. Then, the keystream of length v is produced using
each IV value and the fixed key. To evaluate the correlation, IV and its corre-
sponding keystream are XORed and its weight is calculated. For a secure cipher,
distribution of the weights is Binomial with parameters v and 1/2. High corre-
lation between IV and keystream may lead to generation of keystream without
knowing the value of secret key. The Chi-Square Goodness of Fit test is applied
to evaluate the correlation between IV and keystream. If the cipher fails from
this test, IV loading part of the initialization phase should be revised.

Frame Correlation Test : In synchronous stream ciphers, after generating a
fixed length keystream called frame, IV values are updated. Since IVs are com-
monly used as counters, two consecutive IV values are similar. The purpose of
this test is to analyze the correlation between frames generated with similar IVs.
In this test, first a random key and an IV value are chosen, then a keystream
of length L is produced. This procedure is repeated N times with incremented
values of IV. Using these keystreams, a matrix of size N × L is generated and
the column weights of the matrix are calculated. Distribution of the weights
is approximately normal with mean N/2 and variance N/4, when N is large.
Columns with very high/low weight indicate weaknesses due to insecure resyn-
chronization. The Chi-Square Goodness of Fit test is applied to evaluate the
correlation between frames. If the cipher fails from this test, IV loading part of
initialization phase should be revised.

Diffusion Test : This test examines the diffusion property of each bit of key
and IV on the keystream. To satisfy diffusion, each bit of IV and key should
affect the keystream. Minor changes in the IV or key should result in random
looking changes in the keystream. In the Diffusion Test, firstly, a random vector
(u1, . . . , uk, uk+1, . . . , uk+v) is chosen, where the first k bits represent the key,
and the remaining v bits represent the IV. Using this key and IV, a keystream
of length L is generated. Then, k+v new vectors are generated by the operation
(u1, . . . , uk+v) ⊕ ei, where ei is the vector having 1 in the entry i and zero
elsewhere. For each vector, keystream of length L is generated. Then, these
keystreams are XORed with the original keystream. Using these vectors, a matrix
of size (k + v)×L is obtained. This procedure is repeated N times and obtained
matrices are added in <. For a secure cipher, the entries of the matrix follow a
normal distribution with mean N/2 and variance N/4, when N is large. Entries
with high/low value indicate poor diffusion properties of corresponding cells.
The Chi-Square Goodness of Fit test is applied to the entries of the matrix to
evaluate diffusion property. If the cipher fails from this test, initialization phase
of the algorithm should be revised.
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Internal State Correlation Test : The purpose of this test is to analyze the
effect of similar IVs on the internal state of the cipher. The idea of the test is
very similar to Frame Correlation Test. Firstly, key and IV values are chosen
randomly, then the internal state (s1, . . . , sn) after key/IV loading is stored.
This procedure is repeated M − 1 times with incremented values of IV. A total
of M internal state vectors are stored in a matrix of size M × n. To evaluate
the correlation between internal states, the column weights of the matrix are
calculated. Distribution of the weights is approximately normal with mean M/2
and variance M/4, when M is large. The Chi-Square Goodness of Fit test is
applied to evaluate the correlation of internal states. If the cipher fails from this
test, initialization phase of the algorithm should be revised.

Internal State/Keystream Correlation Test : Attacks to stream ciphers try
to obtain the secret key or the internal state of the cipher when a part of the
keystream is given. If the attacker recovers the internal state of the cipher at time
t, he can easily generate the remaining part of the keystream without knowing the
secret key. So, availability of keystream should not leak any information about
the internal state of the cipher. The main idea of this test is that at any time,
if the internal state has a distinguishing property such as low/high weight, the
following keystream part should behave randomly in terms of its weight. Firstly,
M initial state vectors of length n with low/high weight are chosen randomly.
Then, these random initial states are directly assigned to the internal state of
the cipher, in other words, the key and IV loading phase of the cipher is totally
omitted. For each initial state, keystream of length n is generated from the cipher
and its weight is calculated. The weights should follow the normal distribution
with mean n/2 and variance n/4, when M is large enough. Using the Chi-Square
Goodness of Fit tests, these weights are evaluated. If the cipher fails from this
test, keystream generation phase from internal state should be revised. Special
care must be taken while assigning states. The initial states should be chosen
among the possible internal states. Forbidden states such as assigning a zero
vector to a linear feedback shift register should be avoided.

In the next section, experimental results of the first four tests are presented.
Analyzing ciphers using Internal State Correlation and Internal State/Keystream
Correlation Test are left as a future study.

4 Experimental Results

For the Key/Keystream Correlation Test, m = 220 keys are generated randomly.
For each key, keystream of length k (80 or 128 bits) is generated using a zero
vector as IV. Keys and their corresponding keystreams are XORed and their
weights are calculated. The weight probabilities are computed using the Bino-
mial distribution. Then, the weights are categorized into 5 groups with approx-
imately equal probabilities and the correlation between key and keystream bits
is evaluated using Chi-Square Goodness of Fit tests.

For the IV/Keystream Correlation Test, m = 220 IVs and a fixed key are
generated randomly. For each IV, keystream of length v (64, 80 or 128 bits) is
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generated. IVs and their corresponding keystreams are XORed and their weights
are calculated. The probability of each weight is computed using the Binomial
distribution. The weight values are categorized into 5 groups with approximately
equal probabilities and the correlation between IV and keystream bits is evalu-
ated using Chi-Square Goodness of Fit tests.

For the Frame Correlation Test, starting with the IV 0x00000001 and incre-
menting until the IV 0x00100000, 220 keystreams of length 256 bits are generated
with a fixed random key. Using these keystreams, a matrix of size 220 × 256 is
formed and column weights are calculated. The distribution of these weights
is approximately normal with mean 219 and variance 218). Weights are catego-
rized into 5 groups with approximately equal probabilities and evaluated using
Chi-Square Goodness of Fit tests.

Finally, for the Diffusion Test, a matrix of size (k+v)×256 is generated using
210 random key and IV pairs. Using the Binomial distribution, the entries of the
matrix are categorized into 5 groups with approximately equal probabilities and
diffusion of key and IV bits are evaluated using Chi-Square Goodness of Fit
tests.

These four tests are applied to the synchronous stream ciphers presented
in ECRYPT and the results are given in Table 1. Most of the ciphers support
various key and IV sizes. The selected alternatives are listed in the table. For
further analysis, other key and IV sizes should be considered.

The table shows the p-values obtained from each test. P-values less than 0.01
indicate a possible weakness. Low p-values have been obtained from the ciphers
Decim, F-FCRS-8, Frogbit, Mag and Zk-Crypt. For Decim, it is observed that
key and the first k bit of keystream are positively correlated. Similar correlation
between IV and keystream is also available for the cipher. As the result of Frame
Correlation Test, deviation from expected distribution is observed. However, the
cipher statistically satisfies the diffusion property. For F-FCRS-8, correlation be-
tween frames is observed. Moreover, lack of diffusion property of IV bits between
66 and 101 causes the cipher to fail from the Diffusion Test. According to our
results, the cipher Frogbit does not satisfy the necessary diffusion property and
the frames generated using different IVs are correlated. Due to the small IV
size of Mag, the IV/Key Correlation Test is not applied. For Mag, the desired
diffusion property is not satisfied by the IV values. Therefore, it fails from the
last two tests. For Zk-Crypt, the 29th and 30th bits of IV and key do not satisfy
the desired diffusion.

5 Conclusion

In this study, six new statistical randomness tests are proposed, four of them
are applied to the synchronous ciphers presented for ECRYPT. Some deviations
from expected values are observed due to some possible weaknesses in key/IV
loading phases of the ciphers. Analyzing ciphers using Internal State Correlation
Test and Internal State/Keystream Correlation Test is left as a future study.

90



Cipher Key Size IV Size Key/Keystream IV/Keystream Frame Diffusion
Correlation Correlation Correlation

ABC v.2 128 128 0.601073 0.610270 0.032804 0.466065

Achterbahn 80 64 0.417178 0.117759 0.048505 0.993111

CryptMT 128 128 0.897359 0.957659 0.740576 0.511523

Decim 80 64 0.000000 0.000000 0.000000 0.696777

Dicing 128 64 0.159261 0.203056 0.583911 0.730663

Dragon 128 128 0.613571 0.640181 0.213892 0.146159

Edon80 80 64 0.994770 0.672348 0.854742 0.345438

F-FCRS-8 128 128 0.331626 0.185941 0.000000 0.000000

Frogbit 128 128 0.525744 0.416107 0.000000 0.000000

Fubuki 128 128 0.428248 0.295603 0.113781 0.810933

Grain 80 64 0.559919 0.192504 0.670431 0.714399

HC-256 128 64 0.367689 0.142642 0.128726 0.470896

Hermes8 128 128 0.691878 0.156081 0.054161 0.806776

LEX 128 128 0.466709 0.874932 0.791357 0.85092

Mag 128 32 0.909934 - 0.000000 0.000000

Mickey 80 64 0.588080 0.037922 0.777025 0.734788

Mickey-128 128 128 0.660162 0.903834 0.395561 0.530875

Mir-1 128 64 0.805644 0.859696 0.827476 0.990484

NLS 128 128 0.560680 0.520917 0.725241 0.328536

Phelix 128 128 0.771726 0.664038 0.254927 0.863882

Polar Bear 128 128 0.216437 0.321427 0.762572 0.342001

Pomaranch 128 64 0.784698 0.978887 0.572945 0.825298

Py 128 64 0.656513 0.594916 0.242581 0.049459

Rabbit 128 64 0.791524 0.444611 0.033308 0.292981

Salsa20 128 64 0.110543 0.968776 0.512680 0.595137

SFINKS 80 80 0.476098 0.033331 0.351140 0.724150

Sosemanuk 128 64 0.583909 0.369988 0.333554 0.448504

Trivium 80 64 0.097261 0.479771 0.968566 0.937681

TSC-3 128 64 0.660202 0.508506 0.571159 0.596460

Vest 128 64 0.611495 0.013717 0.747299 0.333582

WG 128 128 0.563085 0.162022 0.847017 0.880886

Yamb 128 64 0.416602 0.187911 0.477731 0.447853

Zk-Crypt 128 128 0.482789 0.113247 0.000000 0.000000

Table 1. Test Results
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8. B. Gammel, R. Göttfert, and O. Kniffler. The Achterbahn Stream Ci-
pher. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

9. M. Matsumoto, H. Mariko, T. Nishimura, and M. Saito. Cryptographic Mersenne
Twister and Fubuki Stream/Block Cipher. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

10. C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert, L. Goubin,
A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T. Pornin, and H. Sib. Decim,
A New Stream Cipher for Hardware Applications. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

11. L. An-Ping. A New Stream Cipher: Dicing. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

12. E. Dawson, K. Chen, M. Henricksen, W. Millan, L. Simpson, and S. Moon H. Lee.
Dragon: A Fast Word Based Stream Cipher. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

13. D. Gligoroski, S. Markovski, L. Kocarev, and M. Gusev. Edon80.
eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

14. T. Berger, F. Arnault, and C. Lauradoux. F-FCSR. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

15. T. Moreau. The Frogbit cipher, A data integrity algorithm. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

16. M. Hell, T. Johansson, and Willi Meier. Grain - A Stream Cipher for Constrained
Environments. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001,
2005. http://www.ecrypt.eu.org/stream.

17. H. Wu. Stream Cipher HC-256. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

18. U. Kaiser. Hermes stream cipher. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

19. A. Biryukov. A New 128-bit Key Stream Cipher LEX. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

20. R. Vuckovac. MAG My Array Generator (A New Strategy for Random Num-
ber Generation). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001,
2005. http://www.ecrypt.eu.org/stream.

92



21. S. Babbage and M. Dodd. The Stream Cipher MICKEY (version
1). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

22. S. Babbage and M. Dodd. The Stream Cipher MICKEY-128 (version
1). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

23. A. Maximov. A new stream cipher Mir-1. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

24. G. Rose, P. Hawkes, M. Paddon, and M. W. de Vries. Primitive specification
for NLS. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

25. D. Whiting, B. Schneier, S. Lucks, and F. Muller. Phelix, fast encryption and
authentication in a single cryptographic primitive. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

26. J. Hastad and M. Naslund. The stream cipher Polar Bear. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

27. C. Jansen and A. Kolosha. Cascade jump controlled sequence genera-
tor. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

28. E. Biham and J. Seberry. Py: A fast secure stream cipher using rolling ar-
rays. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

29. M. Boesgaard, M. Vesterager, T. Christensen, and E. Zenner. The stream cipher
rabbit. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

30. D. J. Bernstein. Salsa20 design. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

31. A. Braeken, J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede.
SFINKS: A synchronous stream cipher for restricted hardware environ-
ments. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

32. C. Berbain, O. Billet, A. Canteaut, N. Courtois, H. Gilbert, L. Goubin, A. Gouget,
L. Granboulan, C. Lauradoux, M Minier, T. Pornin, and H. Sibert. Sosemanuk, a
fast software-oriented stream cipher. eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

33. C. De Cannire and B. Preneel. Trivium specifications. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

34. J. Hong, D. H. Lee, Y. Yeom, D. Han, and S. Chee. T-function based stream
cipher TSC-3. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001,
2005. http://www.ecrypt.eu.org/stream.

35. C. Bigeard, S. O’Neil, B. Gittins, and H. Landman. VEST hardware dedicated
stream ciphers. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001,
2005. http://www.ecrypt.eu.org/stream.

36. G. Gong and Y. Nawaz. The WG stream cipher. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

37. LAN Crypto. Primitive specifications. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/001, 2005. http://www.ecrypt.eu.org/stream.

38. C. Gressel, R. Granot, and G. Vago. Zk-crypt - a compact stream cipher and
more. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/001, 2005.
http://www.ecrypt.eu.org/stream.

93



d-Monomial Tests are Effective Against Stream Ciphers

Markku-Juhani O. Saarinen

Information Security Group
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK.
m.saarinen@rhul.ac.uk

Abstract. d-Monomial tests are statistical randomness tests based on Algebraic
Normal Form representation of a Boolean function, and were first introduced
by Filiol in 2002. We show that there are strong indications that the Gate Com-
plexity of a Boolean function is related to a bias detectable in a d-Monomial
test. We then discuss how to effectively apply d-Monomial tests in chosen-IV
attacks against stream ciphers. Finally we present results of tests performed on
eSTREAM proposals, and show that six of these new ciphers can be broken using
the d-Monomial test in a chosen-IV attack. Many ciphers even fail a trivial (ANF)
bit-flipping test.

Keywords: Stream Ciphers, eSTREAM, Algebraic Normal Form, Möbius test,
d-monomial test.

1 Introduction

Statistical testing has traditionally been a part of evaluation of stream ciphers. However,
most cryptographers agree that generic tests such as the NIST 800-22 suite are appropri-
ate mainly for catching implementation errors rather than determining the cryptographic
strength of an algorithm [4, 5].

Usually these tests have been performed in a passive setting; a sequence of bits is
generated under a (random) key, and these bits are then subjected to a generic statistical
test. What is ignored in this approach is that stream ciphers equipped with an Initializa-
tion Vector (IV) should also be able to withstand chosen-IV attacks, where a sequence
of data is generated by varying the IV value rather than the “counter” value (see Figure
1).

Stream ciphers are optimized for security, but also for speed and cost. Cost in many
applications equates to the number of logical gates in a hardware implementation of the
cipher, and hence designers usually attempt to minimize their gate complexity.

Most stream ciphers can be specified as a relatively simple iterated function. As a
result of this, it has been observed that some keystream bits can be expressed as simple
Boolean functions of the key and IV bits. In a chosen-IV attack, the key bits remain
constant and the stream cipher can be viewed as a “black box” Boolean function of the
IV alone.

In a chosen-IV distinguishing attack, an attacker would wish to be able to determine
whether or not a keystream bit (say, the first one after IV setup) is a simple Boolean
function of some IV bits simply by making queries to this black box.
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Fig. 1. A stream cipher can be seen as a black box Boolean function that takes in a secret key, a
public IV, and a public “counter” to produce a single bit of keystream.

How would one automatically distinguish such a Boolean function of n bits from a
random one? One solution is to examine its Algebraic Normal Form (ANF) represen-
tation for anomalies such as redundancy or bias. A test that utilizes this approach was
first proposed by Eric Filiol in 2002 [2]. In this paper we will give further theoretical
and experimental evidence of the applicability of ANF-based tests on stream ciphers.

The structure of this paper is as follows. In Section 2 we recall the Algebraic Normal
Form and its basic properties. Section 3 contains an exposition of a variant of Filiol’s
d-monomial statistical test. Section 4 gives new, clear evidence of the relationship be-
tween Boolean gate complexity and the d-monomial test. Section 5 discusses a simple
statistical attack based on flipping input bits that was found to be surprisingly effective
against eSTREAM ciphers [3]. Section 6 contains new results on statistical tests on the
34 eSTREAM cipher proposals, followed by conclusions in Section 7.

2 Preliminaries

Let Fn
2 be the vector space defined by n-vectors x = (x1, x2, . . . , xn), where xi ∈ F2,

i.e. each of the n elements has either value 0 or 1 and computations are defined modulo
2. A Boolean function f of n variables is simply a mapping f : Fn

2 "→ F2. There are
exactly 22n

distinct Boolean functions of n variables, each uniquely defined by its truth
table.

There are many alternative representations for Boolean functions, such as Conjunc-
tive and Disjunctive Normal Forms (CNF and DNF), which are widely used in auto-
mated theorem proving and other fields of theoretical computer science. We will focus
on Algebraic Normal Form (ANF, also known as Ring Sum Expansion, or RSE [6]). 1

Definition 1. A function f̂ : Fn
2 "→ F2 satisfying

f̂(x) =
∑

a∈Fn
2

f(a)
n∏

i=1

xai
i

is an Algebraic Normal Form representation of a Boolean function f : Fn
2 "→ F2.

1 This transform is sometimes confusingly called the Möbius transform [2], hence the name,
“Möbius test” in Filiol’s original paper.
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Using transformed function f̂ , a multivariate polynomial representation of f can be
obtained as can be seen from the following example (or directly from the definition).

Example 1. Consider the Boolean function f : F3
2 "→ F2 defined by the following table:

f(0, 0, 0) = 1, f(1, 0, 0) = 0, f(0, 1, 0) = 1, f(1, 1, 0) = 0,
f(0, 0, 1) = 1, f(1, 0, 1) = 1, f(0, 1, 1) = 0, f(1, 1, 1) = 1.

As indicated by Definition 1, we wish to find a f̂ that for all x satisfies

f(x1, x2, x3) = f̂(0, 0, 0) + f̂(1, 0, 0)x1 + f̂(0, 1, 0)x2 + f̂(1, 1, 0)x1x2 +

f̂(0, 0, 1)x3 + f̂(1, 0, 1)x1x3 + f̂(0, 1, 1)x2x3 + f̂(1, 1, 1)x1x2x3.

this corresponds to solving the following system of linear equations in F2:





1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1









f̂(0, 0, 0)
f̂(1, 0, 0)
f̂(0, 1, 0)
f̂(1, 1, 0)
f̂(0, 0, 1)
f̂(1, 0, 1)
f̂(0, 1, 1)
f̂(1, 1, 1)





=





f(0, 0, 0) = 1
f(1, 0, 0) = 0
f(0, 1, 0) = 1
f(1, 1, 0) = 0
f(0, 0, 1) = 1
f(1, 0, 1) = 1
f(0, 1, 1) = 0
f(1, 1, 1) = 1





.

The solution to this matrix equation is obtained easily with Gaussian elimination:

f̂(0, 0, 0) = 1, f̂(1, 0, 0) = 1, f̂(0, 1, 0) = 0, f̂(1, 1, 0) = 0,
f̂(0, 0, 1) = 0, f̂(1, 0, 1) = 1, f̂(0, 1, 1) = 1, f̂(1, 1, 1) = 1.

The ones in f̂ directly give the five monomials in the polynomial expression for f :

f(x1, x2, x3) = 1 + x1 + x1x3 + x2x3 + x1x2x3.

2.1 Properties of the Algebraic Normal Form

We briefly summarize some of the most important properties and concepts (facts) of
ANF that are relevant to the present discussion:

F.1 A unique f̂ exists for all Boolean functions f .
F.2 The ANF transform is its own inverse, an involution; iff g = f̂ , then ĝ = f .
F.3 We define a partial order for vectors x as follows: x ≤ y iff xi ≤ yi for all i. Using

the partial order, Definition 1 can be written as f̂(x) =
∑

a≤x f(a).
F.4 The Hamming distance d(x,y) between x and y is the number of positions where

xi %= yi.
F.5 A norm, called the Hamming weight, wt(x) = d(0,x), is equivalent to number of

positions in x where xi = 1.
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F.6 The algebraic degree deg(f) is the maximum Hamming weight x that satisfies
f̂(x) = 1; this is equivalent to the length of the longest monomial (most variables)
in the polynomial representation of f .

F.7 Functions of degree one are affine functions. If the constant term f̂(0, 0, . . . , 0) = 0,
an affine function is simply a sum of some of its input bits and called a linear
function.

F.8 A d-Truncated Algebraic Normal Form of Boolean function f , denoted f̂d(x), is
equal to f̂(x) when wt(x) ≤ d, and zero otherwise. In essence, monomials of
degree greater than d have been removed from the corresponding polynomial of
the truncated ANF.

F.9 Since f̂(x) is the sum of f at all positions with smaller or equal partial order (and
hence degree) than x (F.3), it can be seen that if we have tabulated f(y) at all
positions y with wt(y) ≤ d, the d-truncated ANF can be completely determined.

2.2 Computing the ANF

Networks and algorithms for computing the complete ANF do not require more than
n2n−1 additions in F2.

Let z : Fn
2 "→ Z be the standard mapping from binary vectors to integers; z(x) =∑n

i=1 2i−1xi. Let v be a binary-valued vector of length 2n that contains the truth table
of f ; vz(x)+1 = f(x) for all x. Algorithm 1 gives a fast method for computing f̂ .

Algorithm 1 Compute the Algebraic Normal Form in vector v of length 2n using two
auxiliary vectors t and u of length 2n−1.

for j = 1, 2, 3, . . . , n do
for i = 1, 2, . . . , 2n−1 do

ti ← v2i−1

ui ← v2i−1 ⊕ v2i

end for
v ← t || u

end for

The complexity of Algorithm 1 is clearly O(n lg n). Variants of this algorithm can
be implemented very efficiently using shifts and bit-manipulation operations.

3 The d-Monomial Tests

In [2] Filiol introduced “Möbius tests”, which examine whether or not an ANF expres-
sion of a Boolean function has the expected number of d-degree monomials. With d = 0
the test is called the Affine test and for d > 0 a d-Monomial test.

Please note that the following exposition of the test / distinguisher is significantly
simpler and less formal than that originally proposed by Filiol. Details have been mod-
ified for the purposes of this paper. The reader is encouraged to use [2] as a reference
for Filiol’s version of the test.
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In practical terms the d-Monomial test involves counting the number of ones f̂(x) =
1 of an ANF transformed function f at positions x with Hamming weight d. A d-
truncated ANF is is sufficient for this purpose. A χ2 statistical test is then applied to
this count to see if the count is exceptionally high or low.

Theorem 1. For a randomly chosen n-bit Boolean function f , Pr[f̂(x) = 1] = 1/2 for
all x.

Proof. Trivial. Since the ANF transformation is bijective on the truth table of f , f̂ will
be random if f is.

Consider an n - bit Boolean function f . Our null hypothesis is that the expected bit-
count

∑
wt(x)=d f̂(x) is 1

2

(n
d

)
and the bitcount is binomially distributed. The alternative

hypothesis is that there is a bias in this sum, up or down.
We can use Pearson’s classic χ2 test in this case. Suppose that we sample f̂ at N

distinct points (in this case with wt(x) = d) and in M of those f̂(x) = 1. Then we set

χ2 =
1
N

(2M −N)2 .

Since "0" and "1" cases in bitcount are mutually exclusive, there is one degree of
freedom in the test. Using the cumulative degree-one distribution function of χ2, we
can determine a confidence level for f being distinguishable from random in our test.
We call this the P value and its intuitive interpretation is the “probability that the null
hypothesis is true”. For example, if P is 0.01, there’s still a 1% probability that the null
hypothesis is true (and the function is, in this sense, “random”).

Some “upper critical” values for χ2 and the corresponding P values are given in the
following table:

χ2 P
6.635 0.01
10.83 0.001
18.70 2−16

40.17 2−32

24.02 2−40

83.82 2−64

105.8 2−80

This type of test is dependent upon the sample size; even a very slightly biased
function will yield a high χ2 value by the test if the sample size is allowed to be ar-
bitrarily large. The sample sizes are bound by computational restrictions, however. A
distinguishing attack is not relevant unless its total expected computational complexity
is smaller than the claimed security level of the cipher (typically equivalent to 2k−1 key
trials, where k is the size of the secret key).

4 Gate Complexity and the d-Monomial Test

In this section we will give a formal definition for gate complexity and investigate its re-
lationship with the d-Monomial test. Gate complexity is essentially equivalent to circuit
complexity with realistic limitations [1, 6].
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1 + x1 + x3 + x1x2 + x2x3 + x2x4 + x3x4 + x1x2x3 + x1x2x3x4

x1

∧
∧x2

⊕
x3

⊕

⊕

x4

r

∧
∧

Fig. 2. An automatically generated picture of a Boolean function with gate complexity 7. In this
picture a filled circle indicates that the given input is inverted. This function can not be imple-
mented with, say, six gates (regardless of the choice of gates).

Definition 2. Gate complexity of a Boolean function f(x1, x2, . . . , xn) is the minimum
number of gates required to implement it in an acyclic circuit network. A gate is a
Boolean function with two inputs. The constant functions 0 and 1, together with trivial
functions x1, x2, . . . have gate complexity 0.

Note that all 222
= 16 two-bit functions count as a single gate, not just the standard

ones (∨, ∧, ¬, ⊕).
We have determined the gate complexity of all 224

= 65536 four-bit Boolean func-
tions. This was done by performing an exhaustive search over all circuits with one gate,
two gates, etc, until circuits for all functions had been found. The task was computa-
tionally nontrivial, even though we optimized the code to take various symmetries and
isometries into account. The maximum gate complexity turned out to be 7 (see Figure
2).

Table 1 gives the distribution of functions by gate complexity. In it, Gi is the number
of functions of gate complexity i. These sum to

∑
i Gi = 65536. Here gi,d is the

number of monomials of degree d and gate complexity i. These sum to
∑

d gi,d = Gi.
The maximum possible value for gi,d is Gi

(4
d

)
. The expected number in a d-monomial

test is half of this value. The table contains the “bias” fraction qi,d = gi,d/(Gi

(4
d

)
).

Note how in Table 1 the d-Monomial “bias” qi,d tends to be strongly increasing
as the gate complexity i grows (apart for anomaly at q6,4). This is clear evidence of a
correlation between the complexity of a Boolean circuit and the d-monomial test. It is
plausible to expect that a similar phenomenon is exhibited by Boolean functions with
5, 6, . . . inputs. However, the exact degree of this bias is currently an open problem for
n > 4. We can expect simple functions to be distinguishable in a d-monomial test even
when n is large.

It is interesting to note that it is even possible to test the opposite; to distinguish a
complex function from a randomly chosen one, as the following example illustrates.
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d = 0 d = 1 d = 2 d = 3 d = 4
i Gi gi,0 qi,0 gi,1 qi,1 gi,2 qi,2 gi,3 qi,3 gi,4 qi,4

0 6 1 0.167 4 0.167 0 0.000 0 0.000 0 0.000
1 64 34 0.531 76 0.297 48 0.125 0 0.000 0 0.000
2 456 228 0.500 648 0.355 672 0.246 256 0.140 0 0.000
3 2474 1237 0.500 3912 0.395 5136 0.346 3264 0.330 832 0.336
4 10624 5312 0.500 18960 0.446 26976 0.423 17536 0.413 4608 0.434
5 24184 12092 0.500 47888 0.495 71328 0.492 47616 0.492 13216 0.546
6 25008 12504 0.500 52992 0.530 83232 0.555 55744 0.557 12576 0.503
7 2720 1360 0.500 6592 0.606 9216 0.565 6656 0.612 1536 0.565

Table 1. Distribution of the 65536 four-bit Boolean functions by gate complexity and the results
of d-monomial tests on Boolean functions of given gate complexity.

Example 2. With the 2720 functions of gate complexity 7, all d-Monomial counts ap-
pear to be biased upwards; q7,d ≥ 0.5. We will use a d-Monomial test to create a
distinguisher based on this fact, particularly that q7,1 = 0.606.

Consider the following game. There is a list L containing binary vectors of length
5. Entries in L are may have been generated with one of the following two methods:

1. Choose a random 4-bit Boolean function of gate complexity 7 for each entry, and
add the following vector to the list

(f(0, 0, 0, 0), f(1, 0, 0, 0), f(0, 1, 0, 0), f(0, 0, 1, 0), f(0, 0, 0, 1)).

2. Choose a completely random Boolean function (one of the 65536 possibilities) and
create a vector in similar fashion.

We pose the following question: How long does L need to be for us to see which type
of list it is ?

We first note that the vectors contain sufficient information for computation of 1-
Monomial test (e.g. f̂(1, 0, 0, 0) = f(0, 0, 0, 0) + f(1, 0, 0, 0)). Each 1-Monomial test
is simply the sum of 4 bits in the ANF result. The expected sum after n list entries is 2n
for a random function and based on our exhaustive search, g7,1n/G7 = 6592/2720n ≈
2.424n for a gate complexity 7 function. Our distinguisher will simply return “a” if the
sum is greater than 2n and “b” otherwise.

In the second, fully random case, the distinguisher has no advantage as the bits in the
vector are random too; “a” and “b” will both be returned with probability 1/2 regadless
of the length of L.

In case 1, after n = 34 steps, the sum can be expected to reach 2.424∗34 = 82.4. "a"
will be returned by the distinguisher with probability 99%. Hence we can distinguish the
list of (partially computed and randomly chosen) “complex” functions with significant
certainty with a list of only 34 entries! Note that the probability here was computed
exactly using binomial sums, rather than using the χ2 test.
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5 The (ANF) Bit-Flip Test

The bit-flip test is a simple statistical test that measures the effect of flipping one of the
input bits on a Boolean function. The test can be performed either on the function f
itself or its ANF counterpart f̂ .

The same “bit-counting” χ2 test with one degree of freedom can be applied as in
d-Monomial test (Section 3).

Given a vector with b with wt(b) = 1, we sample f(x) (or f̂(x)) at N distinct
points with xi = 0 and count the number of occurrences M where f(x) = f(x + b)
(or, respectively, f̂(x) = f̂(x + b)). The statistic is again

χ2 =
1
N

(2M −N)2

and the confidence level P is computed in the same fashion as with d-monomial test.
This simple test is useful for measuring the basic mixing properties of the function

and was therefore employed in our tests of eSTREAM proposals as discussed in the
following section.

6 Chosen-IV Tests on eSTREAM Proposals

As there were as many as 34 proposals for eSTREAM [3], some with poor documenta-
tion, we decided to make certain assumptions about their structure in order to facilitate
“automatic” d-Monomial and bit-flipping testing.

1. We wish to find a subset of input bits that is likely to receive less mixing during the
IV setup process than other bits. This is likely to be either at the beginning or the
end of the IV bit-vector.

2. After the bits for a d-Monomial test have been chosen, the remaining constant IV
bits also greatly affect the probability that the keystream will exhibit bias. We chose
to run the tests with these bits set as 0 and also when they are set to 1.

3. Rather than running the test on some low-degree limit d (In [2] d ≤ 3 and d ≤ 5
are mentioned), we limit the number of bits n to some manageable number and
compute all d-Monomial tests on those bits.

There are four d-Monomial tests in total; {bits in beginning, bits in the end}× {rest
of bits set to 0, rest of bits set to 1}. In practice the black box function (IV setup) was
run with increasing values of n until a time or memory limit was exceeded. An ANF
was then computed and monomials of various degrees counted. The same data was also
subjected to bit-flipping tests as described in Section 5.

The testing code was integrated into the “eSTREAM speed testing framework”,
which allowed the test to be easily run on most eSTREAM ciphers. The test code simply
utilizes the eSTREAM API and treats each cipher as a black box function.

There appears to be bugs in some cipher implementations, that resulted in exceed-
ingly high biases. Those cases are ignored in the discussion below. We only mention
ciphers where definitive evidence of statistical anomaly was detected (positive results
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are not reported). All tests were run at least 10 times with randomized keys. We only
report anomalies that reoccurred in a consistent pattern in distinct tests. Note that when
the same tests were run on reference ciphers such as AES-CTR, no anomalies were
found.

All specifications of the ciphers are available from the eSTREAM web site [3]. The
following list of results is not exhaustive, but just relates to the current status of the
tests.

6.1 MAG, Frogbit, and F-FCSR

MAG is a stream cipher designed by Rade Vuckovac that uses a 128-bit key and a 32-
bit IV. Frogbit is a “cipher, data integrity algorithm” designed by Thierry Moreau with
128-bit key and IV values. F-FCSR is a family of stream ciphers designed by Thierry
Berger, François Arnault and Cédric Lauradoux.

These ciphers exhibited extreme biases. In some cases flipping a particular bit in
IV did not affect the first keystream bits at all. The designers of these ciphers appear to
have failed to consider the implications of chosen-IV attacks.

6.2 DECIM

Decim is a stream cipher with a 80-bit key and a 64-bit IV designed by Come Berbain
et al. Decim is highly vulnerable to d-Monomial distinguishers. Biases that occur with
P < 2−96 (our implementation precision limit) were consistently found. Decim also
appears to be susceptible to a bit-flipping attack, although to a lesser degree. In a typical
run of 218 IV setups, a bit-flipping bias with P < 2−16 could be found.

6.3 ZK-Crypt

ZK-Crypt is a stream cipher designed by Carmi Gressel, Ran Granot and Gabi Vago.
With a 128-bit key and a 128-bit IV it is highly vulnerable to both bit-flipping and d-
Monomial distinguishers. Biases with P < 2−96 were consistently found in bit-flipping
attacks. In d-Monomial attacks the bias was in P < 2−12 range, although in one case
P < 2−37 was observed. A typical test run would involve 221 IV setups.

6.4 POMARANCH

POMARANCH is a stream cipher designed by Cees Jansen and Alexander Kolosha.
With a 128-bit key and a 112-bit IV it is susceptible to bit-flipping tests when the
flipping occurs at the end of the IV vector. Biases with P < 2−96 were consistently
observed in such attacks. Typical run would involve 217 IV setups.

6.5 NLS and TSC-3

NLS is a stream cipher designed by Gregory Rose, Philip Hawkes, Michael Paddon and
Miriam Wiggers de Vries. TSC-3 is a stream cipher proposed by Jin Hong, Dong Hoon
Lee, Yongjin Yeom, Daewan Han and Seongtaek Chee.
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These ciphers fall into “borderline category”. Some strong biases were found, but
not strong enough to indicate a clear design flaw. We suspect that improved attacks are
possible by hand-crafting the test parameters to exploit particular features of the design
of these ciphers.

In NLS with a 128-bit key and a 128-bit IV, a bias with P < 2−20 was observed in
one d-Monomial test run of 224 IV setups. Multiple lesser d-Monomial biases occur in
a consistent pattern.

In TSC-3 with a 160-bit key and a 128-bit IV, a bit flipping bias with P < 2−18 was
observed and lesser biases occur in a consistent pattern.

7 Conclusion

We have discussed the application of Algebraic Normal Form and d-Monomial tests
to chosen-IV attacks against stream ciphers. It has been demonstrated that these tests
appear to be highly effective in distinguishing “simple” Boolean functions as well as
(rather surprisingly) complex functions from random ones.

In an experiment with eSTREAM stream ciphers, we found that the output of six
of the 34 candidates could be distinguished from random with our methods, with addi-
tional few being borderline cases and requiring further investigation. Ciphers with poor
mixing properties even fail a simple bit-flipping test (or its ANF variant).
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Abstract. The aim of eSTREAM Profile II is to identify a small number
of stream ciphers that are suitable for low resource circuitry based im-
plementation. Besides algorithmic properties and security evaluation to
theoretical attacks, performance evaluation is another important task of
eSTREAM that is being considered. In this contribution we summarize
and explain our testing framework for eSTREAM Profile II candidates
regarding hardware implementations.

Keywords: stream ciphers, hardware implementations, implementation at-
tacks

1 Introduction

The main motivation of the eSTREAM project is to identify stream ciphers
that can be used as replacements for AES in both high throughput software
based implementations (Profile I) and low resource hardware (circuitry) based
implementations (Profile II).

Whereas the approach undertaken for performance testing of Profile I can-
didates is well known, detailed test plans for Profile II candidates have not been
presented, yet. Our contribution encourages an open approach for this frame-
work. This work is produced by the VAMPIRE lab as part of the ECRYPT
project.

2 Performance Criteria for Profile II Candidates

? The work described in this paper has been supported in part by the European Com-
mission through the IST Programme under Contract IST-2002-507932 ECRYPT, the
European Network of Excellence in Cryptology. KUL researchers are also supported
by FWO projects (G.0141.03, G.0450.04), GOA Mefisto 2000/06, GOA Ambiorix
2005/11.
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The primary aim of eSTREAM Profile II is to find stream ciphers that require
lower resources that an AES implementation in circuitry yielding at least the
same throughput as an AES implementation. For evaluating the performance of
Profile II candidates we consider the categories

1. Compactness (Area),
2. Performance (Throughput),
3. Power Consumption,
4. Flexibility/Scalability/Pipelining and
5. Simplicity/Completeness/Clarity

Each test category is explained in more detail below.
Our main approach is to consider the possible trade-offs between these cate-

gories. Among them, compactness and performance are the most important ones
and a trade-off metric for compactness and performance is preferable. We men-
tion also a firm requirement for a low power consumption, which is of crucial
importance for wireless applications such as PDAs, mobile phones, RFIDs etc.

We especially compare with current AES implementation benchmarks (see
Section 3). Candidates which are not able to outperform AES implementations
in terms of compactness and performance can probably not be advanced further
in the eSTREAM Profile II project. Secondary, we compare among eSTREAM
candidates. An open question is whether the value of versatile algorithms that
are proposed for both Profile I and Profile II is considered differently than pure
Profile II submissions.

Note that the most important criterium for analysis of eSTREAM, i.e., math-
ematical security of the algorithm, is not evaluated as part of this framework.

2.1 Compactness (Area)

For the hardware oriented stream ciphers, the silicon area determines the cost of
the implementation. This feature is one of the first to be taken into consideration,
because the main goal of stream ciphers is to be smaller than block ciphers. That
is why the area of the proposed stream ciphers should be compared to the area
of a compact AES implementation. The benchmarks that can be used for this
comparison are described in Sect. 3.

2.2 Performance (Throughput)

The properties that are taken into account when evaluating the performance of
the stream cipher implementation are frequency, bits per second (throughput)
and bits per cycle. Performance is, together with area, one of the most important
design criteria. In Sect. 3 performance benchmarks are given for area constrained
AES implementations.
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2.3 Power Consumption

As stream ciphers are used in small handheld devices, power consumption should
be taken into account to estimate the battery’s capabilities. However, estimating
the power consumption of a design is not straightforward. Power estimation tools
such as SPICE can help for this matter, but are not always reliable especially
without back-annotating physical layout information.

2.4 Flexibility/Scalability/Pipelining

The flexibility of a stream cipher is determined by the variety of possible imple-
mentation options. A high flexibility usually results in a large design parameter
space with area and performance as the two main dimensions: implementations
can be optimized for speed or for area or the design criterium can be a trade-off
of these two. By scalability we mean the ability to scale the design with respect
to the width of the data path. This results again in a trade-off between area and
speed. Inserting registers for pipelining allows to increase the frequency and the
throughput of the implementation.

These criteria do not only consider the inherent flexibility/scalability/pipelining
of the design stressed by the author, but also possibilities to realize these prop-
erties detected by the implementer.

2.5 Simplicity/Completeness/Clarity

Because the new stream cipher standard will be adopted in many applications,
the description should be clear. More specific, all details needed for the imple-
mentation should be given in the describing document. To decrease the non-
recurring engineering time, a simple description is preferred. Some stream ci-
phers are more simple by nature and therefore allow a more simple description.
However, even the more complicated stream ciphers should be introduced in an
illustrative manner. That is why the new stream ciphers should be evaluated on
simplicity, completeness and clarity of the describing document.

3 AES Hardware Implementation

The Advanced Encryption Standard (AES) [11] was standardized by the Na-
tional Institute of Standards and Technologies (NIST) in 2001. AES is a block
cipher that operates on 128-bit blocks of data using a 128-bit, 192-bit or 256-bit
key. The most common key size is 128-bit and is solely considered in this testing
framework. For a complete specification of AES we refer to [11].

A recent report with a strong focus on AES hardware architectures can be
found in [5]. For the purpose of this testing framework, the lightweight imple-
mentations of [5] are the most important ones.

Most of the previous work on compact AES implementations outlines bench-
marks for either ASIC or FPGA implementations. Here, we aim to give both
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benchmarks for ASIC and FPGA implementations as FPGAs have attracted
more attention in the last years. Therefore, we selected two reference implemen-
tations for both ASIC and FPGA implementations.

For ASIC implementations, the reference implementations are from Feldhofer
et al. [6] and Satoh et al. [14]. The former uses an 8-bit architecture and is
currently the most compact AES ASIC implementation. On the other hand the
work of Satoh et al. [14] gives results for different architectures ranging from
32-bit to 128-bit and therefore yields an increased throughput of data. In Table
1 we give the circuit benchmarks based on compactness. Both implementations
use combinatorial logic for the S-Box implementation which is more suited for
low-cost implementations than the use of a ROM table. There is also the work
of Canright [2] that evaluates all options for basis, irreducible polynomial etc. to
make the S-Box implementation even more compact in order to obtain further
optimizations.

For low-cost FPGA benchmarks we select Good/Benaissa [7] and Chodo-
wiec/Gaj [4] as references. The former is based on an 8-bit architecture, whereas
[4] uses a 32-bit architecture. Benchmarks are summarized in Table 2.

Feldhofer [6] Satoh [14] Satoh [14] Satoh [14]

Architecture 8-bit 32-bit 64-bit 128-bit

No. S-boxes 1 4 8 20

Area [GEs] 3,400 5,398 7,998 12,454

Cycles per encryption 1 1,032 54 32 11

Throughput [bits/cycle] 0.12 2.37 4.00 11.64

Technology [µm] 0.35 0.11 0.11 0.11

Clock frequency [MHz] 80 131 137 145

Throughput [Mbps] 9.9 311 548 1,691

Table 1. Benchmarks for AES-128 low-cost ASIC Implementations

Good/Benaissa [7] Chodowiec/Gaj [4]

Architecture 8-bit 32-bit

No. S-Boxes 1 4

FPGA Xilinx Spartan-II XC2S15-6 Xilinx Spartan II XC2S30-6

Slices 124 222

No. of Block RAMs 2 3

Bits of Block RAM used 4,480 9,600 [7]

Total Equiv. Slices 264 522 [7]

Clock frequency [MHz] 67 60

Throughput [Mbps] 2 2.2 69

Table 2. Benchmarks for AES-128 low-cost FPGA Implementations

1 [6] includes the key schedule. For [14], add ten cycles for the key schedule.
2 For comparison we use the definition of average throughput given by [7].
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4 Performance Evaluation

The hardware performance measurements will be similar to Round 2 of AES
where different AES candidates were implemented by NSA in an unbiased way.
The design analysis consists of hardware designing (mostly based on the stream
cipher designers’ suggestions), coding in a hardware modeling language, simula-
tion and synthesis for various hardware platforms. We would be concentrating on
the low cost FPGAs and semi-custom ASIC with standard CMOS libraries. For
a fair analysis, we provide an equivalent treatment for all the ciphers with basic
optimizations that would be done during the normal hardware design phase.
This would provide a meaningful comparison between the results of various de-
signs and may be suitable only for this specific context of hardware performance
measurement.

In Section 2, we mentioned the various performance parameters that will be
considered. Since all performance parameters cannot be met in a single design, we
would have to find possible trade-offs and possibly implement multiple designs.
The flexibility of the algorithm would be the deciding factor for multiple designs.
But compiler design constraint settings like delay and area are also another way
to find various trade-off points. Our main approach will be to find designs that
have low area and medium speed. An iterative kind of algorithm would be the
standard choice for the designs.

We would be measuring the key-setup time, iv-setup time and the throughput
performance of each of the designs. Our designs will be compared with efficient
low-area implementations of AES mentioned in Section 3. Our aim would be to
find designs that would be more compact than a low-area AES design but still
faster in performance.

The different designs will be modeled using VHDL (VHSIC Hardware De-
scription Language). The designs will be implemented following the standard
methodology used by ASIC designers. This would include identifying various
sub-blocks from the algorithm that would help to implement a small area itera-
tive design. During this phase, a major deciding factor would be the algorithmic
designer’s suggestions mentioned in the specifications submitted to eSTREAM.
A different approach would be taken only if the hardware designer feels a huge
gain in performance than the one suggested. This will be followed by simula-
tion and synthesis of the design model under different area/delay constraints
to obtain the various performance measurements. The final physical layout and
fabrication for ASIC designs would be beyond the scope of this testing.

For the unbiased approach we neglect the overhead for interfacing to the
outside world by providing a standardized interfacing within each of the imple-
mentations. Though any input parameter needs that are constraining to a good
hardware design would be noted in the final results. This user interface provides
the algorithm with the key, initialization vector and the plaintext. It receives
the key stream from the algorithm and XORs it to the plaintext, providing the
ciphertext to the outside world. All other control signaling to the algorithm are
also done from a common control block.
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5 Evaluation of Other Implementation Properties

Besides performance criteria, we aim to evaluate also other implementation prop-
erties of stream ciphers in Phase II.

This task consists of the test categories

1. Design Analysis,
2. Side Channel Susceptibility,
3. Fault Analysis Susceptibility and
4. Probing Susceptibility.

The task “Design Analysis” deals with possible improvements and guidance
for the final specification of the algorithms. The remaining three tasks evaluate
the susceptibility of the implementations of eStream candidates towards im-
plementation attacks. Counteracting implementation attacks typically requires
additional implementation costs which are not considered in Section 2, yet.

Each task is explained in more detail below.

5.1 Design Analysis

The other main objective of the design analysis would be to find hardware effi-
cient sub-blocks in the various algorithm. This will provide an easily identifiable
list of functions that are good for hardware design and hence enable cryptogra-
phers to design a more hardware efficient stream cipher in the future.

5.2 Side Channel Susceptibility

Here we discuss vulnerabilities of hardware implementations of stream ciphers to
side-channel attacks. It is very important to consider these already in the design
phase as from the previous work some general recommendations for the design
and countermeasures are known.

Implementation attacks in general exploit weaknesses in specific implemen-
tations of a cryptographic algorithm. Sensitive information, such as secret keys
or a plaintext can be obtained by observing some side-channel information such
as the power consumption, the electromagnetic radiation, etc.

In the 90’s Kocher et al. performed successful attacks by measuring the power
consumption while the cryptographic circuit is executing the implemented algo-
rithm [9]. The most straightforward power analysis, called Simple Power Analysis
(SPA), uses a single measurement to reveal the secret key by searching for pat-
terns in the power trace. However, implementations that are resistant against
SPA attacks, can still be broken by using a more advanced technique, namely
Differential Power Analysis (DPA). In this case many power measurements are
evaluated using statistical analysis. A similar terminology is used when the ob-
served side-channel is electromagnetic radiation. In that case typical attacks are
SEMA and DEMA.
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Template attacks were invented by Chari et al. [3] and it was shown by
Rechberger [12] that they can be also a serious threat to stream ciphers as well
as all other ciphers.

From the power and electromagnetic analysis point of view there is not much
previous work done on stream ciphers. However, the work of Lano et al. consid-
ers a DPA attack on synchronous stream ciphers with resynchronization mech-
anism [10]. Hence, their conclusion should be verified for the candidates in this
class of stream ciphers. Also the work of Rechberger and Oswald [13] gives some
recommendation for stream ciphers in order to avoid simple side-channel attacks.

5.3 Fault Analysis Susceptibility

Fault analysis is an active implementation attack that aims to disturb the com-
putation of a cryptographic algorithm in such a way that an erroneous result is
obtained. By applying mathematical cryptanalysis these erroneous results can
be used to extract cryptographic key material. Reference [8] provides several
general attacks that are applicable at LFSR based stream ciphers. For RC4, two
different approaches have been presented in [1].

In this task, it is evaluated whether an eSTREAM candidate is vulnerable
against one of the general techniques of [8]. If so, the complexity of a successful
attack is estimated. Additionally, alternative approaches of fault analysis are
checked.

5.4 Probing Susceptibility

Probing is an active implementation attack that directly connects to the circuit
and allows monitoring of internal data flow.

In this task, the susceptibility of the implementation of eSTREAM candi-
dates towards probing attacks is evaluated. Our approach first identifies critical
connections within the implementation. The metric used for evaluation is the
entropy loss (of the key, respectively, of the current state) at each critical con-
nection as well as the maximum entropy loss by probing a few critical connections
simultaneously.

6 Ongoing Test Activities

Due to the number of submissions, current test activities have started first by
using the remaining candidates that are not ‘broken’ yet by mathematical anal-
ysis. After moving to Phase II it is assumed that also selected algorithms with
a tweaked version are included in Profile II performance testing.

Actually, the submissions tested at the transition to Phase II are summarized
in Table 3.
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Profile I and II Profile II

Hermes8 EDON-80
NLS (2A) MICKEY / MICKEY-128

Phelix (2A) MOSQUITO
Rabbit Trivium
Salsa20 VEST (2A)

Table 3. Candidates under test for both Profile I and II candidates and Profile II
candidates (in alphabetical order).

7 Conclusion

Currently, test specifications are still in a draft state. We encourage any third-
party contributions and assessments!
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Abstract. One important requirement imposed on all eSTREAM stream cipher candidates was to show the potential
to be superior to the AES in at least one significant aspect. We present hardware implementation results of eight
different eSTREAM Profile-II candidates, all integrated in 0.25 µm 5-Metal CMOS technology. The goal of this
work was to provide a fair base for comparision of different hardware crypto algorithms. Additionally, an AES core
optimized for stream cipher output has been implemented and is listed as comparative reference.

1 Introduction

The European Network of Excellence for Cryptography (ECRYPT) has started a multi-year effort called eSTREAM

to identify new stream ciphers that might become suitable for widespread adoption. A total of 34 algorithms have
been submitted to eSTREAM. Nine candidates (ABC, CryptMT, DICING, Dragon, Frogbit, HC-256, Mir-1, Py, and
SOSEMANUK) have been specified as pure software implementations, and a further 13 (F-FCSR, Hermes8, LEX, MAG,
NLS, Phelix, Polar Bear, POMARANCH, Rabbit, Salsa20, SSS, TRBDK3 YAEA, and Yamb) have been specified to be
suited for both software and hardware implementations. The remaining 12 algorithms (Achterbahn, DECIM, Edon80,
Grain, MICKEY, MOSQUITO, SFINKS, Trivium, TSC-3, VEST, WG, and ZK-Crypt) were designed with primarily
hardware implementations in mind.

The Integrated Systems Laboratory (IIS), together with the Microelectronics Design Center, provides a series of lec-
tures on VLSI design at the Department of Information Technology and Electrical Engineering (D-ITET) of the ETH
Zurich. As part of this lecture, students are encouraged to work on projects where they design their own ASICs.
Successful implementations are then sent to fabrication, and the manufactured chips are finally tested during a later
semester. Since a lot of cryptographic algorithms are developed with hardware realizations in mind, they are very well
suited for such semester theses. As a consequence, a number of successful projects were realized at our institute over
the years [1,2,3].

For the winter semester 2005/2006, four students showed interest in a project targeting the implementation of crypto-
graphic hardware. It was decided to design a subset of eSTREAM candidates and thereby to provide a fair comparison
(of at least the implemented set) of candidate algorithms. Since the entire IC design had to be completed within one
semester (14 weeks), not all 34 candidate algorithms could be realized with reasonable effort. According to the advice
of Elisabeth Oswald, Thomas Johansson and Matt Robshaw [4], the following guidelines were adopted in order to
reduce the number of algorithms suitable for integration within this project. Consider only:

1. Algorithms that were specifically intended for hardware realization (eSTREAM Profile-II candidates).
2. Algorithms that were not known to have any negative cryptological or technical issues.
3. Algorithms for which future development is more likely to be expected.
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At the start of the project in October 2005, the decision for a subset of stream cipher algorithms had to be made, and
eventually seven eSTREAM candidate algorithms were sorted out: Grain[5], MICKEY[6], MOSQUITO[7], SFINKS[8],
Trivium[9], VEST[10], ZK-Crypt[11]. By the time when all of these seven algorithms were successfully implemented
in hardware, little time was still left. At this stage, it was decided to briefly revise the remaining five Profile-II algo-
rithms (Achterbahn, DECIM, Edon80, TSC-3, WG), and considered to implement additional algorithms if this could
be achieved with reasonable effort. As a result of this procedure, Achterbahn[12] was added to the list of implemented
algorithms.

To provide a comparative reference for the results, the well-known Advanced Encryption Standard (AES) [13] block-
cipher was implemented in Output-Feedback (OFB) mode. In this configuration mode, the block-cipher is able to
generate a continuous output stream that can be used as a stream-cipher. Since we have significant experience in
implementing the AES algorithm at the IIS, we were able to efficiently customize an AES block for stream-cipher
implementation. The customized AES core and the eight stream-cipher designs were then integrated in 0.25 µm CMOS

technology.

The organization of the paper is as follows: Section 2 describes the methodology used in designing all circuits. The
algorithms are briefly described in section 3. A brief discussion about hardware efficiency can be found in section 4
and the implementation results are presented in section 5. Finally, the conclusions are drawn in section 6.

2 Methodology

The comparision of hardware implementations of different algorithms is a difficult and challenging task. Most eSTREAM

candidate submissions contain information regarding the hardware implementation of the algorithm. While the pre-
sented information is certainly valuable, it is difficult to use the data directly to compare different algorithms with each
other. The reasons are as follows:

– The implementations may use different design styles, heavily depending on the type of target hardware: FPGA or
ASIC. For ASIC design flows, we can usually take advantage of quite a fine-grained logic optimization enabled by
dedicated synthesis tools. As a consequence, this allows for deep logic structures, or in other words, more logic
functionality can be executed during a single clock cycle. On the opposite, FPGAs contain dedicated macro struc-
tures (e.g. logic slices, multipliers), which allow only for coarse-grained optimization. Most often, the interconnect
delay significantly adds up to the overall timing of the final placed and routed FPGA design. Moreover, memory
resources are in general quite costly on ASICs, while on FPGAs, large memories are rather common. In order to
meet high throughput constraints, this leads naturally to different design styles: one relying on fine-grained logic
optimization, the other on shallow logic depth and increased memory usage.

– For ASIC implementations, different manufacturing technologies may have been used, while for FPGAs different
types of programmable devices may have been chosen. For instance, ASIC designs may differ in process technol-
ogy or macro cell library (e.g. subset of fixed-size memories vs. RAM compiler), whilst FPGA architectures may
employ specialized blocks such as multipliers or DSP slices. Therefore, it may not be obvious how algorithms
realized on different hardware technologies can be compared and how they would fare on identical technology.

– The experience of the designer and the project schedule may play an important factor on how well an algorithm is
mapped to hardware.

2.1 Design Flow

This project aims at providing a fair comparison between different algorithms, all of them implemented using a stan-
dard cell based ASIC design flow. The target technology for the chip integration is UMC 0.25 µm 5-Metal CMOS tech-
nology. Four seventh semester master students (Nico Bernold, Rene Blattmann, Victoria Goode, Marcel Marghitola)
worked in two groups to implement the algorithms in VHDL. The students were supervised by two research assis-
tants (Frank K. Gürkaynak, Peter Lüthi) with experience in the entire ASIC design flow. The VHDL source code was
functionally verified using the Mentor Graphics ModelSim simulation environment. The C-code from the eSTREAM
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submission package has been used as a golden model for verification. The circuit was synthesized using Synopsys
Design Vision tools and the resulting netlist was placed and routed using Cadence Design Systems SoC Encounter
software. The students had 14 weeks to complete the entire design flow in order to meet a strict tape-out deadline. The
chips are due back from manufacturing mid-may 2006.

2.2 Interface
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Fig. 1. Simplified block diagram showing the common interface used to access all algorithms.

The available resources for the physical implementation was limited by several constraints. Each group was assigned
a die area of 5.92 mm2. For the technology used, this area is sufficient for an ASIC with 84 pins and a core area of
3.56 mm2. Since multiple algorithms had to be implemented on a single ASIC, a common interface as shown in figure
1 was developed. Due to a limited amount of I/O pads, the ASIC uses 16-bit input and output buses for data exchange,
although some algorithms require more than 16 data bits per clock cycle. To satisfy the requirement for delivering
more data, 64-bit buffers for both input and output have been added. Algorithms that require more than 16 bits of I/O
data per clock cycle can be run using one of two options.

1. In the slow mode, the algorithm is halted until the input buffer has collected sufficient data. After accumulation of
all data, the algorithm is run and the output is again collected at the output buffer. The algorithm is halted until the
data is read out of the buffer. In this mode, all input data is used for en-/decryption.

2. In the fast mode, the algorithm is not paused. Instead, the missing input data is obtained by replication, and only
a portion of the output is observed. This mode may be applied for speed testing.

The cipherkey and the initialization vector (IV) are stored in a common 256-bit register. This register is made available
to all algorithms in parallel.

To provide an equal basis for comparison, the guidelines listed below were followed:
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– Some submissions did not provide an associated authentication method. All algorithms were implemented without
any authentication method add-on.

– All synthesized algorithms include scan-test structures for full-scan testing.

– No ROM macros were used for the look-up tables and/or complex functions.

– All algorithms were designed to accept plaintext and deliver ciphertext. Algorithms which only generate key
streams were enhanced by adding XOR gates.

2.3 Cryptographic Security

We believe that our expertise resides mainly in the design of digital circuits. The discussion of security aspects of the
implemented algorithms is therefore left to experts in cryptography. All algorithms have been assumed to be equally
secure for performance comparison.

Once an otherwise secure cryptographic algorithm is implemented in hardware or software, it will acquire physical
properties that can be observed. If it is possible to guess parts of the cipherkey by observing these physical properties,
the hardware implementation is said to be vulnerable against side-channel attacks. The specific implementation of
an algorithm may have a strong influence on how effective a given side-channel attack will be. However, there is no
algorithm- and attack-independent methodology to rate the side-channel vulnerability of an implementation. There-
fore, no remarks will be made on how vulnerable the implementations are against side-channel attacks. During the
design phase, no special countermeasures against side-channel attacks have been considered and implemented. The
side-channel security of the implemented algorithms will be determined by measurements on fabricated ASICs in a
follow-up project.

2.4 Measuring Performance

The following performance metrics will be used in this paper:

– Circuit area (A)
A represents the total area that is required for the implementation, expressed in µm2. For reference, in the tech-
nology used for this implementation: a 2-input NAND gate occupies an area of 23.76 µm2, a 2-input XOR gate
occupies 55.44 µm2 and a scannable flip-flop with reset occupies 205.92 µm2. The circuit area is obtained from
synthesis results, and does not include buffers for clock distribution and additional overhead for placement and
routing.

– Maximum clock rate (f)
The maximum clock rate, given in MHz, is determined by the critical path of the circuit. The number is once again
taken from post-synthesis timing analysis. In the technology applied here, the fanout-of-four (FO4) delay [14] of
a simple inverter is approximately 0.1 ns.

– Processed bits per clock cycle (radix)
Most of the submitted stream-cipher candidates have been specified with single bit output. For some algorithms, it
is possible to modify the architecture in such a way that multiple output bits are calculated concurrently. Moreover,
some algorithms like VEST have variations of the architecture for different output bit lengths. The number of bits
simultanously generated by the algorithm is referred to as the radix of the implementation. Some algorithms will
have multiple implementations with different radices.

– Total throughput (T)
One of the fundamental parameters of a cryptographic algorithm is the amount of data it can process within a
given period. The total throughput of the algorithm is epxressed as Gbits/s and can be calculated from the previous
parameters as:

T = f � Radix
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– Throughput per unit area (TpA)
Judging the performance purely by the throughput is not representative as this provides no indication about the
area required for the implementation. For this purpose, the throughput per unit area measure will be used:

T pA =
f � Radix

A

3 Algorithms

In this section, specific comments about the eight implemented algorithms are given. These comments target mainly
the process of implementation of the eight eSTREAM candidates, in other words, how straight-forward the actual
implementation process was based on the provided documentation. Note that, for a hardware designer, the reference
C-code is just as important as the written documentation. The implementation needs always to be verified against the
reference C-code, and when in doubt, always the implementation in the C-code is assumed to be correct.

3.1 Achterbahn

As mentioned earlier, Achterbahn was not amongst the initial candidates for implementation. Once all intended algo-
rithms were implemented, it was decided to briefly revise the remaining 5 algorithms to determine whether or not more
could be implemented. Achterbahn was selected primarily because it is very well documented and has an excellent
reference C-code, exactly the desired prerequisites for hardware designers.

Achterbahn can be configured to use initialization vectors (IV) of different bit-lengths. This flexibility comes at the
expense of a more complex initialization sequence which also requires more hardware. Our implementation is therefore
limited to support only a 64-bit IV.

While it is possible to implement higher radix versions of Achterbahn, doing so increases the critical path, hence
reducing the efficiency of this approach. In principle the algorithm could be implemented employing any radix without
major difficulties. Due to the initialization sequence, practical radices are limited to even dividers of 176.

3.2 Grain

Grain is an algorithm that is rather simple and straightforward to implement for radices up to 16. A radix-32 imple-
mentation is also possible, but would result in a longer critical path. At the start of the project (October 2005), there
were two versions of Grain available. From a hardware performance point of view, there is no difference between the
two versions. The submission package of Grain included good documentation and good reference C-code.

3.3 MICKEY

MICKEY is another compact algorithm that is very easy to implement. The documentation is written in a ’hardware
designer friendly’ way and the reference C-code is also easy to follow. The only technical issue of this algorithm is the
difficulty to increase the radix.

3.4 MOSQUITO

MOSQUITO is the only algorithm implemented that has separate encryption and decryption modes. There were several
problems with the reference C-code. The initial submission was corrected in July 2005. However, this code still had
some errors, which were finally corrected in December 2005. The accompanying documentation lacks precision for
implementation.
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MOSQUITO has a pipelined structure with very few gates in between registers. It is therefore difficult to modify
the algorithm for higher radix implementations. Without the initialization sequence, a radix-9 implementation would
theoretically be possible. However, the initialization sequence that uses 104 bits renders this impractical. We have
implemented a radix-3 version of MOSQUITO.

The fifth-stage register is specified to be 53 bits wide. During synthesis of the algorithm, it was noticed that only 48
bits were used, the content of the 5 most significant bits was discarded.

3.5 SFINKS

SFINKS is mainly dominated by a multiplicative inverse function in GF(216). This is a relatively complex block that
can be implemented by iteratively decomposing the function into operations in GF(22). While the documentation
contains an appendix explaining this process, especially for hardware designers that are not well versed with Galois
field implementations, the required transformation is not trivial. In essence, the inverse function is a 16-bit input, 16-bit
output function. However, during normal operation, only 1-bit is used to calculate the key stream (a further bit is used
for the calculation of MAC, which was not implemented in this project). The full 16-bit output is only required during
initialization. As explained in section 4.1, from a hardware design perspective, the system can be modified in a way
where the initial states of the registers are directly loaded. If the algorithm is implemented in this way (we called this
implementation SFINKS+), the throughput per area can be increased by more than 75%. Additionally, it is also less
costly to increase the radix of SFINKS+.

The high logic complexity of the inverse function results in a relatively low maximum clock frequency. it can be
increased by adding pipeline registers into the inverse function. Our implementation uses a single pipeline stage.

The documentation of SFINKS had some errors at the beginning, these were corrected later. Apart from the description
of the inverse function, which is difficult to understand, the documentation is easy to follow.

3.6 Trivium

Trivium has a very simple structure that is well-suited for higher-radix implementations up to radix-64 without noti-
cable hardware penalties. In fact, from a hardware efficiency point of view, it is wasteful to implement Trivium with
a radix less than 64. Radix-64 Trivium is just 54% larger, and has a maximum clock frequency that is only 10% lower
than a radix-1 implementation. Consequently, the throughput per area of the radix-64 version is roughly 40 times
higher compared to the radix-1 alternative.

The main problem with Trivium is the reference C-code, which does not have any comments. This made it extremely
difficult to integrate it into the verification flow.

3.7 VEST

The initial documentation set of VEST was not very easy to follow, and was not very clear regarding the input permu-
tations to the non-linear functions in the accumulator. It was later discovered that the documentation had been updated
in the meantime, and we believe that the problems were addressed in this revision. The reference C-code is not well
suited for understanding the algorithm, as it is cluttered with pre-processor commands.

VEST has been described in separate families of functions for 4, 16, and 32 bit output per clock cycle, called VEST4,
VEST16 and VEST32 respectively. The new documentation also includes the 8-bit version VEST8.

The algorithm is fairly complex and has an equally complex initialization sequence. The majority of the functions
are described as look-up tables. Describing the algorithm in VHDL is not a very trivial task. We have modified the
reference code so that it generated output that we could include in the VHDL description itself. The large number
of look-up tables might be suitable for FPGA implementations, since FPGAs realize functions within small look-up
tables. Nevertheless, for a custom ASIC solution the approach of using look-up tables is cumbersome. In fact, using
our standard design flow it was only possible to synthesize VEST4 and VEST16. We will have to re-write the code for
VEST32 so that we can pass it through the synthesis stage.

118



3.8 ZK-Crypt

ZK-Crypt has by far the worst documentation of all eSTREAM candidates that we have implemented. First, there
is no overview which makes it extremely difficult to follow. A multitude of drawings has been provided, but some
drawings are marked as ’conceptual’ and seem to be inconsistent with the documentation. The reference C-code fares
better, but is also far from easy to understand. At least in one case there is an inconsistency between the reference
C-code and one of the drawings, regarding how key bits 26 and 27 are handled. We have implemented the algorithm
in such a way that is consistent with the reference C-code (which simply ignores the content of these two bits). From a
hardware designer’s point of view, this peculiarity might originate from an incomplete C-code, what would also result
in non-exhaustive functional pattern generation for hardware verification once the functionality of these two bits is
implemented. We decided to stick to the original C-code and to ignore any ambiguous information for the hardware
design.

The algorithm is very difficult to implement, due to its irregular structure and many details, especially in the control
state machines. We made no attempt to try different radix implementations. On the positive side, the algorithm does
not have an initialization sequence and uses no IV.

3.9 Reference AES implementation

To serve as a reference, we have implemented an AES core that is configured to run in output feedback mode (OFB).
The core accepts 128-bit keys, and uses an on-the-fly roundkey generator. It has 4 parallel look-up tables for the
SubBytes function, and requires 41 clock cycles to compute a 128 bit output that is used as the key stream (resulting in
a calculated radix of 3.12). For an independent implementation, the AES core would also have to store the cipherkey
so that it can restart generating the roundkeys for each encryption. In this implementation, the cipherkey is stored in
the interface which results in a slightly more compact realization (about 10% less circuit area).

4 Efficiency in Hardware

4.1 Initialization

Several eSTREAM candidates require an initialization phase. During the initialization phase, the internal registers are
preset to a certain value, and the cipherkey and the initialization vector are loaded into specified registers. Some
eSTREAM candidates require a number of operational cycles that will initialize all internal registers prior to generating
the key stream.

From a cryptographic point of view, it may be important to differentiate between cipherkey and the initialization vector.
However, from a VLSI designers point of view, only the internal registers responsible for key stream generation
during the en-/decryption process need to be set to an initial state. This initial state of the registers can be derived
mathematically from the cipherkey and the initialization vector and may then be loaded directly into the registers,
saving precious setup time before being able to process any data. Moreover, the streamlining of the initialization
procedure might also reveal some benefits in terms of hardware complexity: Basically, the control overhead and data
switching through multiplexers is reduced, what leads to minor improvements in clock speed and area. But in rare
cases, the optimization of the initialization procedure may result in a significantly improved hardware efficiency:

As an example, in SFINKS, the initialization routine requires a 16-bit multiplicative inverse which must be delayed by
6 clock cycles. The 16-bit output of the delay buffer implemented as 96 flip-flops (FF) is then fed back to the LFSR.
This function is only required for the initialization procedure, during normal operation only the LSB output of the
multiplicative inverse is used. If the algorithm is modified so that the initial state is calculated externally and loaded
directly onto the hardware as seen in figure 2, the inverse function can be simplified and the delay elements can be
substantially reduced as well. In this way, the throughput per area of SFINKS can be increased by more than 70%. This
major improvement in hardware efficiency originates from both, reduction in circuit area and increase in clock speed.
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Fig. 2. Native implementation of SFINKS (left), as suggested by the original eSTREAM candidate submission, has significant over-
head for initialization. SFINKS+ (right) does not have this overhead and is even more efficient in terms of circuit area, data through-
put and initialization latency.

4.2 Stage delay

Synchronous digital circuits for ASICs are in general built from standard cell libraries. The elements in standard cell
libraries are classified in logic and sequential cells. Sequential cells, such as flip-flops and latches, serve for storage of
data, while logic cells are necessary to reflect the mathematic functions in hardware.

The maximum clock frequency of the circuit is determined by the longest path induced by numerous logic cells between
two sequential elements in the circuit. Each logic cell (or gate) in the critical path will contribute some delay to the
signal propagating through. For a simplified analysis, one can assume that all gates have a technology-dependent
unit delay. For such analyses the FO4 delay is frequently used [14]. In this simplified analysis, the clock frequency
can be expressed in terms of FO4 gate delays. This allows for simple extrapolation of circuit performance in other
technologies.

State-of-the-art high performance digital circuits can be designed with as little as 10-20 FO4 delays. However, such
designs require utmost precision in the back-end design phase (the physical design process: cell placement, routing
and clock distribution) and are most often hand crafted. The back-end overhead for 20-50 FO4 delay circuits is still
significant. It is a very challenging task to implement these circuits using standard cells. Circuits with roughly 50-
100 FO4 delays are fast designs that are manageable with standard cell design methodologies, and implementing
circuits with 100-200 FO4 delays is a straightforward procedure. Finally, circuits with more than 200 FO4 delays
hardly pose timing related challenges.

For the UMC 0.25 µm technology, the FO4 delay is approximately 0.1 ns. Consequently, designs with up to 200 MHz
can be realized without excessive overhead. Circuits that can be clocked faster can still be implemented, but they pose
significant challenges to the back-end design process and are rarely practical.

4.3 Bits per clock cycle

There are two fundamental options that can be employed to improve the throughput of a cryptographic circuit. Either
the maximum clock frequency can be raised or the radix of the circuit is increased. As already explained before, the
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increase of the frequency is only viable to a certain extend. Nevertheless, a higher radix remains as second option and
in general turns out to be a very powerful method to boost the overall throughput.

Not all algorithms are equally suited to produce multiple output bits per clock cycle. Some algorithms require replica-
tion of major operational blocks in order to increase the radix, and thus lead to an enlarged circuit area. Basically, if the
n-fold increase in the radix requires n-fold increase in the area, both implementations would have a similar throughput
per area, and thus would be equally efficient. Moreover, such changes increase often the critical path and decrease the
maximum operating frequency as well. However, as can be seen in figure 3, several eSTREAM candidates have been
designed with support for multiple-bit computation in mind. The performance of these algorithms can be improved
considerably by increasing the radix.

Grain is an illustrative example for the typical VLSI challenge of trading in throughput against circuit area: If more
throughput is required, the radix might be doubled, but the resulting gain is not two-fold since the circuit area slightly
grows and/or the the clock frequency drops. Trivium is an extraordinary example where doubling the radix has almost
no impact on the area, and the clock frequency can be sustained. Therefore, the achieved gain is nearly doubled and
almost at the ideal curve. On the other hand, Achterbahn represents an implementation, which is not appropriate for
architectural changes in radix in order to achieve a higher throughput. The best hardware efficiency is obtained with
radix-2, increasing the radix further even degrades the efficiency of Achterbahn. This is because both values are nearly
equally affected, the circuit area grows and the clock frequency degrades. From an efficiency point of view, it is not
advisable to implement any other version than radix-2. For higher throughput rates rather than using higher-radix
implementations, replicating several radix-2 versions of Achterbahn would be more efficient.
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Fig. 3. Performance gained by increasing the area. Performance is expressed in terms of throughput per area, and is normalized to
the radix-1 implementation of each algorithm.

5 Results

The numbers listed here are synthesis results. Post-layout results, including power figures, will be pre-
sented at the SASC 2006 workshop.

As a first step, all algorithms have been implemented to match their description. Apart from VEST and ZK-Crypt,
this results in radix-1 implementations which have throughputs at around 0.3 Gbit/s. When compared to the reference
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AES implementation, radix-1 algorithms with smaller area (Grain, MICKEY, Trivium) achieve a higher throughput
per area ratio, while algorithms that require more area (Achterbahn, MOSQUITO and SFINKS) can not match the
performance of AES. Both VEST and ZK-Crypt, which have a higher radix by definition, are able to outperform AES

implementation noticably.

As a second step, we tried to optimize all algorithms in order to increase their performance. In most cases, significant
performance gains can be obtained by increasing the radix. Especially Trivium, which has been designed with par-
allelization in mind, reaches an exceedingly high throughput. Table 1 compares the main performance figures for all
algorithms. For algorithms that have multiple implementations, only the one with the highest throughput per area is
listed. A graphical comparison of the results are given in figure 4 as well.

Table 1. Summary of results for eSTREAM candidates. For each algorithm, the most efficient implementation (high throughput per
area) has been listed.

Algorithm A f radix T TpA TpA

(µm2) (MHz) (bits) (Gbit/s) (Gbit/s�mm2) (norm)

Achterbahn 227,763 250 2 0.466 2.044 1.08

Grain 119,821 300 16 4.475 37.346 19.79

MICKEY 82,328 308 1 0.287 3.481 1.85

MOSQUITO 306,907 265 3 0.739 2.408 1.27

SFINKS+ 361,643 167 8 1.242 3.434 1.82

Trivium 144,128 312 64 18.568 128.833 68.30

VEST 393,000 286 16 4.257 10.833 5.74

ZK-Crypt 142,007 203 32 6.057 42.656 22.61

AES (OFB) 280.098 182 3.12 0.528 1.886 1.00

Several algorithms (Achterbahn, MOSQUITO, SFINKS, VEST), even in their non-optimized forms, require an area
comparable to AES. For higher-radix implementations, only few (Grain, MICKEY, Trivium, ZK-Crypt) are noticably
smaller than AES. To achieve the stated performance, most algorithms require a clock frequency that is above the
comfort zone for a standard-cell-based design (roughly 50 FO4 delays, 200 MHz for UMC 0.25 µm technology).
Implementations with faster clock rates are possible, but have considerably more overhead during physical design.

Some algorithms are able to achieve significantly higher throughput (Grain, Trivium, VEST, ZK-Crypt) than the ref-
erence AES implementation. But the real efficiency comparison is the achieved throughput per area. Three algorithms
(Grain, Trivium and ZK-Crypt) are at least 20 times more efficient than AES. Out of the remaining algorithms, only
VEST is able to clearly distance itself from AES, while the others (Achterbahn, MICKEY, MOSQUITO and SFINKS)
are only slightly better.

6 Conclusions

The expectations from an efficient cryptographic algorithm will differ depending on the specific application. Some-
times, small area will be of utmost importance, at other times, a certain data throughput will have to be maintained. It
is therefore not practical to expect that a single implementation will satisfy all requirements. Our opinion is that the
most important aspect for a hardware-efficient cryptographic algorithm is flexibility. It must be possible to trade-off
total throughput with area over a wide range.

From the eight implemented eSTREAM candidates, there are several algorithms that can achieve significantly higher
throughput per area ratings, and several others which are noticably smaller in area than the reference AES imple-
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mentation. However, we belive that it is not possible to rate the presented algorithms without knowing their relative
cryptographic qualities.
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Abstract. This paper presents hardware implementation and analysis of a carefully selected sub-set of the 
candidate stream ciphers submitted to the European Union eStream project.  Only the submissions without 
licensing restrictions have been considered.  The sub-set of six was defined based on memory requirements 
versus the Advanced Encryption Standard and any published security analysis.  A number of complete low 
resource designs for each of the candidates are presented together with FPGA results for both Xilinx Spartan 
II and Altera Cyclone FPGAs, ASIC results in terms of throughput, area and power are also included.  The 
results are presented in tabular and graphical format.  The graphs are further annotated with different cost 
functions in terms of throughput and area to simplify the identification of the lowest resource designs. Based 
on these results, the short-listed six ciphers are classified. 
 

Keywords.  Stream Ciphers, Hardware, FPGA, ASIC, Performance Evaluation. 

1   Introduction 

In 2004, a project under the Information Societies Technology (IST) Programme of the European Commission 
“eCrypt” network of excellence called “eStream” was started tasked with seeking a strong stream cipher.  
Thirty-four candidate ciphers have been submitted and are currently being evaluated in terms of security. 

A stream cipher formally is a symmetric cipher which generates a sequence of cryptographically secure bits 
called the key stream which is then combined with either the plaintext or ciphertext, at the bit level, using the 
exclusive-or operation.  The basic topology (Fig. 1) of a stream cipher consists of a register to store the key and 
an initialisation vector (IV) together with a function for its update (typically some sort of feedback shift 
register).  This register forms the current state of the cipher and is clocked for successive bits of the keystream.  
The next component is a non-linear reduction function which takes part or all of this state and combines the bits 
in a non-linear fashion normally to yield a single bit of the keystream.  This bit is then exclusive-or’ed with the 
plain/cipher text.  In a second form, the plain or cipher text may be incorporated into the state update feedback 
function to effectively create a cipher-feedback mode. 

A vital function, in terms of security, is the period of the initial key and IV mixing to prevent key recovery 
attacks.  In this period, a cryptographically strong feedback function is needed to operate upon the state for a 
number of iterations (basically hashing).  The reduction function used to output the keystream can be somewhat 
weaker. 
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Fig. 1. Generic stream cipher 
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The call for cipher primitives[1] made provision for two profiles, one for software, requiring equivalent 
security of 2128, and one for hardware, requiring 80-bit (280) security.  An extension to the basic cipher was also 
defined for those wishing to supply a message authentication code (MAC).   The call recognised the importance 
of resource utilisation for both profiles in that the deployed environments for stream ciphers often have very 
restricted resources (eg smart cards).  To aid this, the call defined the Advanced Encryption Standard (AES) as a 
benchmark and submissions should use less resource and be “faster” then the AES. 

There has been very little discussion or comparison of the hardware implementations of the candidate stream 
ciphers to date.  The majority of the effort has been correctly directed towards the cryptanalysis of the 
algorithms.  However, as will be shown in this paper, even early hardware results can provide a timely method 
for selecting a sub-set of the candidates for more intensive scrutiny.  It is hoped that this paper will allow effort 
to be directed towards the “low resource” hardware submissions so that these are proved secure or broken more 
or less in the order of hardware “performance”. 

Section 2 of this paper describes how the list of ciphers was sifted to locate a smaller set for hardware 
evaluation.  Briefly, this was in terms of the ciphers commercial status (i.e. “free-for-all”), the amount of 
internal state and identification of any large look-up tables (S-boxes).  This is followed, in section 3, by details 
of the method used to evaluate the hardware performance and in section 4, the results for the selected ciphers.   
Where the hardware results were affected by the developers’ choice of initialisation, this is highlighted, as 
tweaks to initialisation are permitted within the scope of the eStream call.  Finally, in section 5 some 
conclusions are drawn. Appendix A (due to page number restrictions) gives details of each of the designs 
together with additional suggestions on possible ‘tweaks’ aimed at further reducing the hardware requirements. 

Considering the results for Xilinx FPGA, Altera FPGA and power results for 0.13µm Standard Cell ASIC 
allows some strong conclusions to be drawn.  Of the ciphers considered, this analysis excluded the 
“commercial” ones, Grain and Trivium can be ranked as the most efficient followed by Sfinks, Mosquito and 
Hermes.  The raw results have been included to permit others to choose their own metrics and allow for further 
comparisons. 

2   Selection Process 

Any selection process will be inevitably coloured by the authors own position and beliefs.  In the interest of 
academic fairness we will state ours: 

1. We have no affiliation or predisposition to any of the candidate algorithms or their authors. 
2. We would like to see the successful stream cipher be “free for all” to use.  Thus we have not directed 

any efforts towards any of the “non-free for all” candidates. 
3. We are concerned only with low resource hardware results and believe that both FPGA and ASIC 

results are important. 
4. We do not wish to make any security claims about any of the candidates and where ciphers have been 

disregarded from this analysis on the grounds of security weakness we have relied on our interpretation 
of the results posted on the eStream web site. 

There are some 34 candidate primitives submitted.  From the information provided on the eStream web site 
[1], nine of the candidates were subject to some form of licensing or restriction so excluded from our analysis.  
For a further seven of the candidates the published cryptanalysis had highlighted, in the authors’ view sufficient 
weakness for it to be excluded from this analysis.  To reiterate, this is the authors’ view for the purpose of 
reducing the number of candidates to implement in hardware and is not in any way concerned with the formal 
selection process by the eStream project. 

The developers submitted their algorithms to either the software, hardware or both profiles.  From initial 
examination of a few of the “software” submissions it was recognised that although these had not been 
submitted to both the software and hardware profiles they may have a low resource hardware implementation so 
should be considered. 

For the eighteen remaining candidates, the reference designs and papers were examined in detail to determine 
any hardware results reported by the developers together with the amount of internal storage (in bits) and any 
memory requirement for “S-box” substitution operators.  It was further noted, if any S-box had known or likely 
logic implementation which could be utilised to avoid a relatively large memory.  In the case where the “S-box” 
is generated using the key or otherwise manipulated making implementation as a ROM not possible it was 
considered as part of the internal state. 

A view was taken on what would be acceptable as low resource with the aim of approximately reducing the 
remaining candidates to produce our “top six”.  As a baseline for comparison we considered an earlier low 
resource FPGA implementation of the AES [2] which supported three feedback modes (OFB, CTR and CFB) 
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thus represents a well understood and relatively secure stream cipher.  For a second baseline, the standard cell 
ASIC design of Feldhofer [3] was selected. 

FPGA results can be obtained more rapidly than ASIC results so the evaluation was started with 
consideration of the FPGA performance.  The FPGA AES baseline case was viewed as the limiting case that 
candidates must outperform.  This implementation [2] required 704 bits of internal state and a 2kbit S-box 
(implemented using composite field logic).  This design supported three feedback modes, if a single mode were 
selected such a design would only require approximately 400 bits of storage.  Consequently, baseline limits of 
400 bits of internal state and 2kbit of fixed-valued S-box were selected. 

This selection process may at first glance appear relatively crude, however, in hardware, the area occupied by 
a D-type Flip Flop, which is the most likely means of storage of internal state bits, is relatively large compared 
with combinational gates, thus, will account for a significant proportion (>50%) of the area of any low-resource 
implementation.  A similar argument can be made for the area consumed by requiring a few kilo-bits of memory 
(either RAM or ROM). 

 
Table 1 lists all the candidates in alphabetical order together with the authors’ reasons for selection or non 

selection for further analysis. 

Table 1. Summary of selection of candidates 
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ABC 1 yes 160 
+KE 

(1024) 

128 
128 

0 � For software broken but still >2^80 so ok for 
hardware, however, Key Expansion of 32x32-bit 
words (1024 bits) and not sure from paper or code 
what is the “standard key expansion”. 

Achterbahn 
 

2  yes - - - � broken, linear ca in 2^73 

CryptMT/ 
Fubuki 

1 no - - - � not free for all 

Decim 
 

2 no - - - � broken, 2^29 IV to recover key 

Dicing 1 yes 768 128/256 
128/256 

2k � disputed ca, large internal state 

Dragon 1 yes 192 128/256 
128/256 

16k � large “randomly” generated s-boxes, 
disputed ca 

Edon80 2 no - - - � key period doubts, 
not free for all 

F-FCSR 
 

1&2 yes - - - � broken, key recovery attack 

Frogbit 
 

1A no - - - � not free for all 

Grain 2 yes 160 80 
63 

0 � ok, linear ca which required 2^61.4 bits of 
keystream 

HC-256 1 yes 64k 256 
256 

 � 2 x huge s-boxes (64 kbit) 
1024 bit subtraction 

Hermes8 1&2 yes 224 80 
184 

2k or 
logic 

� ok, uses AES s-box 
 

LEX 1&2 no - - - � not free for all,  
key recovery in 2^61 IVs 

MAG 1&2 yes - - - � broken, low complexity distinguishing attack 
MICKEY 
 

2 yes - - - � key stream entropy loss 

Mir-1 1 yes 2432 128 
64 

2k or 
logic 

� too much internal state, uses AES s-box with key 
to generate own s-box 
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Table 1 continued… 
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Mosquito 1A& 
2A 

yes 128 96 
104 

0 � ok 

NLS 1A& 
2A 

yes 1184 ? 256 
256 

8k � two S-boxes (total 8x32 bit s-box).  too much 
internal state & s-box! 

Phelix 
 

1A& 
2A 

yes 352 256 
128 

0 � ok 

Polar Bear 1&2 yes 168 128 
<248 

2k or 
logic 

� 5 round AES + RC4, one round of AES is still 
relatively large 

Pomaranch 1&2 yes 184 ? 128 
144 

4k or 
logic 

? Unsure of status of broken then fixed submissions 

Py (“Roo”) 1 yes 10400 256 
128 

0 � too much internal state 

Rabbit 
 

1&2 no - - - � not free for all 

salsa20 
 

1 yes 512 256 
64 

0 � Too much internal state, disputed ca 

Sfinks 2A yes 256 80 
80 

64k or 
logic 

� ok 

Sosemanuk 1 yes 512 128/256 
128 

0.5k � Too much internal state 

SSS 1A& 
2A 

yes - - - � broken by J. Daemen 10 secs on a PC 

Trbdk3 
yaea 

1&2 no - - - � not free for all 

Trivium 2 yes 288 80 
80 

0 � ok, linear ca to date shows strength 
 

TSC-3 
 

2 yes - - - � broken, linear ca in 4 mins on a PC 

VEST 
 

2A no - - - � not free for all 

WG 
 

2 yes - - - � broken, chosen IV attack 

Yamb 1&2 yes >3k 256 
128 

0 � Too much internal state 

ZK-Crypt 
 

2 No - - - � not free for all 

 
This first-pass selection, as illustrated in Table 1 above, has resulted in a short list of six for further 

investigation: 
  Grain,  Hermes-8,  Mosquito,  Phelix,  Sfinks and  Trivium. 

3   Hardware Implementation 

3.1   Method 

Of the remaining six selected candidates, three are in the 1A and 2A profiles which offer a message 
authentication code (MAC) in addition to the stream cipher output.  In order to achieve a fair comparison against 
the other candidates, the designs were implemented as pure stream ciphers out without any of the additional 
resources required for supporting MAC generation. 
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Some of the developers quoted hardware results to different degrees of confidence from “rough estimates” to 
detailed implementation details.  However, there was no consistent methodology used and results differed 
greatly depending on a variety of factors such as the number of gates or transistors required to make up a D-type 
flip-flop and the supported interfacing.  Such variations make it impossible to directly compare the developers’ 
hardware results.  Thus the decision was taken to develop an independent set of hardware results. 

Stream ciphers are required to operate on a stream of bits thus the decision was taken to use a synchronous 
serial style of interface for input and output of the plaintext and ciphertext.  More flexibility was adopted for 
entry of the key to be either serially or utilise a short word parallel format (eg 8 or 32 bits at a time). 

The designs were developed for low resources, sacrificing throughput in the interests of saving area.  First, 
results were obtained for Xilinx FPGA using ISE version 6.3 and Altera FPGA using Quartus II version 5.0 both 
of which use 0.13 µm CMOS processes.  In line with the low resource nature of eStream, the smaller Spartan-II 
devices were selected (XC2S15, XC2S30 and XC2S50).   The smallest available Altera Cyclone 
(EP1C3T100C7) is considerably larger than the smallest Spartan II parts thus the same part was used for all the 
designs.  ASIC results for a commercial 0.13µm standard cell process were obtained using a Cadence Physically 
Knowledgeable Synthesis (PKS) version 5.14 design flow for Synthesis, Place and Route (SP&R) using PKS, 
BuildGates, AmbitWare, standard cell technology library and SiliconEnsemble.  The flow incorporated worst-
case parasitic extraction and back annotation using foundry data.  Verification included static timing analysis, 
design rule checks, generation of expected switching data using ModelSim and power results from Cadence 
LPS. 

3.2   Defining Performance 

The results quoted for the FPGAs are actual post place and route results (not synthesis estimates).  The 
maximum clock rate for the design together with the selected FPGA device and its area utilisation are given.  
However, due to the richness of modern FPGA fabric this alone would not be representative of the likely device 
performance for ASIC so a further gate based analysis is given. 

For this analysis, throughput performance was measured in millions of bits per second (Mbps) for the output 
of ciphertext neglecting any initialisation time.  The area of an FPGA is normally measured in terms of its cell 
usage: slices for Xilinx and Logic Elements (LE) for Altera. 

To avoid specific metrics for individual devices, it is proposed to use the “gates” metric for measuring area.  
In this paper, one “gate” is equivalent to the area occupied by a two input NAND gate (6 transistors).   Thus a 
two input XOR gate typically occupies an area equivalent to 2.33 NAND gates (14 transistors).  The 
implementation of a D-type flip-flop is much more variable depending on what auxiliary inputs (eg preset, clear, 
clock enable) are required.  In this paper an 8 gate equivalent for the flip-flop was chosen.  

To allow readers to calculate their own gate count for different gates-per-flip-flop, the quoted gate results are 
separated into two figures one for flip-flops and the second for all other gates.  On many processes, by 
sacrificing flip-flop functionality such as preset, reset and clock-enable, the overall “gate” count may be 
reduced. 

These relatively modern FPGA devices have a rich fabric supporting a number of distributed memory storage 
primitives.  The effectiveness of these, in particular the Xilinx SRL16, depends on precisely how the algorithm 
uses its memory storage elements.  Some ciphers make good use of such FPGA-area saving components and 
others less so.   There is a further complication in that the FPGA synthesis tools generally attempt to yield the 
most “adaptable” design fitting within the given speed and area constraints.  This is done to minimise the impact 
of relatively minor design changes for a waterfall development cycle often used in prototyping.  The area 
constraint is typically defined with a rectangle thus for low resource designs the area utilised is dominated by 
how well the design tessellates with the chosen rectangle rather than it minimum resource utilisation. 

To overcome this issue, an alternative approach was taken rather than to simply quote the number of “slices” 
reported by the post place and route report.  In our second approach, the map report was examined and the 
number of LUT Function Generators (FG) and associated resource such as carry-chains (counted as equivalent 
to an FG) were extracted together with the number of D-type flip-flops (FD).  On some FPGAs, the LUTs may 
also be configured as memory resources (ROM or RAM) these figures were also obtained from the map report.  
Of particular concern was how to correctly account for the use of the SRL16 (16x1 bit shift register) resource.  
The decision was taken to only account for this in terms of the actual number of bits used for the given design.  
For example, if only a 6 bit SR was needed then account for this as 8x6 gates rather than 8x16.  This approach is 
believed to be equivalent to a gate level analysis and is more representative of the likely ASIC results. 

From the FD, LUT and memory (MEM) values (SRL, ROM & RAM) an equivalent ASIC 2-input NAND 
gate count was estimated as follows: 

  gates = 6 x FG   +  8 x FD  + 8 x bits x MEM 
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In general terms, there are two different goals for a “low resource” design.  Firstly, designers may be 
concerned with minimising the peak power consumption.  This is typical in inductively powered contact-less 
smart cards.  However, for battery powered systems it is more important to minimise the total energy 
consumption.  For the latter, a typical goal is the minimisation of the power-area product. 

Both design objectives are sensitive to area, so here, as this is a first attempt at comparison between the 
stream ciphers it was chosen to simply minimise the area.  A typical academic metric for efficiency would be to 
minimise the area-time product.  “Time” being the time taken to perform the cryptographic operation.  The 
power consumption, for CMOS, is dominated by the number of transitions per second (thus datapath width and 
the clock frequency). 

The simple area-time product metric favours highly parallel pipelined loop unrolled designs which generally 
would not be described as “low resource”.  Area alone could be considered as the performance metric for a low 
resource design however would not discriminate between two designs of differing throughput which required 
the same area.  A suitable metric must include both throughput and area weighted in such a way to avoid 
favouring simply unrolling a design to improve its “performance”. 

One option is to select a throughput based loosely on the currently emerging wireless data standards, say 5 to 
15 Mbps and develop implementations of the ciphers to meet this rate by selecting the appropriate clock 
frequency.  However, it is also common to design for a higher rate, say 100Mbps and then calculate power 
consumption at a reduced clock rate. 

The formulation of such a metric would be entirely subjective, thus the decision was taken to present the 
results graphically with a set of lines indicating constant metric value for different formulations of the metric 
and leave it for potential readers to make their own judgements. 

The ASIC power results were obtained by stimulating a cell-level back-annotated simulation model of the 
design under test with random test vectors.  ModelSim was used to obtain switching data in terms of a value 
change dump.  This data was converted to a suitable format and combined with foundry supplied power models 
for the cells to yield the expected modelled power results.  A basic MonteCarlo analysis was carried out by 
repeating the results a number of times with different test vectors in order to validate the accuracy of the results 
(<1% error).  The results incorporate both initialisation and operational phases of the design under test. 

4   Results 

4.1   FPGA Implementation Results 

Table 2 summarises the results obtained for each of the selected ciphers.  In the interest of completeness, the 
original developers’ results are also presented where available. Details of the designs adopted and any design 
modifications made are illustrated in Appendix A for each of these ciphers.  For readers interested solely in 
FPGA design then their attention is drawn to the device, slices and LE results.  The smallest available Xilinx 
Spartan II device is the XC2S15, only the AES-B, Trivium-1, Grain-1 and Mosquito-B designs will fit within 
this device.  Fig. 2, effectively shows throughput versus area for the Xilinx Spartan II FPGA (0.13 µm process) 
and Fig. 3 the corresponding results for the Altera Cyclone FPGA (0.13 µm process). 

For these designs, the Altera results are generally the faster and in terms of throughput and the relative 
performance of the different designs more closely follows the gate level analysis.  An approximate equivalence 
of 2 LE = 1 SLICE may be used to perform a crude comparison in terms of area.  Thus, the processor style 
architectures (Phelix-C, Hermes8) occupy less area on the Xilinx FPGA. 
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Fig. 2. Xilinx FPGA results 
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Fig. 3. Altera FPGA results 

However, for ASIC designers, the “gates” column is more likely to be of interest.   This clearly shows that 
Grain-1 and Trivium-1 are by far the smallest, yet still provide good throughput figures. 

 
 
 
 

131



Table 2. FPGA results and gate level analysis  

Cipher 
Design 

Authors hardware 
results 

Xilinx 
Spartan II 
FPGA 

Altera 
Cyclone 
FPGA 

Equiv. 
gates 
estimate 

Notes 

AES-A 0.35µm CMOS (Philips) 9 
Mbps,  3,500 “gates” [3] 

(ASIC) 
9 Mbps 

no result 6000 Gate count increased by 2500 to allow for 
feedback mode support 

AES-B Our basis for comparison 
[2] 

XC2S15-5 
2.34 Mbps 
242 slices 

no result 10426 Our ASIP design supporting OFB, CTR and 
CFB modes 

Trivium-1 
 

3488 gates [4] XC2S15-5 
102 Mbps 
40 slices 

EP1C3T-C7 
249 Mbps 
327 LE 

2682  

Grain-1 
 

ALTERA:  1435 “gates” 
MAX3000A 49Mbps 
MAX-II 200 Mbps 
Cyclone 282 Mbps [5] 

XC2S15-5 
105 Mbps 
48 slices 

EP1C3T-C7 
335 Mbps 
191 LE 

1714  

Mosquito-A 
 
 
 
Mosquito-B 

Xilinx Virtex I 
179 Mbps, 252 CLB 
& other FPGA results [6] 
 

XC2S30-5 
137 Mbps 
298 slices 
 
XC2S15-5 
22 Mbps 
190 slices 

EP1C3T-C7 
280 Mbps 
530 LE 
 
EP1C3T-C7 
50 Mbps 
431 LE 

6844 
 
 
 
4178 

(A) Pipelined as developers’ paper 
 
 
 
(B) Our resource shared design (common 
hardware for logic stages 2-5) 
 
 

Phelix-A 
 
 
 
Phelix-B 
 
 
 
Phelix-C 
 
 
 
Phelix-D 
 

“Rough” estimates of 
2Gbps, 20,000 gates [7] 

XC2S100-5 
960 Mbps 
1198 slices 
 
XC2S100-5 
750 Mbps 
1077 slices 
 
XC2S30-5 
3.26 Mbps 
264 slices 
 
XC2S30-5 
~5 Mbps 
~250 slices 

EP1C3T-C7 
1440 Mbps 
1772 LE 
 
EP1C3T-C7 
1312 Mbps 
1455 LE 
 
EP1C3T-C7 
6.31 Mbps 
1697 LE 
 
no result 
 

20404 
 
 
 
18080 
 
 
 
12314 
 
 
 
~8800 
 
 

(A) Full-round 160-bit design, as per 
developers paper 
 
 
(B) Our half-round 160-bit design 
 
 
 
(C) Our 32-bit datapath, control adversely 
affects area  
 
 
(D) Estimate initialisation was tweaked to 
simplify architecture 

Sfinks-A 
 
 
 
Sfinks-B 
 
 
 
Sfinks-C 

5265 gates 
(excluding MAC) [8] 

XC2S30-5 
118 Mbps 
334 slices 
 
XC2S30-5 
7.4 Mbps 
334 slices 
 
XC2S30-5 
7.4 Mbps 
319 slices 

EP1C3T-C7 
207 Mbps 
556 LE 
 
EP1C3T-C7 
12.0 Mbps 
517 LE 
 
EP1C3T-C7 
14.6 Mbps 
508 LE 

5904 
 
 
 
4910 
 
 
 
3946 

(A) Pipelined as per developers’ paper 
 
 
 
(B) Our design comprising resource sharing 
in inversion – frustrated by requirements of 
initialisation (thus not efficient design) 
 
(C) Tweaked to remove feedback delay 
needed for initialisation 

Hermes8 0.35 CMOS 
4,026 gates (std cell) [9] 

XC2S30-5 
5.6 Mbps 
190 slices 

EP1C3T-C7 
7.6 Mbps 
645 LE 

5022 Our 8-bit datapath architecture inclusive of 
control. 
 

 
The results can be even more clearly expressed graphically in terms of throughput and area.  In terms of area 

the further left, the smaller the design.  In terms of speed the higher up the faster the design.  As discussed in the 
method section of this paper, some “performance” metric would be most expedient. 

Fig. 4 depicts the results with the dashed lines show constant speed versus area for each given design, 
however, this metric favours loop-unrolled and pipelined architectures so may not be considered the most 
appropriate. 
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Fig. 4. Results annotated with lines of constant throughput versus area 

The performance metric can be skewed more in favour of area by raising the area to a higher power than the 
throughput.   Fig. 5 once again shows the low resource designs however this time the dashed lines are lines of 
constant area2 versus speed. 
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Fig. 5. Results annotated with lines of constant throughput versus area2 

However, as can be seen by the Grain-n and Trivium-n designs, the metric still favours unrolling and 
parallelism.  The area is now raised to a still higher power (area^7.3) such that the resulting metric is now 
approximately neutral to the parallel construction of the smallest candidate.  The resulting graph is presented as 
Fig. 6. 
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Fig. 6. Results annotated with lines of constant throughput versus area7.3 

This still may not be considered to be sufficiently area skewed so a final graph, Fig. 7, is presented for raising 
the area to the fifteenth power (as an extreme example).  This is done to further illustrate that irrespective of the 
choice of cost function that both Grain and Trivium stand out as the lowest resource. 
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Fig. 7. Results annotated with lines of constant throughput versus area15 

For low resource design the metric “area^n * time” has been presented.  The choice of a suitable value of n is 
subjective thus illustrative examples have been given for selected values between 1 and 15.  It has been shown 
for the smallest candidate that a value of n=7.3 makes the metric neutral to pipelining.  This value should be 
considered as the upper limit for n.  A sensible choice would be to choose a value somewhere between the 
extremes of area * time (n=1 and 7.3), say, on a purely subjective basis n=2.  However, irrespective of the 
precise value of n, as shown by the different results graphs, conclusions can be drawn and the selected ciphers 
categorised. 
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4.2   ASIC  Results 

To confirm the gates analysis above, obtain power results, and also for the sake of completeness, ASIC results 
were also obtained for a 0.13µm standard cell process using the Cadence Physically Knowledgeable Synthesis 
(PKS) flow.  The results shown (Table 3) are the expected modelled results for the technology.  The area is the 
occupied core area including routing.  For readers wishing an ASIC 2-input NAND gate estimate simply 
multiply the area in µm2 by 0.193.  The power results were obtained using switching data resulting from loading 
the key and IV followed by initialisation and the encryption of a 10kbit stream of random data.  Statistics from 
three different runs were compared in a basic Monte-Carlo analysis to validate the power results. 

Table 3. ASIC throughput-area-power results 

Design Throughput, 
Mbps 

Clock Period, 
ns 

Critical path 
delay, ns 

Area, µm2 
 

Power, mW 

 
Trivium-1 

   1 
 10 
100 

1000 
100 
10 

 
2.39 

 
15,058 

 

0.0347 
0.227 
2.154 

 
Grain-1 

   1 
 10 
100 

1000 
100 
10 

 
2.18 

 
8,073 

0.0238 
0.156 
1.476 

 
Mosquito-A 
 

   1 
 10 
100 

1000 
100 
10 

3.11 
3.15 
3.15 

52,155 
52,023 
52,023 

0.178 
1.027 
9.520 

 
Mosquito-B 
resource shared 

   1 
 10 
100 

200 
20 
(2) 

2.16 
2.14 

 

24,903 
24,903 

(no result) 

0.137 
1.136 

 
Sfinks-A 
 

   1 
 10 
100 

1000 
100 
10 

 
9.43 

 
33,167 

0.253 
2.207 
21.75 

 
Sfinks-B 
resource shared 

   1 
 10 
100 

200 
20 
(2) 

12.05 
12.01 

32,702 
32,702 

(no result) 

2.211 
21.83 

 
Hermes8 
 

   1 
 10 
100 

125 
12.5 

(1.25) 

7.36 
7.34 

35,672 
35,773 

(no result) 

0.429 (tbc) 
3.834 (tbc) 

 

The results are summarised in terms of power versus area in Fig. 8.  This figure shows that in terms of power-
area efficiency Grain is the most efficient closely followed by Trivium.  It also clearly shows the advantage of 
utilising a resource shared design for Mosquito.  The power results again highlight the difficulty in attempting 
resource sharing for Sfinks (point too far off graph to plot). 
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5   Conclusions 

Irrespective of how the results are presented Grain and Trivium are the smallest and most efficient designs and 
have straight forward parallel implementation which may ultimately be desirable to further enhance throughput 
and achieve improved energy per bit performance. The authors wish to urge those interested in the stream cipher 
project to analyse these thoroughly from a security perspective. 

There is much more debate on which are the next ciphers to “perform” the best so they have been simply 
grouped together (Mosquito, Sfinks, Hermes8).   More controversial, would be where to rank Phelix, in this 
paper it has been categorised as “moderate resource” due to its size not withstanding its higher throughput. 

The authors of this paper do not wish to pass any comment (or expend effort) on those candidate ciphers 
which are not “free-for-all”.  It is left to others to carry out a similar analysis. 

In summary, in terms of “low resource” hardware the considered candidates may be conveniently and fairly 
grouped as follows: 

 

Category Candidate ciphers for low resource hardware 

Lowest Resource, High speed (~100Mbps) Grain, Trivium 

Low resource, moderate speed (~10Mbps) Mosquito, Sfinks, Hermes-8 

Moderate resource (~1000Mbps) Phelix 

High resource or broken ABC, Achterbahn, Dicing, Dragon, F-FCSR, HC-256, MAG, MICKEY, Mir-1, NLS, Polar 
Bear, Pomaranch, Py (“Roo”), salsa20, Sosemanuk, SSS, TSC-3, WG, Yamb 

Commercial  i.e. “not free for all” 
(not considered in this treatment) 

CryptMT, Decim, Edon80, Frogbit, Lex, Rabbit, Trbdk3, Vest, ZK-crypt 

 

In summary, the purpose of this analysis is to encourage the security analysis community to direct their 
efforts towards analysing the security of the lowest resource candidates first before moving on to those requiring 
more resources.  The benefits to this approach are two fold: firstly avoids wasted effort analysing a candidate 
which may not be considered to be “low resource” and secondly early rejection of those with low resource on 
security grounds will enable the hardware engineers to focus on adding side channel resistance to the remaining 
lower resource ciphers again avoiding wasted effort. 
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Appendix: A.   Design Details 

In the following sections, a brief description of each of the considered candidate algorithm is given and should 
be read in conjunction with the developers’ original paper.  Our designs and implementation results for each are 
given including where appropriate suggestions of possible tweaks to initialisation which may permit reduction 
of the required hardware resources. 

A.1 AES (baseline) 

The AES in a suitable feedback mode (eg Output Feedback) could be used as a “tried-and-tested” stream cipher.  
However, it is evident from the call that for “low resource” there is an aspiration to do better.  Thus the AES 
forms one of the best baselines to date in terms of known security and as it was stated in the call as a suitable 
basis for comparison for the software profile it would be a sound judgement to use its low resource hardware 
implementations as a basis for comparison for the hardware ones too. 

A previous FPGA design by the authors [2] looked at an 8-bit ASIP which supported three of the recognised 
[10] feedback modes for the Advanced Encryption Standard [11].  The modes were Output Feedback (OFB), 
Counter (CTR) and Cipher FeedBack (CFB) all of which generate a key stream which is then combined with the 
plain/cipher text using the XOR operation.  This is an example of using a block cipher (such as AES) in a 
feedback mode to make it suitable for stream cipher applications.  The use of block memory can be allowed for 
by adjusting the slice count with a cost of 32bits/slice for block memory usage. 

A recently published [3] design for the AES showed that it is possible to construct a low resource ASIC to 
perform the core functions of the AES.  With suitable additional memory, logic and interfacing it could operate 
autonomously in one of the feedback modes (OFB, CTR or CFB) to provide a low resource stream cipher.  The 
additional logic including shift registers to support serial I/O and additional storage for key and IV required by a 
feedback mode such as OFB or CFB is estimated to total an additional 2500 gates. 

Table 4. Implementation results for the AES 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
AES-A 

Feldhofer’s ASIC design, 3500 
gates @ 9 Mbps on 0.35um ASIC 
Additional logic for feedback 
mode and serial I/o ~2500 gates 

(ASIC result) 
 

throughput:                   9 Mbps 
approx. flip flop gates: 4848 
approx. other gates:      1152 
approx. total gates:       6000 

 
AES-B 

 

all: FG 211 FD 184 
      RAM 608bits 
      ROM 200x16 bits 
 

Xilinx (ISE): 
device:      XC2S15-5 
clock:        70 MHz 
bits/cycle: 128/3828 
slices:        242 
 ( 120 + 2xBLKRAM)               

throughput :              2.34 Mbps 
block RAM gates:    5220 
block ROM gates:    2468 
other flip flop gates: 1472 
other gates :              1266 
total FPGA gates:      10426 

A.2 Trivium 

Trivium [4] is a stream cipher consisting of three shift registers with interconnected non-linear feedback 
functions to form a recognisable Substitution-Permutation-Network and a final linear function is used to create 
the keystream.  The shift registers are of different lengths (93, 84 and 111 bits) and all the feedback functions 
only combine five taps. 

The feedback and output functions may be expressed in terms of their constituent taps as follows: 
 t1(S) = S66 + S91.S92 + S93 + S171 

 t2(S) = S162 + S175.S176 + S177 + S264 
 t3(S) = S69 + S243 + S286.S287 + S288 
 z(S)  = S66 + S93 + S162 + S177 + S243 + S288 

To load the key the bit stream is (externally) prepared by padding out the key and IV to the required 288 bits 
as follows: 

 S1..288 = K1..80, ‘0’14, IV1..80, ‘0’111, ‘1’, ‘1’, ‘1’ 
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The control was implemented using a state machine supported by an 11-bit counter to generate the necessary 
control (key loading, clocking and output latching) and handshaking signals.  Loading the key-IV-padding word 
takes 288 cycles followed by 1152 cycles (4x288) of key mixing with the output suppressed.  After initialisation 
one bit of keystream is output every cycle. 
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Fig. 9. Block diagram of Trivium 

The design is very small and offers little scope for optimisation other than the usual logic and gate level 
manipulation which most synthesis tools perform automatically. 

Table 5. Implementation results for Trivium 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
Trivium-1 

 

sr:     FD 29  SRL 21 (or FD 288) 
funcs(t1,t2,t3,z): FG  27 
ctrl:   FG 36 FD 19 
all:     FG 63 FD 48 SRL 21 
          (or FG 63 FD 307) 

Xilinx (ISE): 
device:      XC2S15-5 
clock:        102  MHz 
bits/cycle: 1 
slices:        40 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:   249 MHz 
area:     327 LE 
t’put:    249 Mbps 

throughput:         102 Mbps 
flip flop gates:    2456 
other gates  :         378 
total FPGA gates:  2834 
 

 
Trivium-n 

sr:      FD 288 
funcs: FG 25+2n 
ctrl:    FG 36 FD 19 
all:      FG 61+2n FD 307 

Xilinx (ISE): 
device:      Spartan 2 
clock:        102  MHz 
bits/cycle:  n 
         (nmax = 64) 

Estimate for parallel generation 
throughput:        102n Mbps 
     for n=64:       6528 Mbps 
total FPGA gates:  2822+12n 
     for n=64:       3590 

 
As shown in [4] it is possible to use parallel computation to enhance throughput without increasing the flip-

flop count (up to x64).  This will improve the throughput versus area metric but the overall area will be 
increased. 

A.3 Grain 

The grain submission [5] is a key stream generator comprising two 80-bit shift registers and three combinatorial 
functions, f(x), g(x) and h(x).    The first, f(x) is a 7th degree linear feedback polynomial for the first shift 
register.  The second, g(x) is a non linear feedback polynomial utilising 11 taps of the second shift register with 
a maximum of 6 taps being ANDed together.  The final nonlinear function, h(x) combines a total of 6 taps, here 
h(x) defined to include the XOR with the final output of shift register N, is used to create the keystream. 
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f(x) = x0+x18+x29+x42+x57+x67+x80 
g(x) = x0+x17+x20+x28+x35+x43+x47+x52+x59+x65+x71+x80 

 + x17.x20 + x43.x47 + x65.x71 
 + x20.x28.x35 + x47.x52.x59 
 + x17.x35.x52.x71 + x20.x28.x43.x47 + x17.x20.x59.x65 
 + x17.x20.x28.x35.x43 + x47.x52.x59.x65.x71 
 + x28.x35.x43.x47.x52.x59 

h(x) =N0 + L55 + N17 + L77.L16 + L34.L16 + L16.N17 
  + L77.L55.L34 + L77.L34.L16 + L77.L34.N17 + L55.L34.N17 + L34.L16.N17 

For initialisation the shift registers are loaded with key and IV (padded with ones to 80 bits).  Initial key-IV 
mixing is then carried out for 160 cycles with the “keystream output bit” being fed back to both shift registers 
(using XOR). 

Control was implemented using a finite state machine supported by an 8-bit counter.  The overall design may 
be summarised by the following diagram. 
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Fig. 10. Block diagram of Grain 

The design is relatively simple and offers little scope for optimisation above the usual logic/gate-level 
optimisations that modern synthesis tools will automatically perform.  The implementation had synchronous 
serial interfaces for cipher/plain text I/O and a separate serial input for loading key-IV. 

Table 6. Implementation results for Grain 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
Grain-1 

 

sr:                 FD 22 SRL 19 
funcs(f,g,h): FG  26  
ctrl:              FG  29 FD 13 
all:               FG 55 FD 35 SRL 19  
                    (or FG 55 FD 173) 

Xilinx (ISE): 
device:      XC2S15-5 
clock:        105 MHz 
bits/cycle: 1 
slices:        48 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:   235 MHz 
area:     191 LE 
t’put:    235 Mbps 

throughput:        105 Mbps 
flip flop gates:   1384 
other gates :         330 
total FPGA gates: 1714 
 

 
Grain-n 

sr:       FD 160 
funcs: FG 16+10n 
ctrl:    FG 29 FD 13 
all:      FG 45+10n FD 173 

Xilinx (ISE): 
device:      Spartan 2 
clock:        105 MHz 
bits/cycle: n 
        (nmax = 16) 

Estimate for parallel generation 
throughput:       105n Mbps 
      for n=16:     1680 Mbps 
total FPGA gates: 1550+60n 
      for n=16:      2510 

 
The original paper on the design [5] described how the feedback functions can be paralleled (up to x16) to 

improve the throughput-area metric however this is at the expense of additional area. 
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A.4 Mosquito 

The Mosquito self-synchronising stream cipher [6] is based around a non-linear shift register followed by a 
combinatorial function which yields a single bit of the keystream.  The “conditional complementing shift 
register”, CCSR, connects each storage element with a small logic function derived from the proceeding element 
together with a key bit, K, and two further proceeding bits of the CCSR.  Here, this is referred to as stage 0 and 
is defined by 

  Gi
<0> = Gi-1

<0> + Ki-1+ Gv
<0>.(Gw

<0>+1) + 1,    0 ≤ i < 128 

where v and w are both functions of the bit index i.  These values are defined in table 1 of the Mosquito 
specification [6]. 

This equation essentially expresses, the elemental non-linear logic function (2xXOR, 1xNAND) used for all 
the logic stages.  It has a convenient form in terms of FPGA implementation in that it is a 4-input 1-output 
function thus is described by a single LUT. 

This function is repeated for seven combinational logic stages to produce the keystream bit, z, as described in 
table 7. 

Table 7.  Mosquito logic stages 

Stage Equation 

1 G4i mod 53
<1> = G128-i

<0> + Gi+18
<0>+ G113-i

<0>.(Gi+1
<0>+1) + 1,  0 ≤ i < 53 

2 to 5 G4i mod 53
<j> = Gi

<j-1> + Gi+3
<j-1>+ Gi+1

<j-1>.(Gi+2
<j-1>+1) + 1,  0 ≤ i < 53 

6 Gi
<6> = G4i

<5> + G4i+3
<5>+ G4i+1

<5>.(G4i+2
<5>+1) + 1,  0 ≤ i < 12 

7 Gi
<7> = G4i

<6> + G4i+1
<6>+ G4i+2

<6> + G4i+3
<6>,  0 ≤ i < 3 

output     z    =   G0<7> + G1
<7> + G2

<7> 

 
In this implementation, the resources for stages 2-5 share a single round based implementation, saving of 212 

LUTs, at the cost of a 53-bit register and a 53-bit two-way multiplexer (53 LUTs and 53 DFFs).  This is an 
equivalent saving of 530 gates at the cost of a factor of five reduction in throughput. 

Once the 80-bit key has been entered serially together with the 128-bit IV (loaded into the CCSR), the initial 
key mixing of 105 iterations (each of 5 clock cycles) is performed with the plaintext input and ciphertext output 
zeroed.  Subsequently, a new bit of keystream is available once in every 5 clock cycles.  The control was 
implemented using a state machine supported by a 7-bit counter. 
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Fig. 11. Mosquito 

The implementation results are tabulated below (Table 8), firstly for a repetition of the developers design 
(Mosquito-A) followed by the above resource shared architecture (Mosquito-B). 

In these designs the key and IV were loaded serially, a tweak to the definition for initialisation would permit 
direct loading of the IV into the CCSR accepting the complementing due to the key.  This would simplify the 
CCSR design avoiding needed the larger flip-flops with a reset capability. 

Table 8.  Implementation results for Mosquito 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
Mosquito-A 

 
Design as per developers paper 
all: FG 450  FD 518 
 

Xilinx (ISE): 
device:       XC2S30-5 
clock:        137 MHz 
bits/cycle:  1 
slices:         298 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    280 MHz 
area:      530 LE 
t’put:     280 Mbps 

throughput:       137 Mbps 
flip flop gates :  4144 
other gates:        2700 
total FPGA gates: 6844 
 

 
Mosquito-B 

 

keyreg:  FD 80 
ccsr:       FG 130 FD  128 
stages:   FG 122  FD 56 
ctrl:        FG  27 FD 23 
other:     FG   4  FD 23 
all:         FG 283 FD 305 SRL 1 
              (or FG 283 FD 310) 

Xilinx (ISE): 
device:      XC2S15-5 
clock:        110 MHz 
bits/cycle: 1/5 
slices:        190 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    254 MHz 
area:      431 LE 
t’put:     50 Mbps 

throughput:        22 Mbps 
flip flop gates:    2480 
other gates :        1698 
total FPGA gates:  4178 
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A.5 Phelix 

Philix [7] consists of five strands each of 32-bit data which are twisted together using shifting and arithmetic 
operations to form a helix like structure (hence its name).  The cipher is supplied with a 256 bit key and 128-bit 
IV (nonce).  Its operation could be viewed as a Feistal block cipher operating in a hybrid counter - cipher 
feedback mode to provide a keystream.  However, as pointed out by the developers, when the MAC is not used 
then there exists a low complexity differential cryptanalysis against a CFB based decryptor.  To avoid this, the 
“plaintext” applied to Quarter Round A should always be zero making the keystream generation a hybrid OFB-
CTR mode.  The datapath may be decomposed into a simple operator consisting of a programmable shift and 
32-bit add/xor operation, thus a 32-bit processor style architecture could be considered as 20 rounds of this 
simple operator plus a key schedule computed using the same datapath.  Additionally, Phelix supports a 
message authentication code which was not considered in these hardware results. 

First, initial consideration is given to folding the round by a factor of two and four to exploit symmetry within 
the datapath, forming 160-bit half round and quarter round implementations respectively. 

Folding in half is relatively straight forward and gains the expected approximate factor of two reduction in 
area from the unrolled baseline design.  However, if a second fold is made to use a flexible quarter round 
function then the multiplexers required to select between hardwired shifts would negate the advantage.  Thus the 
flexible quarter-round design has not been progressed further. 

The half round function based design is approximately half the size of the unrolled design and would produce 
approximately half the throughput.  However, the area required would be best described as “moderate resource” 
rather than low resource when compared with the AES but its expected throughput is much higher (due to its 
simple operations and wide datapath) than the other candidates. 
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Fig. 12. Phelix half-round implementation 

The next option was to consider a processor style architecture with a 32-bit datapath and controlled by state 
machines.  The datapath consisted of a small register file (32x32-bit), a sequential shifter and configurable 
xor/add operation.  The “height” in slices of the smaller FPGAs made it difficult to implement a fast ripple carry 
adder thus this was implemented as four separate 8-bit adders with registered carry propagation. 
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Fig. 13. Phelix datapath architecture 

The register file consisted of 32 locations and contained the following registers: 
  Eight registers to hold the padded key; 
  Eight registers to hold the expanded nonce/IV; 
  Five registers for the current state (Z0, Z1, Z2, Z3, Z4); 
  Four registers to keep the previous four states of Z4; 
  Two registers to hold a 64-bit counter value; 
  Two temporary storage locations; 
  and three constants (zero, one and key length). 

 
A 22-bit instruction word was defined to control the datapath and instructions supplied from a set of 

subroutines contained within a 64x22-bit ROM (implemented using random-logic) and controlled by a second 
state machine.  In order to allow for a constant rate of data bits in and out a third state machine together with 
shift registers was used to control the input and output. 

The main operations required for the “helix” structure are straight forward to implement however, the key 
schedule, although carried out using the same datapath, is more difficult and dominates the area for the 
controller.  There may be some scope for “tweaks” to be considered for the initialisation of the key schedule to 
simplify its hardware implementation.  One option would be a change to the key schedule so that a simple 64-bit 
counter could be loaded with the IV then simply incremented and incorporated as part of the key schedule 
together with some simplification of setting the initial “Z(-8)” state. 

It should be stressed that these are initial results and some further optimisation may be possible.  The ciphers 
area is dominated by the 512 bits required to store the expanded key and nonce.   If some tweaks were permitted 
then the nonce could be loaded into the counter saving 256 bits of memory! 

Considering an ASIC implementation, the constants and any constant bit (eg in key-length) may be hard 
wired further reducing the flip-flop count by an additional 93 bits.  In total the saving, in flip-flops alone is 
estimated to be 2,792 equiv. gates.  Further, if 32-bit I/O was acceptable then a further 710 gates could be saved.  
This results in a final estimate for a tweaked “Phelix” datapath based implementation of 8,800 gates.  However, 
the 160-bit half round function only requires 7128 gates to implement which has simpler control and would be 
two orders of magnitude faster.  However, it is the implementation of the keyschedule which is problematic and 
requires a number of 32-bit multiplexers and 32-bit binary adders together with two, partly overlapping 32-bit 
counters.  The authors of this paper would urge the developers of Phelix to consider a revised keyschedule 
making more use of XOR rather than binary addition and being defined such that can be operated using a 
counter initially loaded with the nonce. 
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Table 9. Implementation results for Phelix 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
Phelix-A 

160-bit Whole round design 
datapath:  FG 1282  FD 320 
keysched: FG  972   FD 540 
all:            FG 2254  FD 860 
 

Xilinx (ISE): 
device:      XC2S100-5 
clock:       30 MHz 
bits/cycle: 32 
slices:       1198   
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    45 MHz 
area:      1772 LE 
t’put:     1440 Mbps 

throughput:  960 Mbps 
flip flop gates:      6880 
other gates:         13524 
total FPGA gates:  20404 

 
Phelix-B 

160-bit Half round design 
helicies:    FG 544 
mux/reg:   FG 260  FD 197 
                 MEM 4x32 
keysched: FG 1036 FD 555 
all:            FG 1840 FD 752 
                 MEM 4x32 
                 (or FG 1840 FD 880) 

Xilinx (ISE): 
device:      XC2S100-5 
clock:        47 MHz 
bits/cycle: 32/2 
slices:        1077 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    82 MHz 
area:      1455 LE 
t’put:     1312 Mbps 

throughput :      750 Mbps 
flip flop gates:   7040 
other gates:        11040 
total FPGA gates: 18080 
 

 
Phelix-C 

32-bit Datapath Architecture 
datapath: FG 128 FD 68 
regfile:    MEM32x32 
ctrl:         FG  240 FD 81 
I/O:         FG  33 FD 64 
all:           FG 403 FD 213  
                MEM32x32  
                (or FG 403 FD 1237) 

Xilinx (ISE): 
device:      XC2S30-5 
clock:        30 MHz 
bits/cycle:  32 / 294 
slices:         264 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    58 MHz 
area:      1697 LE 
t’put:     6.31 Mbps 

throughput:         3.26 Mbps 
flip flop gates:     9896 
other gates:          2418 
total FPGA gates: 12314 
 

 
Phelix-D 
(Tweak) 

 

non-compliant estimate allowing for 
some tweaks 
datapath: FG 128 FD 68 
regfile:    FD 675 
ctrl:         FG  240 FD 81 
all:          FG 368 FD 824 

Xilinx (ISE): 
device:      Spartan 2 
clock:        30 MHz 
bits/cycle:  32 / 192 
slices:        250 

ESTIMATES 

throughput:       ~ 5 Mbps 
flip flop gates:   6592 
other gates:        2208 
total FPGA gates: 8800 
 

ESTIMATES 

 
In summary, Phelix, as currently defined, is difficult to implement efficiently in a rolled-up architecture 

however, in its half-round form performs with high throughput so may be worthy of further consideration. 

A.6 Sfinks 

The Sfinks [8] cipher comprises a 256-bit shift register together with a 16-bit multiplicative inversion in GF 216.  
This inversion derives its 16-bit input from a set of taps within the shift register.  A single bit of its output is 
combined with a further bit from the shift register is used to generate the keystream.  However, all 16-bits are 
utilised in a permuted order during the initial key mixing process.  Thus the inversion is used in its complete 
form to create a “strong” SPN network for key-IV mixing and as the reduction operation for generation of the 
keystream bits.  The paper [8] included message authentication code, however, in order to be consistent with the 
pure stream cipher model adopted in this paper it was omitted. 
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Fig. 14. Sfinks architecture 

As shown by the AES, such multiplicative inverses can be efficiently implemented using composite field 
arithmetic thus the inverse was computed in the 16-bit GF((((22)2)2)2) field with suitable isomorphisms.  There 
are a number of opportunities for sharing resources within this inverse to reduce area at the expense of 
throughput.  In the paper [8] the inversion was pipelined to enhance throughput, here the opposite approach is 
taken in that the 8-bit GF(((22)2)2) multipliers and the 4-bit GF((22)2) in the GF(((22)2)2) inversion are resource 
shared using appropriate multiplexing and registers.  Thus the inversion takes 5 cycles to complete. 

The field construction was as follows: 

Table 10. Sfinks composite field construction 

Field Polynomial Binary representation 

GF(2) n/a b0 

GF(22) Pu(u) = u2+u+1 b1u + b0 

GF((22)2) Pz(z) = z2+z+u z(b3u+b2) + b1u+b0 

GF(((22)2)2) Py(y) = 
y2+y+(uz+z) 

y(b7zu+b6z+b5u+b4) + b3zu+b2z+b1u+b0 

GF((((22)2)2)2) Px(x) = 
x2+x+uzy 

x(b15yzu+b14yz+b13yu+b12y+b11zu+b10z+b9u+b8) 
   +b7yzu+b6yz+b5yu+b4y+b3zu+b2z+b1u+b0 

( ) ( )( )( )vxvx
GFGF

δδ 1

2

11

2 2,2,2,216
−−− ≡  

and the isomorphisms between GF(216) and GF((((22)2)2)2) may be represented in hexadecimal form as: 
 

δ(x)=0001.x0+7C91.x1+4604.x2+43DA.x3+6C13.x4+7E9D.x5+6B49.x6+1190.x7 
       +5A36.x8+707F.x9+454F.x10+B430.x11+5EFD.x12+D6CA.x13+104D.x14+6A24.x15 

 

δ−1(x)=0001.x0+ACCB.x1+90C4.x2+86FA.x3+C583.x4+AE57.x5+7C62.x6+8684.x7 
          +444A.x8+161C.x9+C1D6.x10+2D90.x11+2A5D.x12+C215.x13+470A.x14+4A4A.x15 
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The resource sharing allows the reduction in gate count for the “operational” phase of the cipher but is 
somewhat frustrated by the initial key mixing stage.  The algorithm requires that all 16-bits of the inversion to 
be fed back with a delay of 6-clocks which matches the developers’ pipelined inversion.  A resource-shared or 
non-pipelined version of the inversion would require an additional 96 flip-flops to implement the required delay 
to match the algorithm definition for initialisation.  This effectively overcomes any advantage in area from using 
resource sharing in the inversion and mandates a 6-stage pipelined inversion.  This may be one area where a 
“tweak” could be considered to permit more flexibility in terms of implementation (lower area or higher 
throughput). 

The “Sfinks-A” design is essentially follows the developers intended architecture.  Sfinks-B is a compliant 
design with resource sharing as described above.  Finally, Sfinks-C shows the area saving if the design key 
mixing was changed to avoid the need to delay the inverse. 

Table 11. Implementation results for Sfinks 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
Sfinks-A 
 

FPGA results for pipelined design 
lfsr   FG 22 FD 262 
inv:  FG 289 FD 92 SRL 16 
ctrl:  FG 41 FD 18 SRL 1 
all:   FG 352 FD 372 SRL 17 
        (or FG 352 FD 474)  

Xilinx (ISE): 
device:      XC2S30-5 
clock:        118 MHz 
bits/cycle: 1 
slices:        334 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    207 MHz 
area:      556 LE 
t’put:     207 Mbps 

throughput:       118 Mbps 
flip flop gates:   3792 
other gates:        2112 
total FPGA gates: 5904 
 

 
Sfinks-B 
 

compliant with SFINKS paper 
lfsr:          FG 22 FD 262 
inv:          FG 177 FD 27 
feedback: SRL 17 
ctrl:          FG 42 FD 42  
all:           FG 241 FD 331 SRL 17 
                (or FG241 FD 433) 

Xilinx (ISE): 
device       XC2S30-5 
clock:        37 MHz 
bits/cycle: 1/5 
slices:        334 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    60 MHz 
area:      517 LE 
t’put:     12.0 Mbps 
 

throughput:         7.4 Mbps 
flip flop gates:    3464 
other gates :        1446 
total FPGA gates:  4910 
 

 
Sfinks-C 
(tweak) 
 

initialisation “tweaked” 
lfsr: FG 22 FD 262 
inv: FG177 FD 27 
ctrl: FG 40 FD 25 
all:  FG 239 FD 314 

Xilinx (ISE): 
device:      XC2S30-5 
clock:        37 MHz 
bits/cycle: 1/5 
slices:       319 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    73 MHz 
area:      508 LE 
t’put:     14.6 Mbps 

throughput:        7.4 Mbps 
flip flop gates:   2512 
other gates:        1434 
total FPGA gates: 3946 

A.7 Hermes-8 

The Hermes-8 [9] has been designed around an 8-bit SPN architecture.  The choice for the substitution operation 
was the well known 8-bit AES S-box.  The permutation was carried out at the byte level (rather than the more 
usual bit level) by selecting differing indexes into the state and key registers. 

The algorithm requires modulo arithmetic in order to carry out the indexed addressing (modulo-7, 10 and 23).   
In the running phase this can be accomplished by simply incrementing specific modulo counters which 
automatically reset when the correct modulus is reached.  However, for initialisation these counters must be 
loaded with a modulo-value derived from the XOR of a number of key-bytes.  The low resource implementation 
of this is to use conditional subtraction by the required modulus either for a fixed number of iterations or 
terminate when no further modulo reduction is required.  The latter would leak significant side channel 
information during initialisation so would be most undesirable.  Looking for an alternative for initialising the 
modulo counters would be a good starting point for a “tweak” to simplify hardware implementation. 

The controller is split into two state machines, one specifically to control the datapath given an instruction 
word and the second to carry out the global control and generate the required sequence of instruction words.  A 
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single port memory was used for the register file containing both key and state values (36x8 bits total).  The 
controller also contained a number of counters: two off mod-23, mod-10 and mod-7.  The values of these 
counters were used to provide all the necessary addresses for indexing into the register file.   

The datapath consists of an 8-bit XOR operation, the AES S-box implemented using composite field 
arithmetic in GF((22)2)2) with resource sharing of the 4-bit GF((22)2) multiplier and a dedicated unit for 
performing modulo reduction (conditional subtraction of modulus) of an 8-bit value and is only used in the 
initialisation phase. 

Ciphertext

XOR

CONTROL

SHIFT
REGISTER

Plaintext

SINGLE PORT
MEMORY 36x8

SHIFT
REGISTER

“AES”
SubBytes

(logic)

Key-IV

8

8

8

8

addr

8-bit
REGISTER

8

8

MODULO
REDUCE

MODULO
COUNTERS

 
Fig. 15. Hermes-8 architecture 

Table 12.  Implementation results for Hermes-8 

Design Details FPGA results Gate level analysis (for Xilinx) 

 
Hermes8 
 

regfile:  RAM32x16 
datapath-less-sbox:  FG 63 FD 8 
sbox:     FG 52 FD 21 
ctrl:       FG 148 FD 101 
other:    FG 14 FD 2 
all:        FG 277 FD 132 
             RAM32x16 
             (or FG 277 FD 420) 

Xilinx (ISE): 
device:      XC2S30-5 
clock         45 MHz 
bits/cycle:  64 / 512 
slices:        190 
 
Altera (Quartus II): 
device: EP1C3T144C7 
clock:    61 MHz 
area:      645 LE 
t’put:     7.6 Mbps 

throughput:            5.6 Mbps 
flip flop gates:       3360 
other gates:            1662 
total FPGA gates:     5022 
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A Guess-and-Determine Attack on the Stream
Cipher Polar Bear

John Mattsson12
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2 Communications Security Lab, Ericsson Research, Stockholm, Sweden
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Abstract. In this paper we present an effective guess-and-determine at-
tack against the stream cipher Polar Bear. The attack requires knowledge
of the first 24 bytes of plaintext and recovers the state with a computa-
tional complexity of O(279). We also briefly discuss how this weakness
can be addressed by the authors in an updated version of Polar Bear.

Keywords: Steam Cipher, Polar Bear, Guess-and-determine, eSTREAM

1 Introduction

There are a variety of efficient and trusted block ciphers. Unfortunately this is
not the case for stream ciphers. As a response to this, ECRYPT (a 4-year net-
work of excellence funded by the European Union) manages and co-ordinates a
multi-year effort called eSTREAM to identify new stream ciphers suitable for
widespread adoption. The new stream cipher Polar Bear [1] is one of 35 can-
didates submitted to eSTREAM. It was created by Johan H̊astad and Mats
Näslund and claimed to be suitable for both profile I (software) and profile II
(hardware). In this paper we present the first known attack on Polar Bear. Re-
cently a similar attack with improved complexity has been presented by Hasan-
zadeh et al [2]. We also analyze why this attack is possible and suggest how the
cipher can be fixed to avoid this type of attack.

2 Description of Polar Bear

The cipher uses one 7-word (112-bit) LFSR R0 and one 9-word (144-bit) LFSR
R1. These are viewed as acting over F216 . Besides these registers, the internal
state of the cipher also depends on a word quantity, S, and a dynamic permu-
tation of bytes, D8.

The cipher is primarily designed for a key length of 128 bits. The IV can be
any number of bytes up to a maximum of 31. The key schedule is (in the case
of 128-bit keys) identical to the Rijndael key schedule.

On each message to be processed, the cipher is initialized by taking the key
(more precisely, the expanded key), interpreting the IV as a cleartext block, and
applying a (slightly modified) five round Rijndael encryption with block length
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256. The resulting cipher text block is loaded into R0 and R1. Finally, D8 is
initialized to equal the table T8, the Rijndael S-box, and S is set to zero.

Output is produced 4 bytes at a time. To this end, the two LFSRs are first
irregularly clocked, determined by S. Eight bytes, selected from R0 and R1, are
run through the permutation D8 to produce the four output bytes. Selected
entries in D8 are swapped. Finally, S and R0 are modified in preparation for the
next output cycle. Entries in R1 are not modified apart from the LFSR stepping.

2.1 The output cycle

After each update of the cipher’s internal state, four bytes are output. Before the
first output byte, and between consecutive output pairs of bytes, a state update
function is performed as specified below.

Next state function Let `0 = 7 and `1 = 9 be the lengths of the registers.
Register Ri is stepped 2+(bS/214+ic mod 2) steps with a sparse feedback where
each step consists of

– set f i ← θiRi
ji + µiRi

0 for constants θi, ji, and µi, where j0 = 1 and j1 = 5
– set Ri

j ← Ri
j+1 for j = 0, 1, . . . , `i − 2

– feedback Ri
`i−1 ← f i.

After stepping both R0 and R1 above, do the following steps, first for i = 0,
then repeat them for i = 1:

– Write (Ri
`i−1, R

i
`i−2) as four bytes αi

0||αi
1||αi

2||αi
3.

– Let βi
j = D8(αi

j) for j = 0, 1, 2, 3.
– Swap elements in D8 by D8(αi

0)↔ D8(αi
2) and D8(αi

1)↔ D8(αi
3).

Next, update S and R0

– Update S according to S ← S +16 β1
0 ||β1

1 .
– Update R0 according to R0

5 ← R0
5 +16 β1

2 ||β1
3 .

At this point, the internal state is updated, and the output is formed from the
above (β0

j , β1
j )-pairs as described next.

Output generation Form four output bytes b0||b1||b2||b3 where

bj = β0
j ⊕ β1

j .

If more output bytes are required, the output cycle above is repeated. For a
more complete description of Polar Bear, see [1].
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3 The Attack

In this section we present an effective guess-and-determine attack on Polar Bear
requiring only a very small amount of known plaintext. Under the assumption of
a certain stepping of the registers, a certain sequence of α-values, and a known
plaintext, the state can be recovered in O(279) time. Only knowledge of the first
24 bytes of plaintext is needed.

A first observation of Polar Bear is that it is relatively straightforward that
the attack resistance does not meet the key size. For instance, by guessing one
(the shorter) LFSR value, it is possible to deduce the value of the other by
observing output. Hence, we have an attack with complexity about 2112.

Let the state of LFSR Ri after t steppings of the register be

(Ri
t+`i−1, R

i
t+`i−2, . . . , R

i
t)

where `i is the length of register Ri. The notation ∗R0
i will be used for stages in

R0 after their update.
Let the first 24 bytes of plaintext be known and let the corresponding first

twelve 16-bit block of keystream be Z0, Z1, . . . , Z11.
For the attack to be successful, three assumptions have to be made.

1. During the first six updates of the state, let the steppings for both LFSR R0

and R1 be 2-steppings where the register is stepped two steps. This happens
if the fourteenth and fifteenth bit of the word quantity S is 0. Because the
word quantity S is initialized to zero the first stepping for both registers is
always a 2-stepping. The probability that the six first steppings is 2-steppings
can therefore be assumed to be (1/2)10 = 2−10.

2. Let no pair of the first 8 α be equal. The probability for this is

256!
(256− 8)! · 2568

≈ 0.90

3. Let no pair of the following 40 α be equal. The probability for this is

256!
(256− 40)! · 25640

≈ 0.04

Because all the steppings for both the registers are 2-steppings all the stages
in both LFSRs are used to generate keystream. The probability that all three of
the above assumptions holds is greater than 2−15.

Under these assumptions it suffices to guess the four stages R1
9, R

1
10, R

1
11 and

R1
13 (a total of 64 bits) to recover the state. The state can now be recovered with

the four equations obtained from the feedback polynomials, the output function
and the nonlinear update of R0.

R0
i = θ0 ·(∗)R0

i−6 + µ0 ·(∗)R0
i−7 (1)

R1
i = θ1 ·R1

i−4 + µ1 ·R1
i−9 (2)

Zi = ∆(R0
i+7) + ∆(R1

i+9) (3)
∗R0

i = R0
i +16 R1

i+2 (4)
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All operations in (1)–(3) are in the finite field F216 , whereas the +16 in (4) is
addition modulo 216. The constants are the ones from the feedback polynomials
and the function ∆(x) is obtained by looking up the two bytes of x in D8 and
then concatenate them.

From R1
9, R

1
10, R

1
11, R

1
13 and (3) we get R0

7, R
0
8, R

0
9, R

0
11. With a knowledge of

the four stages R0
7, R

0
8, R

1
9 and R1

10 we can calculate how D8 will be permutated
after the first update of the inner state. Let the result of this permutation be
D8′. As the next 32 α-values are all different we can treat D8 as a constant
equal to D8′ during the next five updates of the state. The rest of the stages in
the registers can now be determined in the following order.
(Where Ri, (3) → Rj should be read as Ri and (3) gives Rj)

R0
7, R0

9, R0
11, R1

9, R1
11, R1

13, (4)→ ∗R0
7,

∗R0
9,

∗R0
11

∗R0
7, R0

8,
∗R0

9, (1) → R0
14, R0

15

R0
14, R0

15, (3) → R1
16, R1

17

R0
15, R1

17, (4) → ∗R0
15

R1
11, R1

16, (2) → R1
20

R1
20, (3) → R0

18
∗R0

11, R0
18, (1) → R0

12

R0
12, (3) → R1

14

R1
9, R1

14, (2) → R1
18

R1
18, (3) → R0

16
∗R0

9, R0
16, (1) → R0

10

R0
10, (3) → R1

12

R0
10,

∗R0
11, (3) → R0

17

R0
17, (3) → R1

19

R0
17, R1

19, (4) → ∗R0
17

R1
10, R1

19, (2) → R1
15

R1
15, (3), (4) → R0

13,
∗R0

13

From R0
9, . . . , R

0
17 and starred and unstarred R0

7, . . . , R
0
13 we can determine D8

and S which is the whole state. From this can all future keystream be calculated.
To try all possible values for the 4 register stages takes O(264) time and the

probability that such an attack is successful is 2−15. The time complexity for
the above attack is therefore O(279).

Hasanzadeh et al [2] have lowered the time complexity in a recently presented
paper. By using the same attack principle, but with a more careful analysis and
selection of ’guessed’ values, they reach an overall attack complexity of O(257.4)

4 Analysis and update of Polar Bear

There are several unfortunate coincidences that make this attack possible. The
most obvious is that the dynamic permutation of bytes D8 is not permutated
and therefore known initially. Other reasons are the short length of the LFSRs,
the use of feedback trinoms, the choice of nonlinear updating of R0, and that
register stages are too related.
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We propose that the security is enhanced by adding a key-dependent pre-
mixing of the D8 table in conjunction with the key schedule. We propose that
three full rounds of mixing of D8 is used to this end:

1. Expand the key to 768 bytes of expanded key
2. For i = 0 to 767

Swap(D8[i (mod 256)], D8[key[i]])

This will only affect the performance of the key schedule. As far as we have
been able to tell, no other change is needed.

Optimization We have been able to optimize the reference code submitted
with Polar Bear from 38 cycles/byte on a Pentium M to under 23 cycles/byte.
By making a small tweak that change how the permutation of the dynamic
permutation D8 is done, the code can be optimized further. Instead of reading
all β-values and then make the swaps, two β-values is read, the corresponding
D8-values are swapped and then the process is repeated for the other two β-
values. This makes Polar Bear faster than AES-CTR.

5 Conclusion

The original specification of Polar Bear apparently has weaknesses, but this can
easily be fixed with small changes to the algorithm. By making the permutation
of D8 in the key setup we only lose performance when a new key is exchanged.
This is tolerable as the time for key setup is seldom critical as the same key is
typically used with a large number of different IVs, and time for key setup is
usually small compared to the time used to generate and exchange a new key.
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Abstract. In this paper we propose a Guess-and-Determine based initial state recovery attack 
on Polar Bear, one of the ECRYPT stream cipher project candidates, which is an improvement 
of the recently proposed one by J. Mattsson with computational complexity of O(279). The 
computational complexity and success probability of our attack are O(231) and 2-26.4 respec-
tively which can also be considered as one with computational complexity of O(257.4). 
Keywords. Stream Cipher, Guess-and-Determine Attack, Polar Bear, ECRYPT, Security 
Evaluation. 

1   Introduction 

Stream ciphers are widely used for fast encryption of sensitive data. Lots of old stream ciphers 
that have been formerly used can no longer be considered secure, because of their vulnerability to 
newly developed cryptanalysis techniques. In particular, the NESSIE project [6] did not select any 
of the proposed stream ciphers for its portfolio, as it was felt that none of the submissions was 
sufficiently strong. In order to create a portfolio of secure stream ciphers, the ECRYPT project [1] 
made a call for designs of new stream ciphers which led to submission of 35 proposals to the 
project by April 2005.  

Polar Bear [2] is one of the ECRYPT stream cipher project candidates. The cipher was de-
signed for software applications and dealing with keys of up to 128 bits length. John Mattsson 
recently found a weakness on the cipher which lead to an initial state recovery attack on it with 
computational complexity of O(279) according to his note [4]. The detail of this attack has not 
been published yet but it is going to appear in SASC 2006 [5]. In this paper we improve Matts-
son's results and propose an attack with computational complexity of O(257.4). Our Analysis is a 
Guess-and-Determine based initial state recovery attack whose computational complexity and 
success probability are O(231) and 2-26.4 respectively which can also be considered as one with 
computational complexity of O(257.4). 

The paper is organized as follows. In Section 2 a brief description of the key-stream generator 
of Polar Bear is given. The details of our attack are presented in Section 3 and, finally, the paper 
is concluded in Section 4. 

2   Outline of Polar Bear 

Polar Bear [2] works with 16-bit words and uses a 7-word LFSR R0 and a 9-word LFSR R1. These 
are viewed as acting over GF(216). Besides these registers, the internal state of the cipher also 
depends on a word quantity, S, and a dynamic permutation of bytes, D8. The cipher deals with 
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keys of up to 128 bits length. The IV can be any number of bytes up to a maximum of 31. The 
initial states of R0 and R1 are determined through a certain key-IV set up, D8 is initialized to the 
table T8, the Rijndael S-box, and S is set to zero. The cipher produces two words at each cycle of 
operation. At each cycle, firstly, the two LFSRs are irregularly clocked according to S. Then, two 
words from each of R0 and R1 are selected and nonlinearly filtered using the permutation D8 to 
produce two output words. Afterwards, some selected entries in D8 are swapped. Finally, S and 
one word of R0 are modified in preparation for the next cycle. 

Let || denote concatenation of 16-bit words as well as 8-bit bytes. Moreover, let ⊕ and +16 re-
spectively denote bitwise XOR and addition modulo 216 of 16-bit words. A complete description 
of Polar Bear can be given by the following pseudo-code. 

1. Using the initialization process, determine the values of  

and . 

),,,,,,( 0
0

0
1

0
2

0
3

0
4

0
5

0
6 RRRRRRR

),,,,,,,,( 012345678 RRRRRRRRR 111111111

2. S ← 0, D8 ← T8. 
3. For t = 1 to N/2 do (N is the required number of output words): 

3.1. ⎣ ⎦ )2mod2/(2 14
0 Sb +← , ⎣ ⎦ )2mod2/(2 15

1 Sb +← . 
3.2. Clock R0 and R1 LFSRs b0 and b1 times, respectively. 
3.3. . 0

5
0
6

0
3

0
2

0
1

0
0 |||||||| RR←αααα

3.4. . )(||)(||)(||)(|||||| 0
38

0
28

0
18

0
08

0
3

0
2

0
1

0
0 ααααββββ DDDD←

3.5. ( ) ( )0
1

0
0

0
3

0
2

0
38

0
28

0
18

0
08 ,,,)(),(),(),( ββββαααα ←DDDD *. 

3.6. . 1
7

1
8

1
3

1
2

1
1

1
0 |||||||| RR←αααα

3.7. . )(||)(||)(||)(|||||| 1
38

1
28

1
18

1
08

1
3

1
2

1
1

1
0 ααααββββ DDDD←

3.8. ( ) ( )1
1

1
0

1
3

1
2

1
38

1
28

1
18

1
08 ,,,)(),(),(),( ββββαααα ←DDDD *. 

3.9. . 1
3

1
2

1
1

1
0

1
1

1
0 |||||||| ββββγγ ←

3.10. . 0
3

0
2

0
1

0
0

0
1

0
0 |||||||| ββββγγ ←

3.11. . 1
016 γ+← SS

3.12. . 1
116

0
5

0
5 γ+← RR

3.13. , . 0
0

1
00 γγ ⊕←tZ 0

1
1
11 γγ ⊕←tZ

* These two lines of the pseudo-code are slightly different from those on the original speci-
   fication of Polar Bear; refer to [3] for more details. 

The sequence { is the output sequence of the cipher. The feed-

back polynomials of the registers are primitive over GF(216) and given by  

and  in accordance with the recursive equations  and 

 for the output sequences of R0 and R1 LFSRs, respectively. Here ‘+’ and 
‘ ⋅ ’ respectively denote addition and multiplication operations of the finite field GF(216). Refer to 
[2] for more details on the cipher and definition of the finite field GF(216). In the rest of this paper 
we drop the multiplication operation symbol for simplicity. 

},,,,,, 2/
1

2/
0

2
1

2
0

1
1

1
0

NN ZZZZZZ L

016070 =−+ xx θμ

014191 =−+ xx θμ 000
1

00
7 nnn RRR ⋅+⋅= ++ μθ

111
5

11
9 nnn RRR ⋅+⋅= ++ μθ
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3   Description of the Attack 

In this section we present our attack on Polar Bear which is an improvement of one recently 
proposed by John Mattsson [4]. Both attacks use known plain-text scenario and recover the initial 
states of registers.  

Mattsson's attack recovers the initial states of the registers under the assumption that in the first 
six cycles both registers are clocked two steps and all the values of 's, totally 48 values, are 
different. Under these conditions D8 is known and is equal to T8 for those entries used in the first 
six cycles.  

i
jα

Let  be the state of LFSR R1 after n steps. Matts-

son guesses the 64 bits , ,  and  to recover the unknown initial states of the registers 
in a Guess-and-Determine manner. According to Mattsson's notes [4], the time complexity of his 
attack is O(279). 

),,,,,,,,( 11
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8 nnnnnnnnn RRRRRRRRR ++++++++

1
9R 1

10R 1
11R 1

13R

Our attack recovers the initial states of the registers under the assumption that in the first eight 
cycles, R0 is clocked two steps in all cycles, the sequence of number of steps for R1 is {2, 3, 3, 3, 
3, 2, 3, 2}, and all the values of 's, totally 64 values, are different. Under these conditions D8 is 
known and is equal to T8 for those entries used in the first eight cycles. Note since S is initialized 
to zero the two registers are always clocked twice in the first cycle. Therefore, the probability of 
validity of the assumed sequences for the number of steps for the registers in the first eight cycles 
is equal to 2-14. The probability that all the 64 values of 's in the first eight cycles are different 

is equal to 

i
jα

i
jα

.2256193255256 4.1264 −≈××× L  Our attack is a Guess-and-Determine based attack 

which first guesses the values of  and  and then recovers the initial states of the registers 

with a little effort. The total number of possible values for  and  is equal to 231 (see the 
remark at the end of this section). Therefore, the computational complexity and success probabil-
ity of our attack are O(231) and 2-26.4 respectively. One can interpret the attack as one with compu-
tational complexity of O(257.4).  

1
18R 1

19R
1
18R 1

19R

Let  be the state of the LFSR R1 after n steps. 

We denote the state of the register R0 after n steps by  where 

 ( ) may have a hat and is replaced by . We use a hat for  if it is a shifted 
value of the cell number five of the register R0 and its value has been nonlinearly updated through 
the step 3.12 of the pseudo-code. For example, since the registers are clocked twice at the first 
cycle, the state of the register R0 will be  after the first cycle. After 

the second cycle, the state of R0 will be or 

 if the register R0 is respectively clocked two or three steps at the 
second cycle. And so on.  

),,,,,,,,( 11
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8 nnnnnnnnn RRRRRRRRR ++++++++

),,,,,,( 00
1

0
2

0
3

0
4

0
5

0
6 nnnnnnn RRRRRRR ++++++

0
jnR + 60 ≤≤ j 0ˆ

jnR +
0

jnR +

),,,,,ˆ,( 0
2

0
3

0
4

0
5

0
6

0
7

0
8 RRRRRRR

),,,ˆ,,ˆ,( 0
4

0
5

0
6

0
7

0
8

0
9

0
10 RRRRRRR

),,ˆ,,,ˆ,( 0
5

0
6

0
7

0
8

0
9

0
10

0
11 RRRRRRR

The 8 by 8 S-box T8 acts on 8-bit bytes. For our convenience we define a 16 by 16 S-box T 
which acts on 16-bit words by applying T8 on the two bytes of its input word. To be more precise, 
if w1 and w0 are two arbitrary 8-bit bytes, we have T(w0||w1) = T8(w0)||T8(w1). Using this definition 
together with the introduced notations for the instantaneous internal state of R0 and R1, and taking 
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into account the assumed clocking way of the registers and the difference assumption of 's at 
the first eight cycles of cipher operation, one can easily trace the relations between different parts 
of the cipher and derive the relations between the internal state variables as well as the relations of 
output sequence of the cipher. We have derived and summarized these relations in the Table 1. 
We have not mentioned the relation for swapping the D8 entries and updating of S. 

i
jα

Table 1. Internal and output relations of the first eight cycles of the cipher operation under our 
assumptions.  

C
ycle 

 
 

R0 Relations 

 
 

R1 Relations 

 
 

Output Relations 

 
 

R0 Nonlinear Update 

 
1 

0
0

00
1

00
7)1( RRR μθ +=

0
1

00
2

00
8)2( RRR μθ +=  

1
0

11
5

11
9)3( RRR μθ +=

1
1

11
6

11
10)4( RRR μθ +=  

1
1

1
9

0
7 )()()5( ZRTRT =⊕  

11
10

0
8 0

)()()6( ZRTRT =⊕

)(ˆ)7( 1
916

0
7

0
7 RTRR +=  

 

2 

 

0
2

00
3

00
9)1( RRR μθ +=

0
3

00
4

00
10)2( RRR μθ +=  

1
2

11
7

11
11)3( RRR μθ +=

1
3

11
8

11
12)4( RRR μθ +=

1
4

11
9

11
13)5( RRR μθ +=  

 

2
1

1
12

0
9 )()()6( ZRTRT =⊕

2
0

1
13

0
10 )()()7( ZRTRT =⊕

 

)(ˆ)8( 1
1216

0
9

0
9 RTRR +=  

 

3 

 

0
4

00
5

00
11)1( RRR μθ +=

0
5

00
6

00
12)2( RRR μθ +=  

1
5

11
10

11
14)3( RRR μθ +=

1
6

11
11

11
15)4( RRR μθ +=
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All the relations of Table 1 are invertible in all the input variables. In other words, if we know 

all the input variables except one for each equation, the unknown variable is uniquely determined. 
Such kinds of equations are suitable to be solved in a Guess-and-Determine manner. In a Guess-
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and-Determine attack, we first guess some variables and then try to recover the remaining vari-
ables efficiently. The less the space size of the guessed variables is, the less the computational 
complexity is required. The validity of a guess is determined using some additional check equa-
tions.  

It is easy to show that it is not possible to uniquely solve the system of equations of Table 1 by 
guessing less than two variables. Moreover, guessing the values of and  reveals the initial 

state of the registers, that is  and  
which are our desires. We have summarized the steps which lead to recovering the initial states of 
the registers in Table 2. 
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Each step of Table 2 states which equation from Table 1 must be used to determine one of the 
variables using previously determined variables. For example, at 20th step the variable  is 

determined using equation 1 at cycle 6 of the Table 1 because and  have already been 

determined at the 7th and 19th steps respectively. More precisely we have  
where ‘–’ and ‘/ ’ are the subtraction and division operations of the finite field GF(216). 

0
10R

0
17R 0

11R̂
00

11
00

17
0
10 /)ˆ( μθ RRR −=

The correct initial state can be find by running the cipher some cycles and comparing the re-
sulting output sequence with the given key-stream sequence.  

Remark on the total number of possible values for : Although  is an 16-bit word, under the 
assumed clocking way for the registers, there are only 215 possibilities for it. Indeed, let S4 and S5 
be the contents of S at the end of 4th and 5th cycles. We have . Since we have 
assumed that R1 and R0 have respectively clocked three times and twice at both the 4th and the 5th 
cycles, the two most significant bits of both S4 and S5 are 10. This proofs that the two most 
significant bits of  can be either 00 or 11 which shows the existence of 215 possible 

choices for . 

1
18R 1

18R

)( 1
181645 RTSS +=

)( 1
18RT

1
18R

4   Conclusion 

In this paper we proposed a Guess-and-Determine based initial state recovery attack whose 
computational complexity and success probability are O(231) and 2-26.4 respectively. Our attack 
can be considered as one with computational complexity of O(257.4) which is much better than one 
recently proposed by Mattsson with computational complexity of O(279). The weakness, which 
enables these attacks, can effectively be countered by initializing the dynamic permutation D8 to 
an 8 by 8 key-IV dependent S-box provided that it seems random to an attacker. In [5] a remedy 
for fixing the attack has been proposed.  

Acknowledgment. We would like to thank Mr. Mattsson for notifying us of a few typos on the 
paper. 
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Table 2. The details of the procedure of recovering the initial state of the registers, by guessing and . 1
18R 1

19R

Step Known  
Words 

(Cycle-Relation) Deduced  
Word 

1 1
18R  (4-6) 0

13R  

2 0
13R 1

18R,  (4-8) 0
13R̂  

3 1
19R  (4-7) 0

14R  
4 0

14
0
13,ˆ RR  (7-2) 0

20R  
5 0

20R  (7-7) 1
27R  

6 1
27R ,  1

18R (7-5) 1
23R  

7 1
23R  (6-5) 0

17R  
8 1

23R ,  1
19R (6-3) 1

14R  
9 1

18
1
14 , RR  (4-4) 1

9R  
10 1

9R  (1-5) 0
7R  

11 0
7R ,  1

9R (1-7) 0
7R̂  

12 0
14

0
7 ,ˆ RR  (4-2) 0

8R  
13 0

13
0
7 ,ˆ RR  (4-1) 0

6R  
14 0

8R  (1-6) 1
10R  

15 1
14

1
10 , RR  (3-3) 1

5R  
16 1

9
1
5 , RR  (1-3) 1

0R  
17 1

19
1
10 , RR  (4-5) 1

15R  
18 1

15R  (3-6) 0
11R  

19 0
11R ,  1

15R (3-8) 0
11R̂  

20 0
11

0
17

ˆ, RR  (6-1) 0
10R  

21 0
10R  (2-7) 1

13R  
22 1

9
1
13 , RR  (2-5) 1

4R  
23 1

18
1
13 , RR  (5-5) 1

22R  
24 1

22R  (5-7) 0
16R  

25 0
10

0
16 , RR  (5-2) 0

9R̂  
26 0

8
0
9 ,ˆ RR  (5-1) 0

15R  
27 0

15R  (5-6) 1
21R  

28 0
15R ,  1

21R (5-8) 0
15R̂  

Step Known 
Words 

(Cycle- Relation) Deduced  
Word 

29 0
15R̂ , 0

16R (8-2) 0
22R  

30 0
22R  (8-6) 1

29R  
31 0

15R̂ , 0
14R (8-1) 0

21R  
32 0

21R  (8-5) 1
28R  

33 1
28R , 1

19R (8-3) 1
24R  

34 1
24R 1

15R, (6-4) 1
20R  

35 1
20R 1

29R, (8-4) 1
25R  

36 1
25R 1

21R, (7-3) 1
16R  

37 1
16R 1

20R, (5-3) 1
11R  

38 1
16R  (3-7) 0

12R  
39 0

12R , 0
6R (3-2) 0

5R  
40 0

5R , 0
11R (3-1) 0

4R  
41 0

10R , 0
4R (2-2) 0

3R  
42 0

13R̂ , 0
12R (7-1) 0

19R  
43 0

19R  (7-6) 1
26R  

44 1
26R 1

22R, (7-4) 1
17R  

45 1
17R 1

21R, (5-4) 1
12R  

46 1
12R  (2-6) 0

9R  
47 0

9R ,  0
3R (2-1) 0

2R  
48 0

2R , 0
8R (1-2) 0

1R  
49 0

1R ,  0
7R (1-1) 0

0R  
50 1

17R , 1
13R (4-3) 1

8R  
51 1

16R 1
12R, (3-5) 1

7R  
52 1

15R , 1
11R (3-4) 1

6R  
53 1

12R , 1
8R (2-4) 1

3R  
54 1

11R , 1
7R (2-3) 1

2R  
55 1

10R , 1
6R (1-4) 1

1R  
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Abstract. We present a distinguishing attack on NLS which is one of the stream ci-
phers submitted to the eSTREAM project. We build the distinguisher by using linear
approximations of both the non-linear feedback shift register (NFSR) and the non-
linear filter function (NLF). Since the bias of the distinguisher depends on the Konst

value, which is a key-dependent word, we estimate the average bias to be around
O(2−34). Therefore, we claim that NLS is distinguishable from truly random cipher
after observing O(268) keystream words on the average. In addition, we present how
to reduce a fraction of Konst values for which our attack fails.
Keywords : Distinguishing Attacks, Stream Ciphers, Linear Approximations, eS-
TREAM, Modular Addition, NLS.

1 Introduction

The European Network of Excellence in Cryptology (ECRYPT) launched a stream cipher
project called eSTREAM [1] whose aim is to come up with a collection of stream ciphers
that can be recommended to industry and government institutions as secure and efficient
cryptographic primitives. It is also likely that some or perhaps all recommended stream
ciphers may be considered as de facto industry standards. It is interesting to see a variety of
different approaches used by the designers of the stream ciphers submitted to the eSTREAM
call. A traditional approach for building stream ciphers is to use a linear feedback shift
register (LFSR) as the main engine of the cipher. The outputs of the registers are taken and
put into a nonlinear filter that produces the output stream that is added to the stream of
plaintext.

One of the new trends in the design of stream ciphers is to replace LFSR by a nonlinear
feedback shift register (NFSR). From the ciphers submitted to the eSTREAM call, there are
several ciphers that use the structure based on NFSR amongst them the NLS cipher follows
this design approach. The designers of the NLS cipher are Gregory Rose, Philip Hawkes,
Michael Paddon and Miriam Wiggers de Vries from Qualcomm Australia.

The paper studies the NLS cipher and its resistance against distinguishing attacks using
linear approximation. Typically, distinguishing attacks do not allow to recover any secret
element of the cipher such as the cryptographic key or the secret initial state of the NFSR but
instead they permit to tell apart the cipher from the truly random cipher. In this sense these
attacks are relatively weak. However, the existence of a distinguishing attack is considered
as an early warning sign of possible major security flaws.

In our analysis, we derive linear approximations of both NFSR and the nonlinear filter
(NLF). The main challenge has been to combine the obtained linear approximations in a
such way that the internal state bits of NFSR have been eliminated leaving the observable

161



output bits only. Our approach is an extension of the linear masking method introduced by
Coppersmith, Halevi, and Jutla in [3]. Note that the linear masking method was applied for
the traditional stream ciphers based on LFSR so it is not directly applicable for the ciphers
with NFSR.

The work is structured as follows. Section 2 briefly describes the NLS cipher. In Section 3,
we study best linear approximations for both NFSR and NLF. A simplified NLS cipher is
defined in Section 4 and we show how to design a distinguisher for it. Our distinguisher for
the original NLS cipher is examined in Section 5. We show how it works and also discuss its
limitations. Section 6 concludes our work.

2 Brief description of NLS stream cipher

As we said the NLS keystream generator uses NFSR whose outputs are given to the nonlinear
filter NLF that produces output keystream bits. Note that we concentrate on the cipher
itself and ignore its message integrity function as irrelevant to our analysis. For details of
the cipher, the reader is referred to [2].

NLS has two components: NFSR and NLF whose work is synchronised by a clock. The state
of NFSR at time t is denoted by σt = (rt[0], . . . , rt[16]) where rt[i] is a 32-bit word. The
state is determined by 17 words (or equivalently 544 bits). The transition from the state σt

to the state σt+1 is defined as follows:

1. rt+1[i] = rt[i + 1] for i = 0, . . . , 15;
2. rt+1[16] = f((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst) ⊕ rt[4];
3. if t = 0 (modulo f16), rt+1[2] = rt+1[2] + t;

where f16 is 65537 and + is the addition modulo 232. The Konst value is a 32-bit key-
dependent constant. The function f : {0, 1}32 → {0, 1}32 is constructed using an S-box with
8-bit input and 32-bit output and defined as f(a) = S-box(aH) ⊕ a where aH is the most
significant 8 bits of 32-bit word a. Each output keystream word νt of NLF is obtained as

νt = NLF (σt) = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ (rt[6] + Konst). (1)

The cipher uses 32-bit words to ensure a fast keystream generation.

3 Analysis of NFSR and NLF

Unlike a LFSR that applies a connection polynomial, the NFSR uses a much more complex
nonlinear transition function f that mixes the XOR addition (linear) with the addition mod-
ulo 232 (nonlinear). According to the structure of the non-linear shift register, the following
equation holds for the least significant bit. Let us denote αt to be a 32-bit output of the
S-box that defines the transition function f . Then, we observe that for the least significant
bit, the following equation holds

α
t,(0) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (2)

where α
t,(0) and x(i) stand for the i-th bits of the 32-bit words αt and x, respectively.

To make our analysis simpler we assume initially that Konst is zero. This assumption is
later dropped (i.e. Konst is non-zero) when we discuss our distinguishing attack on the NLS
stream cipher.
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3.1 Linear approximations of αt,(0)

Recall that αt is the 32-bit output taken from the S-box and α
t,(0) is its least significant

bit. The input to the S-box comes from the eight most significant bits of the addition
((rt[0] ≪ 19) + (rt[15] ≪ 9) + Konst). Assuming that Konst=0, the input to S-box is
(rt[0]′ + rt[15]′), where rt[0]′ = rt[0] ≪ 19 and rt[15]′ = rt[15] ≪ 9. Thus, α

t,(0) is com-
pletely determined by the contents of two registers rt[0]′ and rt[15]′. Observe that the input
of the S-box is affected by the eight most significant bits of the two registers rt[0]′ (we denote
the 8 most significant bits of the register by rt[0]′(H)) and rt[15]′ (the 8 most significant bits

of the register are denoted by rt[15]′(H)) and by the carry bit c generated by the addition of

two 24 least significant bits of rt[0]′ and rt[15]′. Therefore

the input of the S-box = rt[0]′(H)
+ rt[15]′(H)

+ c.

Now we would like to find the best linear approximation for α
t,(0). We build the truth table

with 217 rows and 216 columns. Each row corresponds to the unique collection of input
variables (8 bits of rt[0]′(H), 8 bits of rt[15]′(H), and a single bit for c). Each column relates to

the unique linear combination of bits from rt[0]′(H) and rt[15]′(H). Table 1 displays a collection
of best linear approximations that are going to be used in our distinguishing attack. In
particular, the third row of Table 1 has relatively high bias. This seems to be caused by the
reason that rt[0](12)⊕rt[15](22) is the only input to the MSB of input of the S-box that is not
diffused to other order bits. Note that rt[0]′(H) = (rt[0] ≪ 19)(H) = (rt[0](12), . . . , rt[0](5))

linear approximations of αt,(0) bias

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15) 1/2+0.024414

rt[0](10) ⊕ rt[0](6) ⊕ rt[0](5) ⊕ rt[15](20) ⊕ rt[15](16) 1/2+0.024414

rt[0](12) ⊕ rt[15](22) 1/2-0.022705

rt[0](11) ⊕ rt[15](21) 1/2+0.002441

rt[0](10) ⊕ rt[15](20) 1/2-0.017578

Table 1. Linear approximations for αt,(0) when Konst = 0

and rt[15]′(H) = (rt[15] ≪ 9)(H) = (rt[15](22), . . . , rt[15](15)). Note also that none of the
approximations contains the carry bit c, in other words, the approximations do not depend
on c.

3.2 Linear approximations for NFSR

Having a linear approximation of α
t,(0), it is easy to obtain a linear approximation for NFSR.

Let us choose the first approximation from Table 1, so we are getting the following linear
equation:

α
t,(0) = rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15) (3)

with the bias 0.024414 = 2−5.35. Now we combine Equations (2) and (3) and as the result
we have the following approximation for NFSR

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ rt[15](16) ⊕ rt[15](15)
⊕rt[0](13) ⊕ rt[15](23) ⊕ Konst(0) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0

(4)

with the bias of 2−5.35.
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3.3 Linear approximation for NLF

Recall that Equation (1) defines the output keystream generated by NLF. As we have
assumed that Konst is zero, we get

νt = (rt[0] + rt[16]) ⊕ (rt[1] + rt[13]) ⊕ rt[6]

Let us take a closer look at the addition + , we know that the least significant bits are
linear so the following equation holds (r[x] + r[y])(0) = r[x](0) ⊕ r[y](0). Consequently, we
obtain the relation for the least significant bits in the following form

ν
t,(0) = (rt[0](0) ⊕ rt[16](0)) ⊕ (rt[1](0) ⊕ rt[13](0)) ⊕ (rt[6](0)) (5)

that holds with probability one.

All consecutive bits i > 0 of + are nonlinear. Consider the function (r[x] + r[y])(i) ⊕
(r[x] + r[y])(i−1). The function has a linear approximation as follows

(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) = r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) (6)

that has the bias of 2−2. Using the above approximation we can argue that, for 2 ≤ i ≤ 31,
NLF function possesses a linear approximation of the following form

ν
t,(i) ⊕ ν

t,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕(rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1))
⊕(rt[6](i) ⊕ rt[6](i−1))

(7)

with the bias of 2(2−2)2 = 2−3.

4 Distinguishing attack on a simplified NLS

In this section we assume that the structure of NFSR is unchanged but the structure of
NLF is modified by replacing the addition + by ⊕. Thus, Equation (1) that describes the
keystream becomes

µt = (rt[0] ⊕ rt[16]) ⊕ (rt[1] ⊕ rt[13]) ⊕ (rt[6] ⊕ Konst). (8)

This linear function is valid for 32-bit words so it can be equivalently re-written as a system
of 32 equations each equation valid for the particular ith bit. Hence, for 0 ≤ i ≤ 31,

µ
t,(i) = (rt[0](i) ⊕ rt[16](i)) ⊕ (rt[1](i) ⊕ rt[13](i)) ⊕ (rt[6](i) ⊕ Konst(i)). (9)

To build a distinguisher we combine approximations of NFSR given by Equation (4) with
linear equations defined by (9). For the clocks t, t + 1, t + 6, t + 13, and t + 16, consider the
following approximations of NFSR

rt[0](10) ⊕ rt[0](6) ⊕ rt[15](20) ⊕ · · · ⊕ rt+1[16](0) = 0
rt+1[0](10) ⊕ rt+1[0](6) ⊕ rt+1[15](20) ⊕ · · · ⊕ rt+2[16](0) = 0
rt+6[0](10) ⊕ rt+6[0](6) ⊕ rt+6[15](20) ⊕ · · · ⊕ rt+7[16](0) = 0
rt+13[0](10) ⊕ rt+13[0](6) ⊕ rt+13[15](20) ⊕ · · · ⊕ rt+14[16](0) = 0
rt+16[0](10) ⊕ rt+16[0](6) ⊕ rt+16[15](20) ⊕ · · · ⊕ rt+17[16](0) = 0

(10)
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Since rt+p[0] = rt[p], we can rewrite the above system of equations (10) equivalently as
follows:

rt[0](10) ⊕ rt[0](6) ⊕ rt+15[0](20) ⊕ · · · ⊕ rt+17[0](0) = 0
rt[1](10) ⊕ rt[1](6) ⊕ rt+15[1](20) ⊕ · · · ⊕ rt+17[1](0) = 0
rt[6](10) ⊕ rt[6](6) ⊕ rt+15[6](20) ⊕ · · · ⊕ rt+17[6](0) = 0
rt[13](10) ⊕ rt[13](6) ⊕ rt+15[13](20) ⊕ · · · ⊕ rt+17[13](0) = 0
rt[16](10) ⊕ rt[16](6) ⊕ rt+15[16](20) ⊕ · · · ⊕ rt+17[16](0) = 0

(11)

Consider the columns of the above system of equations. Each column describes a single
bit output of the filter (see Equation (9)), therefore the system (11) gives the following
approximation:

µ
t,(10) ⊕ µ

t,(6) ⊕ µ
t+15,(20) ⊕ µ

t+15,(16) ⊕ µ
t+15,(15) ⊕ µ

t,(13)

⊕µ
t+15,(23) ⊕ µ

t+4,(0) ⊕ µ
t+17,(0) = K

(12)

where K = Konst(10)⊕Konst(6)⊕Konst(20)⊕Konst(16)⊕Konst(15)⊕Konst(13)⊕Konst(23).
Note that the bit K is constant (zero or one) during the session. Therefore, by the piling-up
lemma, the bias of (12) is 2 · 24 · (2−5.35)5 = 2−22.

5 Distinguishing attack on NLS

In this Section, we describe a distinguishing attack on the real NLS. The main idea is to find
the best combination of approximations for both NFSR and NLF, while the state bits of the
shift register vanish and the bias of the resulting approximation is as big as possible. We
study the case for Konst = 0 at first and then, extend our attack to the case for Konst 6= 0.
Note that only a non-zero most significant byte of Konst is allowed in NLS cipher.

5.1 Case for Konst = 0

The linear approximations of α
t,(0) are given in Table 1. We choose this time the third

approximation from the table so

α
t,(0) = rt[0](12) ⊕ rt[15](22) (13)

and the bias of this approximation is 0.022705 = 2−5.46. By combining Equations (2) and
(13), we have the following approximation

rt[0](12) ⊕ rt[15](22) ⊕ rt[0](13) ⊕ rt[15](23) ⊕ rt[4](0) ⊕ rt+1[16](0) = 0 (14)

that has the same bias. Let us now divide (14) into two parts : the least significant bit and
the other bits, so we get

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)

(15)

Clearly, l1(rt)⊕ l2(rt) = 0 with the bias 2−5.46. Since l1(rt) has only the least significant bit
variables, we apply (5) which is true with probability one. Then, we obtain

l1(rt) = rt[4](0) ⊕ rt+1[16](0)
l1(rt+1) = rt+1[4](0) ⊕ rt+2[16](0)
l1(rt+6) = rt+6[4](0) ⊕ rt+7[16](0)
l1(rt+13) = rt+13[4](0) ⊕ rt+14[16](0)
l1(rt+16) = rt+16[4](0) ⊕ rt+17[16](0)

(16)
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If we add up all approximations of (16), then, by applying Equation (5), we can write

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16) = ν
t+4,(0) ⊕ ν

t+17,(0) (17)

Now, we focus on l2(rt) where the bit positions are 12, 13, 22, and 23 so

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt[15](22) ⊕ rt[15](23)
l2(rt+1) = rt+1[0](12) ⊕ rt+1[0](13) ⊕ rt+1[15](22) ⊕ rt+1[15](23)
l2(rt+6) = rt+6[0](12) ⊕ rt+6[0](13) ⊕ rt+6[15](22) ⊕ rt+6[15](23)
l2(rt+13) = rt+13[0](12) ⊕ rt+13[0](13) ⊕ rt+13[15](22) ⊕ rt+13[15](23)
l2(rt+16) = rt+16[0](12) ⊕ rt+16[0](13) ⊕ rt+16[15](22) ⊕ rt+16[15](23)

(18)

Since rt+p[0] = rt[p], the above approximations can be presented as follows

l2(rt) = rt[0](12) ⊕ rt[0](13) ⊕ rt+15[0](22) ⊕ rt+15[0](23)
l2(rt+1) = rt[1](12) ⊕ rt[1](13) ⊕ rt+15[1](22) ⊕ rt+15[1](23)
l2(rt+6) = rt[6](12) ⊕ rt[6](13) ⊕ rt+15[6](22) ⊕ rt+15[6](23)
l2(rt+13) = rt[13](12) ⊕ rt[13](13) ⊕ rt+15[13](22) ⊕ rt+15[13](23)
l2(rt+16) = rt[16](12) ⊕ rt[16](13) ⊕ rt+15[16](22) ⊕ rt+15[16](23)

(19)

Recall the approximation (7) of NLF. If we combine (19) with (7), then we have

l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16) =
ν

t,(12) ⊕ ν
t,(13) ⊕ ν

t+15,(22) ⊕ ν
t+15,(23)

(20)

By combining the approximations (17) and (20), we obtain the final approximation that
defines our distinguisher, i.e.

l1(rt) ⊕ l1(rt+1) ⊕ l1(rt+6) ⊕ l1(rt+13) ⊕ l1(rt+16)
⊕l2(rt) ⊕ l2(rt+1) ⊕ l2(rt+6) ⊕ l2(rt+13) ⊕ l2(rt+16)
= ν

t,(12) ⊕ ν
t,(13) ⊕ ν

t+15,(22) ⊕ ν
t+15,(23) ⊕ ν

t+4,(0) ⊕ ν
t+17,(0)

= 0

(21)

The second part of the approximation can be computed from the output keystream that
can be observed by the adversary. The bias can be computed using the piling-up lemma. As
we use the approximation (14) five times and the approximation (7) twice, the bias of the
approximation (21) is 2 · (24(2−5.46)5) · (2(2−3)2) = 2−27.3.

5.2 Case for Konst 6= 0

Recall that Konst takes part in the input of NFSR and NLF. If Konst is not zero, then,
the biases of linear approximations for α

t,(0) and NLF are changed according to the values
of Konst. Let us denote that Konst(H) = (Konst(31), . . . ,Konst(24)), and Konst(L) =
(Konst(23), . . . ,Konst(0)).

Biases of linear approximations of αt,(0) and NLF with Konst(H) Since the most
significant 8 bits of Konst contribute to form of the bit α

t,(0), the bias of the approximation
(13) fluctuates mostly according to the 8-bit Konst(H). This relation is illustrated in Figure
1. From this figure, we can see that (13) has the smallest bias when Konst(H) = 51 and
179, even though the bias of (13) is 2−6.4 on the average.
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Fig. 1. Bias of αt,(0) = rt[0](12) ⊕ rt[15](22) with Konst(H)
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Fig. 2. Bias of (22) with Konst(L) when i = 13

Konst(H) best linear approximations of αt,(0) bias

1 rt[0](12) ⊕ rt[15](22) 1/2-0.022522

51 rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10)rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) 1/2+0.022705

120 rt[0](12) ⊕ rt[15](22) 1/2+0.011353

179 rt[0](12) ⊕ rt[0](11) ⊕ rt[0](10) ⊕ rt[15](22) ⊕ rt[15](21) ⊕ rt[15](20) 1/2+0.011353

Table 2. A partial table of best approximations for αt,(0) with Konst(H)
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Hence, in order to maximize the bias of our distinguisher, we need to find the best approxima-
tions for α

t,(0) when Konst(H) runs through all possible values, i.e. from 0 to 255. Note that
the best approximation of α

t,(0) means one which results in maximum bias of distinguisher
when the approximation of NLF is combined. Table 2 shows a partial table for approxima-
tions of α

t,(0). When Konst(H) is around 1 or 120, we use the following approximation for
NLF.

ν
t,(i) ⊕ ν

t,(i−1) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1))
⊕(rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1))
⊕(rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1))

(22)

On the other side, when Konst(H) is around 51 or 179, we use the following approximation:

ν
t,(i) ⊕ ν

t,(i−1)⊕ ν
t,(i−2) ⊕ ν

t,(i−3) =
(rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−1) ⊕ rt[16](i−1)

⊕rt[0](i−2) ⊕ rt[16](i−2) ⊕ rt[0](i−3) ⊕ rt[16](i−3))
⊕(rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−1) ⊕ rt[13](i−1)

⊕rt[1](i−2) ⊕ rt[13](i−2) ⊕ rt[1](i−3) ⊕ rt[13](i−3))
⊕(rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−1) ⊕ Konst(i−1)

⊕rt[6](i−2) ⊕ Konst(i−2) ⊕ rt[6](i−3) ⊕ Konst(i−3))

(23)

Instead of Approximation (6), we need the following linear approximation in order to com-
pute the bias of (23),

(r[x] + r[y])(i) ⊕ (r[x] + r[y])(i−1) ⊕ (r[x] + r[y])(i−2) ⊕ (r[x] + r[y])(i−3) =
r[x](i) ⊕ r[y](i) ⊕ r[x](i−1) ⊕ r[y](i−1) ⊕ r[x](i−2) ⊕ r[y](i−2) ⊕ r[x](i−3) ⊕ r[y](i−3)

(24)

that has the bias of 2−3.

Biases of linear approximations of NLF with Konst(L) In Approximation (22), the
bias of the following approximation fluctuates depending on Konst(L).

(rt[6] + Konst)i ⊕ (rt[6] + Konst)i−1 = (rt[6](i) ⊕Konst(i) ⊕ rt[6](i−1) ⊕Konst(i−1)) (25)

Figure 2 displays the bias distribution according to Konst(L) in (22) when i = 13. Note
that this graph shows the distribution from 14 LSBs of Konst(L) (that is, 214) since the bits
Konst(23), . . . ,Konst(14) have not effect on the bias for i = 13. We should consider 24 bits
of Konst(L) when i = 23 in (22). However, the distribution graph is similar to Figure 2 with
only the slope changed. On the average, the bias of (22) is 2−4. A very similar analysis is
possible for Approximation (23). The bias of (23) is 2−7 on the average.

Average bias of distinguisher From both Approximations (22) and (23) with biases
shown in Table 2, we can build two distinguishers as follows.

ν
t,(12) ⊕ ν

t,(13) ⊕ ν
t+15,(22) ⊕ ν

t+15,(23) ⊕ ν
t+4,(0) ⊕ ν

t+17,(0) = 0 (26)

ν
t,(10) ⊕ ν

t,(11) ⊕ ν
t,(12) ⊕ ν

t,(13) ⊕ ν
t+15,(20) ⊕ ν

t+15,(21)

⊕ν
t+15,(22) ⊕ ν

t+15,(23) ⊕ ν
t+4,(0) ⊕ ν

t+17,(0) = 0
(27)

The bias of best distinguisher for each Konst(H) is displayed in Table 3. We take the average
biases of Approximations (22) and (23).
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Konst(H) distinguisher details bias data complexity

1 (26) 2 · (24(2−5.47)5) · (2(2−4)2) 2−29.4 258.8

51 (27) 2 · (24(2−6.46)5) · (2(2−7)2) 2−40.3 280.6

120 (26) 2 · (24(2−5.42)5) · (2(2−4)2) 2−29.1 258.2

179 (27) 2 · (24(2−6.46)5) · (2(2−7)2) 2−40.3 280.6

Table 3. A partial table of biases for distinguisher with Konst(H)

If we select the distinguisher (26), then, the average bias of approximation of α
t,(0) over

Konst(H) is 2−6.4. Therefore, the bias of distinguisher appears to be around 2 ·(24(2−6.4)5) ·
(2(2−4)2) = 2−34 on the average. Note that an adversary should avoid the keystream that
is produced around clock t = 0 (mod 65537) as the feedback has an additional step at this
clock. (See Step 3 at Section 2 )

For some values of Konst(H) (e.g. Konst(H) = 51 or 179), the bias of the distinguisher (26)
becomes less than 2−40. In order to compensate this ”small-bias” area, an adversary observes
the distinguisher (26) and (27) simultaneously in such a way that a bigger bias among those
are always chosen. Note that the amount of the keystream for both distinguishers is not
increased since the keystream is produced by words.

Therefore, the minimum bias observable by both distinguisher (26) and (27) will be 2−40.3

even Konst(H) is close to 51 or 179.

5.3 When does our distinguishing attack fail?

Let us denote the bias of the approximation of α
t,(0) by ǫ1, the bias of the approximation

of a single addition (for example, Approximations (6) and (24)) by ǫ2 and the bias of the
approximation of (rt[6] + Konst) by ǫ3. Since the specification of the NLS cipher allows the
adversary to observe up to 280 keystream words per one key/nonce pair, we assume that our
attack is not successful if the bias of distinguisher satisfies the following condition:

bias of linear approx. of α
t,(0) : d1 = 24(ǫ51)

bias linear approx. of NLF : d2 = 22(ǫ2)
2ǫ3

}

⇒ 2 · d1 · 2 · (d2)
2 < 2−40. (28)

Note that ǫ1 is affected by Konst(H), and ǫ3 by Konst(L).

When the bias becomes zero? In Figure 2, the bias of (25) becomes zero when

1. Konst(L) = (b31, . . . , b23, 1, 0, . . . , 0)
2. Konst(L) = (b31, . . . , b13, 1, 0, . . . , 0)

where bi can have any bit (0 or 1). Hence, the bias of this distinguisher is zero for around
219 out of 232 possible values of Konst.

5.4 Multiple distinguishers

Since the NLS produces 32-bit keystream words per a clock, we may reduce the unsuccessful
portion of Konst by considering multiple distinguishers without increasing the necessary
volume of observed data. For example, let us consider the following approximation of α

t,(0)

α
t,(0) = rt[0](11) ⊕ rt[15](21) (29)
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whose bias on the average is around 0.012911 = 2−6.28. The corresponding approximation
of NLF is

ν
t,(i) ⊕ ν

t,(i−2) = (rt[0](i) ⊕ rt[16](i) ⊕ rt[0](i−2) ⊕ rt[16](i−2))
⊕(rt[1](i) ⊕ rt[13](i) ⊕ rt[1](i−2) ⊕ rt[13](i−2))
⊕(rt[6](i) ⊕ Konst(i) ⊕ rt[6](i−2) ⊕ Konst(i−2))

(30)

and the bias of this approximation is around 22(2−3)3 = 2−7.

As in Section 5.1, an another distinguisher based on a different relation can be built. The
relation is as follows:

ν
t,(11) ⊕ ν

t,(13) ⊕ ν
t+15,(21) ⊕ ν

t+15,(23)νt+4,(0) ⊕ ν
t+17,(0) = 0 (31)

The bias for the distinguisher on the average is around 2 · (24(2−6.28)5) · (2(2−7)2) = 2−39.4.
It is a known fact that the bias of this distinguisher also fluctuates depending on the actual
value of Konst. However, this time, the phase of fluctuation has been shifted from that of
the distinguisher (26).

Even though our attack based on the distinguisher (26) fails for some values of Konst, it
may be still successful by observing the bias of the other distinguisher (31). Note that the
number of observations of keystream required for multiple distinguishers remains same as
for a single distinguisher.

We intend to investigate our attack in more detail, in particular, we would like to determine
the fraction of the values of Konst for which the distinguishing attack works.

6 Conclusion

In this paper, we presented a linear distinguishing attack on NLS. The bias of distinguisher
appears to be 2−34 on the average so that NLS is distinguishable from a random function by
observing 268 keystream words. Even though there are a fraction of Konst which requires
the data complexity bigger than 280, we show that it is possible for attacker to reduce the
fraction of Konst by combining multiple distinguishers which have biases of less than 2−40

on the average.
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Abstract. Grain [11] is a lightweight stream cipher submitted by M. Hell, T. Jo-
hansson, and W. Meier to the eSTREAM call for stream cipher proposals of the
European project ECRYPT [5]. Its 160-bit internal state is divided into a LFSR
and an NLFSR of length 80 bits each. A filtering boolean function is used to
derive each keystream bit from the internal state. By combining linear approxi-
mations of the feedback function of the NLFSR and of the filtering function, it
is possible to derive linear approximation equations involving the keystream and
the LFSR initial state. We present a key recovery attack against Grain which
requires 243 computations and 238 keystream bits to determine the 80-bit key.

Keywords: Stream cipher, Correlation attack, Walsh transform

1 Introduction

Stream ciphers are symmetric encryption algorithms based on the concept of pseudo-
random keystream generator. In the typical case of a binary additive stream cipher, the
key and an additional parameter named initialization vector (IV) are used to generate a
binary sequence called keystream which is bitwise combined with the plaintext to pro-
vide the ciphertext. Although it seems rather difficult to construct a very fast and secure
stream cipher, some efforts to achieve this have recently been deployed. The NESSIE
project [24] launched in 1999 by the European Union did not succeed in selecting a
secure enough stream cipher. Recently, the European Network of Excellence in Cryp-
tology ECRYPT launched a call for stream cipher proposals named eSTREAM [5]. The
candidate stream ciphers were submitted in May 2005. Those candidates are divided
into software oriented and hardware oriented ciphers.

Hardware oriented stream ciphers are specially designed so that their implementa-
tion requires a very small number of gates. Such ciphers are useful in mobile systems, e.g.
mobile phones or RFID, where minimizing the number of gates and power consumption
is more important than very high speed.

0 The work described in this paper has been supported in part by Grant VR 621-2001-2149,
in part by the French Ministry of Research RNRT X-CRYPT project and in part by the Eu-
ropean Commission through the IST Program under Contract IST-2002-507932 ECRYPT.
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One of the new hardware candidates submitted to eSTREAM is a stream cipher
named Grain [11] which was developed by M. Hell, T. Johansson, and W. Meier 3 as
an alternative to stream ciphers like GSM A5/1 or Bluetooth E0. It uses a 80-bit key
and a 64-bit initialization vector to fill in an internal state of size 160 bits divided into
a nonlinear feedback shift register (NLFSR) and a linear feedback shift register (LFSR)
of length 80 bits each. At each clock pulse, one keystream bit is produced by selecting
some bits of the LFSR and of the NLFSR and applying a boolean function. It is well
known that LFSR sequences satisfy several statistical properties one would expect from
a random sequence, but do not offer any security. Their combination with NLFSR
sequences is expected to improve the security. However, NLFSR based constructions
have not yet been as well studied as LFSR based constructions. The claimed security
level of Grain is 280, and it was conjectured by the authors of Grain that there exists
no attack significantly faster than exhaustive search.

In this paper, we describe two key recovery attacks against Grain. The proposed
attacks exploit linear approximations of the output function. The first one requires 255

operations, 249 bits of memory, and 251 keystream bits, and the second one requires 243

operations, 242 bits of memory, and 238 keystream bits.
This paper is organized as follows. We first describe the Grain stream cipher (Sec-

tion 2) and we derive some linear approximations involving the LFSR and the keystream
(Section 3). We then present two techniques for recovering the initial state of the LFSR
(Section 4). Finally, we present a technique allowing to recover the initial state of the
NLFSR once we know the LFSR initial state (Section 5).

2 Description of Grain

Grain [11] is based upon three main building blocks: an 80-bit linear feedback shift
register, an 80-bit nonlinear feedback shift register, and a nonlinear filtering function.
Grain is initialized with the 80-bit key K and the 64-bit initialization value IV . The
cipher output is an L-bit keystream sequence (zt)t=0,...,L−1.

NFSR

g

LFSR

f

h

The current LFSR content is denoted by Y t = (yt, yt+1, . . . , yt+79). The LFSR is
governed by the linear recurrence:

yt+80 = yt+62 ⊕ yt+51 ⊕ yt+38 ⊕ yt+23 ⊕ yt+13 ⊕ yt.

3 The design of Grain was also submitted and recently accepted for publication in the Inter-
national Journal of Wireless and Mobile Computing, Special Issue on Security of Computer
Network and Mobile Systems.
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The current NFSR content is denoted by Xt = (xt, xt+1, . . . , xt+79). The NFSR
feedback is disturbed by the output of the LFSR, so that the NFSR content is governed
by the recurrence:

xt+80 = yt ⊕ g(xt, xt+1, . . . , xt+79),

where the expression of nonlinear feedback function g is given by

xt+63 ⊕ xt+60 ⊕ xt+52 ⊕ xt+45 ⊕ xt+37 ⊕ xt+33 ⊕ xt+28 ⊕ xt+21 ⊕ xt+15 ⊕ xt+9 ⊕ xt

⊕ xt+63xt+60 ⊕ xt+37xt+33 ⊕ xt+15xt+9 ⊕ xt+60xt+52xt+45 ⊕ xt+33xt+28xt+21

⊕ xt+63xt+45xt+28xt+9 ⊕ xt+60xt+52xt+37xt+33 ⊕ xt+63xt+60xt+21xt+15

⊕ xt+63xt+60xt+52xt+45xt+37 ⊕ xt+33xt+28xt+21xt+15xt+9

⊕ xt+52xt+45xt+37xt+33xt+28xt+21.

The cipher output bit zt is derived from the current LFSR and NFSR states as the
exclusive or of the masking bit xt and a nonlinear filtering function h as follows:

zt = xt ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
= h′(yt+3, yt+25, yt+46, yt+64, xt, xt+63)
= xt ⊕ xt+63pt ⊕ qt,

where pt and qt are the functions of yt+3, yt+25, yt+46, yt+64 given by:

pt = 1⊕ yt+64 ⊕ yt+46(yt+3 ⊕ yt+25 ⊕ yt+64),
qt = yt+25 ⊕ yt+3yt+46(yt+25 ⊕ yt+64)⊕ yt+64(yt+3 ⊕ yt+46).

The boolean function h is correlation immune of the first order. As noticed in [11],
“this does not preclude that there are correlations of the output of h(x) to sums of
inputs”, but the designers of Grain appear to have expected the NFSR masking bit xt
to make it impractical to exploit such correlations.

The key and IV setup consists of loading the key bits in the NFSR, loading the 64-
bit IV followed by 16 ones in the LFSR, and clocking the cipher 160 times in a special
mode where the output bit is fed back into the LFSR and the NFSR. Once the key and
IV have been loaded, the keystream generation mode described above is activated and
the keystream sequence (zt) is produced.

3 Deriving Linear Approximations of the LFSR Bits

3.1 Linear Approximations Used to Derive the LFSR Bits

The purpose of the attack is, based on a keystream sequence (zt)t=0...L−1 corresponding
to an unknown key K and a known IV value, to recover the key K. The initial step of
the attack is to derive a sufficient number N of linear approximation equations involving
the n = 80 bits of the initial LFSR state Y 0 = (y0, . . . , y79) (or equivalently a sufficient
number N of linear approximation equations involving bits of the sequence (yt)) to
recover the value of Y 0. Hereafter, as will be shown in Section 5, the initial NFSR state
X0 and the key K can then be easily recovered.
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The starting point for the attack consists in noticing that though the NFSR feedback
function g is balanced, the function g′ given by g′(Xt) = g(Xt)⊕ xt is unbalanced. We
have:

Pr{g′(Xt) = 1} =
522
1024

=
1
2

+ εg′ ,

where εg′ = 5
512 . It is useful to notice that the restriction of g′ to input values Xt

such that xt+63 = 0 is totally balanced and that the imbalance of the function g′ is
exclusively due to the imbalance of the restriction of g′ to input values Xt such that
xt+63 = 1.

If one considers one single output bit zt, the involvement of the masking bit xt in the
expression of zt makes it impossible to write any useful approximate relation involving
only the Y t bits. But if one considers the sum zt ⊕ zt+80 of two keystream bits output
at a time interval equal to the NFSR length n = 80, the xt ⊕ xt+80 contribution of the
corresponding masking bits is equal to g′(Xt) ⊕ yt, and is therefore equal to yt with
probability 1

2 + εg′ . As for the other terms of zt ⊕ zt+80, they can be approximated by
linear functions of the bits of the sequence (yt). In more details:

zt ⊕ zt+80 = g′(Xt)⊕ yt ⊕ h(yt+3, yt+25, yt+46, yt+64, xt+63)
⊕ h(yt+83, yt+105, yt+126, yt+144, xt+143).

Since the restriction of g′(Xt) to input values such that xt+63 = 0 is balanced, we can
restrict our search to linear approximations of the term h(yt+3, yt+25, yt+46, yt+64, xt+63)
to input values such that xt+63 = 1, which amounts to finding linear approximations of
pt ⊕ qt.

We found a set of two best linear approximations for this function, namely:

L1 = { y3 ⊕ y25 ⊕ y64 ⊕ 1; y25 ⊕ y46 ⊕ y64 ⊕ 1}.

Each of the approximations of L1 is valid with a probability 1
2 + ε1, where ε1 = 1

4 .
Now the term h(yt+83, yt+105, yt+126, yt+144, xt+143) is equal to either pt+80⊕qt+80 or

qt+80, with a probability 1
2 for both expressions. We found a set of 8 best simultaneous

linear approximations for these two expressions, namely:

L2 = { yt+83 ⊕ yt+144 ⊕ 1;
yt+83 ⊕ yt+126 ⊕ yt+144;
yt+83 ⊕ yt+105;
yt+83 ⊕ yt+105 ⊕ yt+126;
yt+83 ⊕ yt+105 ⊕ yt+126 ⊕ yt+144 ⊕ 1;
yt+83 ⊕ yt+105 ⊕ yt+144 ⊕ 1;
yt+105 ⊕ yt+144;
yt+105 ⊕ yt+126 ⊕ yt+144 ⊕ 1}.

Each of the 8 approximations of L2 has an average probability ε2 = 1
8 of being valid.

Thus, we have found 16 linear approximations of zt ⊕ zt+80, namely all the linear
expressions of the form

yt ⊕ l1(yt+3, yt+25, yt+46, yt+64)⊕ l2(yt+83, yt+105, yt+126, yt+144),
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where l1 ∈ L1 and l2 ∈ L2. Each of these approximations is valid with a probability
1
2 + ε, where ε is derived from εg′ , ε1, and ε2 using the Piling-up Lemma:

ε =
1
2
· 22 · εg′ · ε1 · ε2 =

5
4096

' 2−9.67.

The extra multiplicative factor of 1
2 takes into account the fact that the considered

approximations are only valid when xt+63 = 1. The LFSR derivation attacks of Section 4
exploit these 16 linear approximations.

3.2 Generalisation of the Attack Method

In this Section, we try to generalise the previous approximation method. The purpose
is not to find better approximations than those identified in Section 3.1, but to derive
some design criteria on the boolean functions g and h′. However in the previous ap-
proximation, we used the fact that the bias of g depends on the value of xt+63, so that
the approximations of g and h′ are not correct independently. We do not take this phe-
nomenon into account in this Section. Therefore, we only provide a simplified picture
of potential generalised attacks.

The function g(Xt, Y t) operates on w(g) = wL(g)+wN (g) variables taken from the
LFSR and the NFSR, where wL(g) is the number of variables taken from the LFSR
and wN (g) the number of variables taken from the NFSR. Let the function Ag(Xt, Y t)
be a linear approximation of the function g, i.e.

Ag(Xt, Y t) =
wN (g)−1⊕
i=0

dixt+φg(i) ⊕
wL(g)−1⊕
j=0

cjyt+ψg(j), cj , di ∈ F2, (1)

such that the distance between g(·) and Ag(·) defined by:

dg = #{x ∈ Fw(g)
2 : Ag(x) 6= g(x)} > 0,

is strictly larger than zero. Then, we have

Pr{Ag(x) 6= g(x)} =
1

2w(g)
dg,

i.e.
Pr{Ag(x) + g(x) = 0} = 1/2 + εg,

where the bias is:
εg = 1/2− 2−w(g)dg.

Similarly, the function h′(Xt, Y t) can also be approximated by some linear expres-
sions of the form:

Ah′(Xt, Y t) =
wN (h′)−1⊕

i=0

kixt+φh′ (i)
⊕
wL(h′)−1⊕
j=0

ljyt+ψh′ (j)
, kj , li ∈ F2. (2)

Recall, zt
p
= Ah′(·)t with some probability p. Having the expressions (1) and (2), one

can sum up together wN (Ag(·)) expressions of Ah′(·) at different times t, in such a way
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that all terms Xt will be eliminated (just because the terms Xt will be cancelled due
to the parity check function Ag(·), leaving the terms Y t and noise variables only). Note
also that any linear combination of Ah′(·) is a linear combination of the keystream bits
zt.

The sum of wN (Ag(·)) approximations Ah′(·) will introduce wN (Ag(·)) independent
noise variables due to the approximation at different time instances. Moreover, the
cancellation of the terms Xt in the sum will be done by the parity check property of the
approximation Ag(·). If the function Ah′(·) contains wN (Ah′) terms from Xt, then the
parity cancellation expression Ag(·) will be applied wN (Ah′) times. Each application
of the cancellation expression Ag(·) will introduce another noise variable due to the
approximation Ng : g(·) → Ag(·). Therefore, the application of the expression Ag(·)
wN (Ah′) times will introduce wN (Ah′) additional noise variables Ng. Accumulating all
above and following the Piling-up Lemma, the final correlation of such a sum (of the
linear expression on Y t) is given by the following Theorem.

Theorem 1. There always exists a linear relation in terms of bits from the state of the
LFSR and the keystream, which have the bias:

ε = 2(wN (Ah′ )+wN (Ag)−1) · εwN (Ah′ )
g · εwN (Ag)

h′ ,

where Ag(·) and Ah′(·) are linear approximations of the functions g(·) and h′(·), respec-
tively, and:

Pr{Ag(·) = g(·)} = 1/2 + εg, Pr{Ah′(·) = h′(·)} = 1/2 + εh′ .

This theorem gives us a criteria for a proper choice of the functions g(·) and h′(·).
The biases εg and εh′ are related to the nonlinearity of these boolean functions, and the
values wN (Ag) and wN (Ah′) are related to the correlation immunity property; however,
there is a well-known trade-off between these two properties [27]. Unfortunately, in the
case of Grain the functions g(·) and h′(·) were improperly chosen.

4 Deriving the LFSR Initial State

In the former Section, we have shown how to derive an arbitrary number R of linear
approximation equations in the n = 80 initial LFSR bits, of bias ε ' 2−9.67 each, from
a sufficient number of keystream bits. Let us denote these equations by:

n−1⊕
i=0

αji · yi = bj , j = 1, . . . , R.

In this Section we show how to use these relations to derive the initial LFSR state Y 0.
This can be seen as a decoding problem, up to the fact that the code length is not fixed
in advance and one has to find an optimal trade-off between the complexities of deriving
a codeword (i.e. collecting an appropriate number of linear approximation equations)
and decoding this codeword.

An estimate of the number N of linear approximation equations needed for the right
value of the unknown to maximize the indicator

I = ]

{
j ∈ {1, . . . , N}

∣∣∣∣ n−1⊕
i=0

αji · yi = bj
}

,
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or at least to be very likely to provide say one of the two or three highest values of I,
can be determined as follows.

Under the heuristic assumption that for the correct (resp. incorrect) value of Y 0, I is
the sum of N independent binary variables xi distributed according to the Bernoulli law
of parameters p = Pr{xi = 1} = 1

2 − ε and q = Pr{xi = 0} = 1
2 + ε (resp. the Bernoulli

law of parameters Pr{xi = 1} = Pr{xi = 0} = 1
2 , mean value µ = 1

2 , and standard
deviation σ = 1

2 ), N can be derived by introducing a threshold of say T = N( 1
2 + 3ε

4 ) for
I and requiring: (i) that the probability that I is larger than T for an incorrect value of
Y 0 is less than a suitably chosen false alarm probability pfa; (ii) that the probability
that I is lower than T for the correct value is less than a non detection probability pnd
of say 1%. For practical values of pfa, the first condition is by far the most demanding.
Setting the false alarm rate to pfa = 2−n ensures that the number of false alarms is less
than 1 in average.

Due to the Central Limit Theorem,
P
xi−Nµ√
Nσ

is distributed according to the normal
law, so that:

Pr

{
1
N

∑
xi − µ >

3ε

4

}
= Pr

{∑
xi −Nµ√

Nσ
>

3
√

Nε

4σ

}
(3)

can be approximated by 1√
2π

∫ +∞
λ

e−
t2
2 dt, where λ = 3

√
Nε
2 . Consequently, if N is

selected in such a way that 3
√
Nε
2 = λ, i.e.

N =
(

2λ

3ε

)2

,

where λ is given by:
1√
2π

∫ +∞

λ

e−
t2
2 dt = pfa = 2−n,

then inequality 3 is satisfied.
A naive LFSR derivation method would consist of collecting N approximate equa-

tions, computing the indicator I independently for each of the 2n possible values of Y 0

and retaining those Y 0 candidates leading to a value of I larger than the N( 1
2 + 3ε

4 )
threshold. This method would require a low number of keystream bits (say N+80

16 ) but
the resulting complexity N · 280 would be larger than the one of exhaustive key search.

In the rest of this Section, we show that much lower complexities can be obtained by
using the fast Walsh transform algorithm and a few extra filtering techniques in order
to speed up computations of correlation indicators. Former examples of applications of
similar Fast Fourier Transform techniques in order to significantly decrease the total
complexity of correlation attacks can be found in [4] [9] [16].

4.1 Use of the Fast Walsh Transform to Speed up Correlation
Computations

Basic Method. Let us consider the following problem. Given a sufficient number M
of linear approximation equations of bias ε involving m binary variables y0 to ym−1,
how to efficiently determine these m variables? Let us denote these M equations by
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∑m−1
i=0 αji · yj = bj , j = 1, . . . ,M . For a sufficiently large value of M , one can expect the

right value of (y0, . . . , ym−1) to be the one maximizing the indicator:

I(y0, . . . , ym−1) = ]

{
i ∈ {1, . . . ,M}

∣∣∣∣ m−1∑
i=0

αji · yj = bj
}

=
N

2
+ 2 · S(y0, . . . , ym−1),

where:

S(y0, . . . , ym−1) = ]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m−1∑
i=0

αji · yi = bj
}

− ]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m−1∑
i=0

αji · yi 6= bj
}

.

Equivalently one can expect (y0, . . . , ym−1) to be the value which maximizes the
indicator S(y0, . . . , ym−1). Instead of computing all of 2m values of S(y0, . . . , ym−1)
independently, one can derive these values in a combined way using fast Walsh transform
computations in order to save time.

Let us recall the definition of the Walsh transform. Given a real function of m binary
variables f(x1, . . . , xm−1), the Walsh transform of f is the real function of m binary
variables F = W (f) defined by:

F (u0, . . . , um−1) =
∑

x0,...,xm−1∈{0,1}m

f(x0, . . . , xm−1)(−1)u0x0+...+um−1xm−1 .

Let us define the function s(α0, . . . , αm−1) by:

s(α0, . . . , αm−1) = ]
{
j ∈ {1, . . . ,M}

∣∣ (αj0, .., α
j
m−1) = (α0, . . . , αm−1) ∧ bj = 1

}
− ]

{
j ∈ {1, . . . ,M}

∣∣ (αj0, .., α
j
m−1) = (α0, . . . , αm−1) ∧ bj = 0

}
.

The function s can be computed in M steps. Moreover, it is easy to check that the
Walsh transform of s is S, i.e.

∀(y0, . . . , ym−1) ∈ {0, 1}m,W (s)(y0, . . . , ym−1) = S((y0, . . . , ym−1)).

Therefore, the computational cost of the estimation of all the 2m values of S using
fast Walsh transform computations is M + m · 2m; the required memory is 2m.

Improved Hybrid Method. More generally, if m1 < m, one can use the following
hybrid method between exhaustive search and Walsh transform in order to save space.

For each of the 2m−m1 values of (ym1 , . . . , ym−1), define the associated restriction
S′ of S as the m1 bit boolean function given by:

S′(y0, . . . , ym1−1) = ]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m1−1∑
i=0

αji · yi =
m∑

i=m1

αji · yi ⊕ bj
}

− ]

{
j ∈ {1, . . . ,M}

∣∣∣∣ m1−1∑
i=0

αji · yi 6=
m∑

i=m1

αji · yi ⊕ bj
}

.
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It is easy to see that if we define:

s′(α0, . . . , αm1−1) =

]

{
j ∈ {1, . . . ,M}

∣∣∣∣ (αj0, . . . , α
j
m1−1) = (α0, . . . , αm1−1) ∧

m∑
i=m1

αji · yi ⊕ bj = 1
}

− ]

{
j ∈ {1, . . . ,M}

∣∣∣∣ (αj0, . . . , α
j
m1−1) = (α0, . . . , αm1−1) ∧

m∑
i=m1

αji · yi ⊕ bj = 0
}

,

then S′ is the Walsh transform of s′.
Therefore, the computational cost of the estimation of all the 2m values of S using

this method is 2m−m1N + m1 · 2m1 . If we compare this with the former basic Walsh
transform method, we see that the required memory decreases from 2m to 2m1 , whereas
the time complexity increases remains negligible as long as m1 << log2(M).

4.2 First LFSR Derivation Technique

In order to reduce the LFSR derivation complexity when compared with the naive
method of complexity N · 2n, we can exploit more keystream to produce more linear
approximation equations in the unknowns y0 to yn−1, and retain only those equations
involving the m < n variables y0 to ym−1, i.e. which coefficients in the n−m variables
ym to yn−1 are equal to 0.

Thus a fraction of about 2m−n of the relations are retained and we have to collect
about N2n−m approximate relations to retain N relations. This requires a number of
keystream bits of:

N2n−m + 80
16

.

As seen in the former Section, once the relations have been filtered, the computa-
tional cost of the derivation of the values of these m variables using fast Walsh trans-
form computations is about m2m for the basic method, and more generally 2m−m1(N +
m12m1) if fast Walsh transform computations are applied to a restricted set m1 < m
variables.

Thus, the overall time complexity of this method is:

N2n−m + m2m,

and more generally:
N2n−m + 2m−m1(N + m12m1).

Once the m variables y0 to ym−1 have been recovered, one can either reiterate
the same technique for other choices of the m unknown variables, which increases the
complexity by a factor of less than 2 if m ≥ n

2 , or test each of the 2n−m candidates in
the next step of the attack (NFSR and key derivation).

An estimate of the number N of equations needed is given by

N =
(

2λ

3ε

)2

,
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where λ is determined by the condition 1√
2π

∫ +∞
λ

e−
t2
2 dt = 2−m. This condition ensures

that the expected number of false alarm is less than 1.
The minimal complexity is obtained for m = 49. For this parameter value, we have

λ = 7.87 and N = 224. The attack complexity is about 255, the number of keystream
bits needed is around 251, and the memory needed is about 249.

4.3 Second LFSR Derivation Technique

An alternative method is to derive new linear approximation equations (of lower bias)
involving m < n unknown variables y0 to ym−1 by combining the R available approxi-
mate equations of bias ε pairwise, and retaining only those pairs of relations for which
the n − m last coefficients collide. One obtains in this way about N ′ = R2 · 2m−n−1

new affine equations in y0 to ym−1, of bias ε′ = 2ε2. The allocation of the m variables
maximizing the number of satisfied equations can be found by fast Walsh computations
as explained in the former Section.

The number N ′ of relations needed is about
(

2λ
3ε′

)2
, where λ is determined by the con-

dition 1√
2π

∫ +∞
λ

e−
t2
2 dt = 2−m. The required number R of relations of bias ε is therefore

R = (N ′2n−m−1)
1
2 , and the number of keystream bits needed is about R+80

16 . The com-
plexity of the derivation of the N ′ relations is max(R,N ′) = max((N ′2n−m−1)

1
2 , N ′).

Once the N ′ relations have been derived, the computational cost of the derivation
of the values of these m variables using fast Walsh transform computations is about
m · 2m for the basic method, and more generally 2m−m1(N ′ + m1 · 2m1) if fast Walsh
transform computations are applied to a restricted set m1 < m variables.

Thus the total complexity of the derivation of the m LFSR bits is:

max((N ′2n−m−1)
1
2 , N ′) + m2m,

and more generally:

max((N ′2n−m−1)
1
2 , N ′) + 2m−m1(N ′ + m12m1).

The minimal complexity is obtained for m = 36. For this parameter value, we have
λ = 6.65 and N ′ = 241. The attack complexity is about 243, the number of keystream
bits needed is about 238 and the memory required is about 242.

5 Recovering the NFSR Initial State and the Key

Once the initial state of the LFSR has been recovered, we want to recover the initial
state (x0, . . . , x79) of the NFSR. Fortunately, the knowledge of the LFSR removes the
nonlinearity of the output function and we can express each keystream bit zi by one of
the following four equations depending on the initial state of the LFSR:

zi = xi,

zi = xi ⊕ 1,

zi = xi ⊕ x63+i,

zi = xi ⊕ x63+i ⊕ 1.
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Since functions p and q underlying h are balanced, each equation has the same
occurrence probability. We are going to use the non linearity of the output function to
recover the initial state of the NFSR by writing the equations corresponding to the first
keystream bits.

The 16 first equations are linear equations involving only bits of the initial state of
the NFSR because 63 + i is lower than 80.

To recover all the bits of the initial state, we introduce a technique which consists of
building chains of keystream bits. The equations for keystream bits z17 to z79 involve
either one bit of the LFSR (zi = xi or zi = xi ⊕ 1) or two bits (zi = xi ⊕ x63+i or
zi = xi⊕x63+i⊕1). An equation involving only one bit allows us to instantly recover the
value of the corresponding bit of the initial state. This can be considered as a chain of
length 0. On the other hand, an equation involving two bits does not allow this because
we do not know the value of x63+i (for i > 16).

However, by considering not only the equations for zi but also all the equation for
zk·63+i for k ≥ 1, we can cancel the bits we do not know and retrieve the value of xi. With
probability 1

2 , the equation for z63+i involves one single unknown bit. Then it provides
the value of x63+i and consequently the value of xi. Here the chain is of length 1, since
we have to consider one extra equation to retrieve xi. The equation for z63+i can also
involve two bits with probability 1

2 . Then we have to consider the equation of z2·63+i,
which can also either involve only one bit (we have a chain of length 2) or two bits
and we have to consider more equations to solve. Each equation has a probability 1

2 to
involve 1 or 2 bits. Consequently the probability that a chain is of length n is 1

2n+1 and
the probability that a chain is of length strictly larger than n is 1

2n+1 .
We want to recover the values of x17, . . . , x79. We have to build 64 different chains.

Let us consider L = 63 ·n bits of keystream. The probability that one of the chains is of
length larger than n is less than = 64 · 2−n−1 and therefore less than 2−n+5. If we want
this probability to be bounded by 2−10, then n > 15 and L > 945 suffices. Consequently
a few thousands of keystream bits are required to retrieve the initial state of the NFSR
and the complexity of the operation is bounded by 64 · n.

Since the internal state transition function associated to the special key and IV setup
mode is one to one, the key can be efficiently derived from the NFSR and LFSR states
at the beginning of the keystream generation by running this function backward.

6 Simulations and Results

To confirm that our cryptanalysis is correct, we ran several experiments. First we
checked the bias ε of Section 3.1 by running the cipher with a known initial state
of both the LFSR and the NLFSR, computing the linear approximations, and count-
ing the number of fulfilled relations for a very large number of relations. For instance
we found that one linear approximation is satisfied 19579367 times out of 39060639,
which gives an experimental bias of 2−9.63, to be compared with the theoretical bias
ε = 2−9.67.

To check the two proposed LFSR reconstruction methods of Section 5, we considered
a reduced version of Grain in order to reduce the memory and time required by the
attack on a single computer: we shortened the LFSR by a factor of 2. We used an LFSR
of size 40 with a primitive feedback polynomial and we reduced by two the distances
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for the tap entries of function h: we selected taps number 3, 14, 24, and 33, instead of
3, 25, 46, and 64 for Grain.

The complexity of the first technique for the actual Grain is 255 which is out of
reach of a single PC. For our reduced version, the complexity given by the formula of
Section 4.2 is only 235. We exploited the 16 linear approximations to derive relations
colliding on the first 11 bits. Consequently the table of the Walsh transform is only
of size 229. We used 15612260 ' 223 relations, which corresponds to a false alarm
probability of 2−29. Our implementation needed around one hour to recover the correct
value of the LFSR internal state on a computer with a Intel Xeon processor running
at 2.5 GHz with 3 GB of memory. The Walsh transform computation took only a few
minutes.

For the actual Grain, the second technique requires only 243 operations which is
achievable by a single PC. However it also requires 242 of memory which corresponds
to 350 GB of memory. We do not have such an amount of memory but for the reduced
version the required memory is only 229. Since the complexity given by the formula of
Section 4.3 is dominated by the required number of relations to detect the bias, our
simulation has a complexity close to 243. In practice, we obtained a result after 4 days
of computation on the same computer as above and 2.5 · 1012 ' 241 relations where
considered and allowed to recover the correct LFSR initial state.

Finally, we implemented the method of Section 5 to recover the NFSR. Given the
correct initial state of the LFSR, and the first thousand keystream bits, our program
recovers the initialization of the NFSR in a few seconds for a large number of different
initializations of both the known LFSR and unknown NLFSR. We also confirmed the
failure probability assessed in Section 5 for this method (which corresponds to the
occurrence probability of at least one chain of length larger than 15).

7 Conclusion

We have presented a key-recovery attack against Grain which requires 243 computations,
242 bits of memory, and 238 keystream bits. This attack suggests that the following slight
modifications of some of the Grain features might improve its strength:

– Introduce several additional masking variables from the NFSR in the keystream bit
computation.

– Replace the nonlinear feedback function g in such a way that the associated func-
tion g′ be balanced (e.g. replace g by a 2-resilient function). However this is not
necessarily sufficient to thwart all similar attacks.

– Modify the filtering function h in order to make it more difficult to approximate.
– Modify the function g and h to increase the number of inputs.

Following recent cryptanalysis of Grain including the key recovery attack reported here
and distinguishing attacks based on the same kind of linear approximations as those
presented in Section 3 [19] [26], the authors of Grain proposed a tweaked version of their
algorithm [12], where the functions g and h′ have been modified. This novel version
of Grain appears to be much stronger and is immune against the statistical attacks
presented in this paper.

We would like to thank Matt Robshaw and Olivier Billet for helpful comments.
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Abstract. This paper describes the cryptanalysis of Mir-1, a T-function
based stream cipher proposed at eSTREAM (the ECRYPT Stream Ci-
pher Project) in 2005. It uses a multiword T-function, with four 64-bit
words, as its basic structure. Mir-1 operations process the data in every
64 bits (one word) to generate a keystream.
This paper discusses a distinguishing attack against Mir-1, one that ex-
ploits the T-function characteristics and the Mir-1 initialization. With
merely three or four IV pairs, this attack can distinguish a Mir-1 output
sequence from a true random sequence. In this case, the amount of data
theoretically needed for cryptanalysis is only 210 words.
Key words: Mir-1, ECRYPT, eSTREAM, stream cipher, pseudo-random
number generator, distinguishing attack

1 Introduction

Over the past two decades, a variety of steam ciphers have been proposed. Many
of these use a linear feedback shift register (LFSR) with a non-linear Boolean
function to generate a keystream. However, attacks that exploit the linear char-
acteristics of LFSR have been proposed [2, 12, 15]. LFSR-based stream ciphers
might be vulnerable to such algebraic cryptanalysis.

In 2003, Klimov and Shamir proposed the T-function as a new primitive that
can be used as an alternative to LFSR. The T-function is suitable for software
implementation. Though it is a form of non-linear mapping, it uses a combination
of operations including ADD, SUB, MUL, XOR, AND, and OR for a single cycle
of maximal length. Klimov and Shamir insist that the T-function can be used
not only for a stream cipher, but also for a block cipher and a hash function.

Various T-function based stream ciphers were then proposed. In 2005, Hong
et al. proposed single-cycle T-functions using the S-box properties, as well as
TSC-1/2 which are stream ciphers using these proposed T-functions [3]. They
reported that TSC-1 is suitable for hardware implementation while TSC-2 is
a stream cipher suitable for software implementation. At the FSE 2005 rump
session, though, these ciphers were broken using the T-function properties [5]. In
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the same year, Hong et al. proposed TSC-3, a new version of TSC, at eSTREAM
[4]. However, shortly afterwards Muller and Peyrin broke this version [14].

At eSTREAM 2005, Maximov proposed Mir-1, a T-function based stream
cipher [11]. The cipher uses data updated using a T-function as a key each time,
and it generates a keystream through randomization by an S-box whose entries
change depending on a secret key. In this paper, we propose a new cryptanalysis
that exploits the T-function characteristics and the Mir-1 initialization. This
method makes it possible to distinguish the output sequence of Mir-1 from a
true random sequence with only three or four initial vector (IV) pairs. The
amount of data theoretically needed by the method is only about 210 words.
Thus, with a practical amount of computation, this attack could be a threat to
Mir-1.

The following section provides an overview of T-functions and recently pro-
posed T-function based stream ciphers. Section 3 describes the structure of Mir-
1. Section 4 explains how the output sequence of Mir-1 can be distinguished
from a true random sequence through the T-function properties and the Mir-1
initialization. Section 5 concludes this paper.

2 T-function

This section provides a basic explanation of the T-function. The details are
provided in the original paper published by Klimov and Shamir.

2.1 T-function Proposed by Klimov and Shamir

In 2002, Klimov and Shamir proposed the T-function as a new class for invertible
mapping [6]. Their T-function is a single-word T-function and features single n-
bit word mapping. The i-th bit of a single-word T-function output depends
only on the 0th through i-th bits of its input. Single-word T-functions include
arithmetic operations such as ADD, SUB, and MUL, and logical operations such
as OR, AND, and XOR. These operations are referred to as primitive operations,
and they are very useful because they can be processed within one clock and one
cycle on many kinds of processor.

Klimov and Shamir used various combinations of these operations to design
many kinds of T-functions. These T-functions feature a single cycle of maximal
length. This kind of function could be used as an alternative to LFSR. However,
a single-word T-function is not so useful, because its bit size n is limited to 32
or 64 in today’s processors.

In 2004, Klimov and Shamir proposed multiword T-functions, which were
expanded versions of single-word T-functions [8]. Multiword T-functions define
m n-bit words for mapping, and they offer a single-cycle of maximal length as
is offered by single-word T-functions.

The following is a more specific description of multiword T-functions with m
n-bit words. If each of the m n-bit words is represented by xk (k = 0, . . . ,m−1),
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the set of m words x is expressed as x = (xk)m−1
k=0 . The i-th bit of each word

[xk]i is then denoted as

[xk] =
n−1∑

i=0

[xk]i2i

The layer of the i-th bit of word x is expressed as

[x]i =
m−1∑

k=0

[xk]i2k

Figure 1 outlines the multiword T-function defined below, where m = 4.

x = 

x0

x1

x2

x3

MSB LSB

= 

MSB

LSB
[x]0[x]i

Fig. 1. Multiword T-function, where m = 4

Definition 1. A (multiword) T-function is a map

T :
{

({0, 1}n)m 7→ ({0, 1}n)m

x 7→ T(x) = (Tk (x))m−1
k=0

sending an m-tuple of n-bit words to another m-tuple of n-bit words, where
each resulting n-bit word is denoted as Tk(x), such that for each 0 ≤ i < n, the
i-th bits of the resulting words [T(x)]i are functions of just the lower input bits
[x]0, [x]1, . . . , [x]i.

Thus, as for multiword T-functions, the i-th bit of any output word depends
only on the 0th through i-th bit of each input word.

2.2 T-function Based Stream Ciphers and Their Cryptanalysis

This section introduces T-function based stream ciphers. The paper written by
Klimov and Shamir [8] gave some examples of multiword T-functions. However,
Mitra and Sarkar reported in 2004 that a stream cipher employing a simple
output function can be broken by a time-memory trade-off attack [13].

In 2005, Hong et al. proposed a new single-cycle T-function, which uses the
S-box properties, as a T-function based stream cipher. They also proposed TSC-
1/2, stream ciphers that use their proposed T-function. Both of these, however,
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were broken by Junod et al. at the FSE 2005 rump session. In the same year,
Hong et al. proposed TSC-3, an improved algorithm of TSC at eSTREAM. Not
long afterwards, though, Muller and Peyrin broke TSC-3.

Mir-1 is a stream cipher proposed at eSTREAM by Maximov, and it basically
uses the multiword T-function proposed by Klimov and Shamir. Mir-1 uses a T-
function that is intended to reduce the size of internal state.

This paper describes cryptanalysis against Mir-1 that exploits the T-function
characteristics and the Mir-1 initialization.

3 Description of Mir-1

This section describes the structure of Mir-1, the T-function based stream ci-
pher proposed by Maximov at eSTREAM 2005. Ciphertexts are computed by
exclusive ORing plaintexts with the keystream generated by the cipher. The
keystream generation and initialization of Mir-1 is explained below.

3.1 Notation and Definition

In this paper, bit-wise XOR, AND, and OR are represented by ⊕, &, and |,
respectively. Addition and multiplication on mod 264 are denoted by + and ·,
respectively. X ≪ t denotes a t-bit rotating shift to the left of 64-bit word X.
The byte unit and bit unit of 64-bit word X are set as follows, where ‖ represents
data concatenation.

X = X.byte7 ‖ X.byte6 ‖ · · · ‖ X.byte0

= X.bit63 ‖ X.bit62 ‖ · · · ‖ X.bit0

The a-th through the b-th bits of 64-bit word X are represented by X[a, b].
Using the notation described above, we express them as

X[a, b] = X.bitb ‖ X.bitb−1 ‖ · · · ‖ X.bita

The secret key KEY of Mir-1 is 128-bit and its initial vector IV is 64-bit.
They are defined as

KEY = k15 ‖ k14 ‖ · · · ‖ k0

IV = IV7 ‖ IV6 ‖ · · · ‖ IV0

3.2 Keystream Generation

This section treats Mir-1’s keystream generation, which consists of roughly two
parts: the loop state update (LS update) and the automata state update (AS
update).

The LS update has four words of 64-bit register xi(i = 0, 1, 2, 3). Register xi

is updated by a multiword T-function. The LS update function is shown in Fig.
2. It guarantees the maximal length cycle of 2256.
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x0
x1
x2
x3

x0 + (s)                         + 2 ⋅ x2 ⋅ (x1 | C1)
x1 + (s & x0)                 + 2 ⋅ x2 ⋅ (x3 | C3)
x2 + (s & x0 & x1)         + 2 ⋅ x0 ⋅ (x3 | C3)
x3 + (s & x0 & x1 & x2) + 2 ⋅ x0 ⋅ (x1 | C1)

s = (x0&x1&x2&x3 + C0) ⊕ x0&x1&x2&x3

C0 = 0x1248842112488421 
C1 = 0x1248124812481248 
C3 = 0x4812481248124812

Fig. 2. Loop state update

The AS update holds two words of 64-bit registers A and B, and it computes
A′ and B′ using the update function shown in Fig. 3. When A′ and B′ are
computed, the register value from the LS update is two 64-bit words obtained
by concatenating the upper 32 bits of each of four registers, x0, x1, x2, x3. Each
64-bit word is denoted as

(xi+2[32, 63] ‖ xi[32, 63]) (i = 0, 1)

S

<<< 29

z

A B

A’ B’

x3[32,63] x1[32,63]

x2[32,63] x0[32,63]

Fig. 3. Automata state update

The keystream generation part of Mir-1 performs the LS update and AS
update at each clock, and outputs keystream z; that is, the 64-bit B′ computed
by the AS update.
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3.3 Initialization

This section describes Mir-1’s initialization part, which also consists of roughly
two parts: the key setup and the IV setup.

The key setup initializes register xi(i = 0, 1, 2, 3) and registers A and B,
using a 128-bit secret key. The key setup function is shown in Fig. 4.

1. Initialise secret S-box
2. A = x1 = (k7 || … || k0)

B = x3 = (k15 || … || k8)
x0 = C0

x2 = C1

3. Repeat 8 times
Loop State Update
Automata State Update

Fig. 4. Key setup

First, the key setup computes an S-box, which varies depending on the secret
key value referred to as the secret S-box, using the equation shown below. Here,
SR[·] means the S-box of Rijndael. Each entry is computed for i = 0, . . . , 255.

S[i] = SR[· · ·SR[SR[i⊕ k0]⊕ k1]⊕ · · · ⊕ k15]

The IV setup uses a 64-bit initial vector to update register xi(i = 0, 1, 2, 3)
as well as registers A and B. The IV setup function is shown in Fig. 5.

4 Cryptanalysis of Mir-1

This section describes the method to attack the Mir-1 stream cipher. Section 4.1
explains the structural properties of the IV setup and LS update, which are nec-
essarily exploited for the cryptanalysis, and section 4.2 describes the cryptanal-
ysis using these properties. Section 4.3 discusses the results of an experimental
attack made on Mir-1.

4.1 Properties of IV Setup and LS Update

This section describes the properties of the IV setup and LS update, on which
the key setup has no particular influence.

First, we explain the structural properties of the IV setup. As shown in Fig. 5,
the IV setup divides a 64-bit IV into eight 8-bit data, each of which is substituted
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1. x0.byte4 = x0.byte4 ⊕ S[IV0] ⊕ S[IV1] ⊕ S[IV2]
x1.byte4 = x1.byte4 ⊕ S[IV0] ⊕ S[IV3] ⊕ S[IV4]
x2.byte4 = x2.byte4 ⊕ S[IV2] ⊕ S[IV5] ⊕ S[IV7]
x3.byte4 = x3.byte4 ⊕ S[IV3] ⊕ S[IV6] ⊕ S[IV7]

2. x0.byte0 = x0.byte0 ⊕ S[IV3] ⊕ S[IV5]
x1.byte0 = x1.byte0 ⊕ S[IV7] ⊕ S[IV6] 
x2.byte0 = x2.byte0 ⊕ S[IV0] ⊕ S[IV1]
x3.byte0 = x3.byte0 ⊕ S[IV2] ⊕ S[IV4]

3. A.byte0 = A.byte0 ⊕ S[IV0] ⊕ S[IV5] ⊕ S[IV6]
A.byte4 = A.byte4 ⊕ S[IV1] ⊕ S[IV3] ⊕ S[IV5]
B.byte0 = B.byte0 ⊕ S[IV1] ⊕ S[IV4] ⊕ S[IV7]
B.byte4 = B.byte4 ⊕ S[IV2] ⊕ S[IV4] ⊕ S[IV6]

4. Repeat 2 times
Loop State Update
Automata State Update

Fig. 5. IV setup

in the secret S-box to be XORed with each register. Thus, if entries of the secret
S-box are unknowns, then each register is XORed with an unknown. Here, we
assume that each byte inputs the same value, IV a = (a ‖ a ‖ · · · ‖ a) to the IV
setup. Then the data XORed with each register in the IV setup are as shown in
Fig. 6.

As shown in Fig. 6, the IV has no influence over registers x0, x1, x2, or
x3 at step 2, regardless of the value of a. At steps 1 and 3, all the data XORed
with each register becomes S[a]. Though entries of the secret S-box are unknown
because of their dependence on the secret key, it is apparent that all the registers
are XORed with the same value.

Next, we describe the LS update properties. As explained in Section 2.1,
as far as multiword T-functions are concerned, the n-th bit of any output word
depends only on the 0th through n-th bit of each input word. Thus, if differential
∆i is given as the initial value of register xi(i = 0, 1, 2, 3), and if all of the 0th
through n-th bits of differential ∆i are 0, then the differential of the 0th through
n-th bits of register xi is always 0, regardless of the number of times the LS
update is performed.

As shown in Fig. 6, if the same IV value, IV a = (a ‖ a ‖ · · · ‖ a) is input
to IV setup, the IV has no influence over the 0th through 31st bits of register
xi(i = 0, 1, 2, 3). Consequently, while the secret key is fixed, no changes are made
on the 0th through 31st bits of register xi, regardless of the number of times the
LS update is performed, even if IV a is changed.
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None of the bytes are 
influenced by IV.

All bytes are XORed
with the same value.

All bytes are XORed
with the same value.

1. x0.byte4 = x0.byte4 ⊕ S[a]
x1.byte4 = x1.byte4 ⊕ S[a]
x2.byte4 = x2.byte4 ⊕ S[a]
x3.byte4 = x3.byte4 ⊕ S[a]

2. x0.byte0 = x0.byte0
x1.byte0 = x1.byte0
x2.byte0 = x2.byte0
x3.byte0 = x3.byte0

3. A.byte0 = A.byte0 ⊕ S[a]
A.byte4 = A.byte4 ⊕ S[a]
B.byte0 = B.byte0 ⊕ S[a]
B.byte4 = B.byte4 ⊕ S[a]

4. Repeat 2 times
Loop State Update
Automata State Update

Fig. 6. IV setup where each byte inputs the same IV a

The following section describes the cryptanalysis where these two properties
are exploited.

4.2 Attack Method

This section describes an attack method that exploits the two properties de-
scribed in Section 4.1. For this attack to succeed, the following preconditions
must be met.

– The secret key is fixed during the attack.
– Attackers can choose the IV freely.
– Attackers can obtain the keystream generated using the given IV.

First, a pair of IV a = (a ‖ a ‖ · · · ‖ a) and IV b = (b ‖ b ‖ · · · ‖ b) is
provided for the IV setup. Note that all the bytes of IV a as well as those of
IV b have the same value. Because of the structural properties of the IV setup
described in Section 4.1, the difference between each of the lower 32 bits of
register xi(i = 0, 1, 2, 3) updated by IV a and the corresponding bits updated by
IV b becomes 0. In other words, the equation given below holds true, where xai

and xbi respectively represent the register xi(i = 0, 1, 2, 3) updated by IV a and
that updated by IV b.

xai[0, 31] = xbi[0, 31] (i = 0, 1, 2, 3) (1)
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When IV a and IV b are given, byte 4 of register xi is XORed with S[a] and
S[b], respectively. This is expressed by the following equations.

xai.byte4 = xi.byte4 ⊕ S[a] (i = 0, 1, 2, 3)
xbi.byte4 = xi.byte4 ⊕ S[b] (i = 0, 1, 2, 3)

Here, the entries of the secret S-box are unknowns. We can assume, though,
that the equation below is satisfied:

S[a] & 1 = S[b] & 1 (2)

If the condition of Eq. (2) is met, the relation described in Eq. (3) holds true
for bit 32 of register xai and bit 32 of register xbi.

xai.bit32 = xbi.bit32 (i = 0, 1, 2, 3) (3)

Thus, if all the bytes of IV a as well as those of IV b have the same value,
and if the condition of Eq. (2) is satisfied, the equation below is supported by
Eqs. (1) and (3):

xai[0, 32] = xbi[0, 32] (i = 0, 1, 2, 3) (4)

Consequently, the difference between each of the lower 33 bits of register
xi(i = 0, 1, 2, 3) updated by IV a and the corresponding bit updated by IV b
becomes 0. As described in Section 4.1, because of the LS update properties Eq.
(4) always holds true for the IV setup and the keystream generation, regardless
of the number of times the LS update is performed.

Here, we consider the keystream generation, presuming that the condition
of Eq. (2) is met. Figure 7 outlines the AS update for three clocks. Though
the AS update uses addition in mod 264, this operation can be substituted by
XOR if only the least significant bit is used for cryptanalysis. In Fig. 7, ad-
dition in mod 264 is substituted by XOR, taking only the least significant bit
into account. To simplify the explanation given hereafter, the two 64-bit words
inserted by the LS update are represented by x20 = (x2[32, 63] ‖ x0[32, 63]),
x31 = (x3[32, 63] ‖ x1[32, 63]), and data X at time t is denoted as X(t).

Here, we describe the method to create a distinguisher. The keystreams gen-
erated by IV a and IV b are denoted as za and zb, respectively. The data inserted
by the LS update, when IV a and IV b are given, are represented by (x20a, x31a)
and (x20b, x31b), respectively. The least significant bit at the position where the
secret S-box is output at time t is then expressed as follows. Note that these
equations mean ROL29(X) = X ≪ 29.

{ROL29(za(t−1))⊕ za(t) ⊕ x31a(t−1) ⊕ x20a(t) ⊕ za(t+1)}.bit0 = S[za(t)] & 1
{ROL29(zb(t−1))⊕ zb(t) ⊕ x31b(t−1) ⊕ x20b(t) ⊕ zb(t+1)}.bit0 = S[zb(t)] & 1

Here, Eq. (3) satisfies Eqs. (5) and (6).

x20a(t).bit0 = x20b(t).bit0 (5)
x31a(t−1).bit0 = x31b(t−1).bit0 (6)
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S

<<< 29

z(t).bit0

<<< 29

z(t+1).bit0

x31(t-1).bit0

<<< 29

x31(t).bit0

x31(t+1).bit0

x20(t-1).bit0

x20(t).bit0

x20(t+1).bit0

z0(t-1).bit0

S

S

Fig. 7. AS update (LSB) for three clocks

If time t satisfying

za(t) = zb(t) (7)

is chosen for the keystreams generated by IV a and IV b, the equation
described below holds true because the unknown entries of the secret S-box
take the same input, resulting in the same secret S-box output.

S[za(t)] = S[zb(t)] (8)

Thus, Eqs. (5), (6), (7), and (8) support Eq. (9):

{ROL29(za(t−1) ⊕ zb(t−1))⊕ za(t+1) ⊕ zb(t+1)}.bit0 = 0 (9)

In summary, if any given pair of IV a and IV b satisfies Eq. (2), then Eq. (9)
always holds true at the time t where Eq. (7) holds. Thus, Eq. (9) can be used as
a distinguisher that distinguishes a Mir-1 output sequence from a true random
sequence.

Since the probability that Eq. (2) is satisfied is the probability that the least
significant bits of two randomly chosen secret S-box entries match each other,
it becomes 1/2. The probability that Eq. (7) is satisfied becomes 2−8, assuming
that the keystream of Mir-1 is a true random number sequence. Thus, according
to Mantin and Shamir [10], when arbitrary IV pairs are chosen, the amount of
data T required to distinguish the Mir-1 output sequence from a true random
number sequence is theoretically determined by

T = (1/2)−2 × 28 = 210
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4.3 Experimental Results

In this section we discuss the outcome of an experimental attack like the one
described in Section 4.2. Preconditions for the experimental attack are defined in
Section 4.2, and the steps described below were taken to make the experimental
attack.

1. Generate keystreams corresponding to IV 0 = (0 ‖ 0 ‖ · · · ‖ 0) and IV 1 =
(1 ‖ 1 ‖ · · · ‖ 1).

2. Find w values of t, where t represents the time at which the least significant
byte of the keystream generated by IV 0 matches that for IV 1. If we assume
that the keystream of Mir-1 is a true random number sequence, the existence
probability of t becomes 2−8.

3. Check to see if the distinguisher of Eq. (9) holds true at the w values of t
that satisfy the condition described in step 2.

4. If the distinguisher described in step 3 holds true for all w values of t, it
is judged to be a Mir-1 keystream sequence. If there is any t for which the
distinguisher does not hold true, increment each byte of IV 1 by 1 and repeat
steps 2 and 3.

Given 100 randomly generated secret keys, we made the experimental attack
as described above to obtain the number of times IV was changed and the number
of secret keys with which the Mir-1 output sequence was distinguished from a
true random number sequence, where w = 128. 1 Table 1 shows the results of
this attack.

Table 1. Number of times IV was changed and the number of distinguishable secret
keys with which a Mir-1 output sequence was distinguished from a true random number
sequence

IV Changes Number of Secret Keys

Used as a Distinguisher

0 57

1 79

2 91

3 95

4 98

5 100

Satisfying Eq. (2) means that the output sequence of Mir-1 can be distin-
guished from a true random number sequence. Thus, if an IV pair is given
randomly, the Mir-1 output sequence must be distinguished from a true ran-
dom number sequence at a probability of 1/2. This means that as the number
1 If w = 128, the probability that the distinguisher holds true accidentally is 2−128.
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of times the IV is changed is incremented by 1, with one-half of the remaining
secret keys, the Mir-1 output sequence must be distinguished from a random
number sequence. Thus, we consider the distinguisher to hold true at the proba-
bility we expected. Since the entries of the secret S-box are unknown, we cannot
say that the distinguisher holds true with any given IV pair. However, as the
S-box is a function of bijection, at worst it is apparent that Eq. (2) is necessarily
satisfied if the IV is changed 128 times.

The attack proposed in this paper can distinguish a Mir-1 output sequence
from a true random number sequence if the chosen IV pairs are provided. With
about three or four distinct IV pairs, the distinguisher holds true at a probability
of approximately 90%. Under the worst conditions, the distinguisher holds true
if 128 distinct IV pairs are provided. We have verified that the proposed attack
is applicable to Mir-1 and that it distinguishes a Mir-1 output sequence from a
true random number sequence with a very small amount of data.

5 Conclusion

This paper describes the cryptanalysis of Mir-1, a new T-function based stream
cipher. The IV used for stream cipher is a parameter that users can choose freely.
Thus, an attack using the chosen IVs can be a threat. This paper proposes an
effective distinguisher that uses the chosen IVs and the structural properties of
the Mir-1 initialization. With a mere three or four chosen IV pairs, the attack
method proposed in this paper distinguishes a Mir-1 output sequence from a true
random sequence at a high probability. The theoretical amount of data required
for the attack is no more than about 210 words.

The attack method proposed in this paper makes effective use of the T-
function properties. This is an effective way to attack a T-function based stream
cipher. Stream ciphers based on T-functions will probably be used as an alterna-
tive to LFSR. However, designers of T-function based stream ciphers should pay
attention to this vulnerability to make their ciphers resistant to such attacks.

Note that the attack proposed in this paper has not been developed into a
key recovery attack. However, this paper describes the first Mir-1 cryptanalysis.
The attack is strong, because it can distinguish a Mir-1 output sequence from a
true random number sequence with only small amounts of data and computation
needed.
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Truncated differential cryptanalysis of five
rounds of Salsa20

Paul Crowley

LShift Ltd, www.lshift.net

Abstract We present an attack on Salsa20 reduced to five of its twenty
rounds. This attack uses many clusters of truncated differentials and
requires 2165 work and 26 plaintexts.
Keywords: Salsa20, symmetric cryptanalysis

1 Definition of Salsa20

Salsa20 [1] is a candidate in the eSTREAM project to identify new stream ciphers
that might be suitable for widespread adoption. For convenience, we recap here
the parameterized family of variants Salsa20-w/r, with w the word size and r
the number of rounds; Salsa20 itself is Salsa20-32/20. A word is an element
of Z/2wZ. We omit the precise definitions of word-oriented operations here for
brevity; addition (+), XOR (⊕) and rotation (≪) are defined in the usual way,
and where words are mapped to bytes, a little-endian mapping is used. We define
a bijective map S on four-element column vectors of words:

Sa((y0 y1 y2 y3 )T ) = (y1 ⊕ ((y0 + y3) ≪ a) y2 y3 y0 )T

and compose it four times to build this bijective map on the same:

Q = S18 ◦ S13 ◦ S9 ◦ S7

(note that the constants given in the subscripts are appropriate for w = 32;
different constants might be used for a different w) and compose it with a row
and column rotate to get this bijective map on matrices:

Q′(m) =


m1,1 m1,2 m1,3 q1

m2,1 m2,2 m2,3 q2

m3,1 m3,2 m3,3 q3

m0,1 m0,2 m0,3 q0



where q = Q


m0,0

m1,0

m2,0

m3,0

 , m =


m0,0 m0,1 m0,2 m0,3

m1,0 m1,1 m1,2 m1,3

m2,0 m2,1 m2,2 m2,3

m3,0 m3,1 m3,2 m3,3


from which we build this bijective map on four-by-four square matrices of words:

R(m) = (Q′4(m))T

198



and from this, we define the Salsa20 “hash function”:

H(m) = m + Rr(m)

Salsa20 maps an eight-word key k0...7, a two-word nonce v0...1 and a two-word
stream position i0...1 onto a 16-word output matrix as follows:

Salsa20k(v, i) = H


c0 k0 k1 k2

k3 c1 v0 v1

i0 i1 c2 k4

k5 k6 k7 c3


where c0...3 are constants dependent on the key length and omitted here for
brevity. We also omit the (straightforward) definition of the row-wise deseri-
alization of this output matrix, the resulting counter-mode-like stream cipher,
and the Salsa20 variants defined for shorter keys. Salsa20’s security goal is that
the function above be indistinguishable from a random function to a suitably-
bounded attacker; from this its security as a stream cipher may be inferred.

2 Cryptanalysis of r = 5

We here attack the Salsa20 PRF directly; the resulting attack on the Salsa20
stream cipher follows straightforwardly. Though many techniques of block cipher
cryptanalysis are applicable to Salsa20, it has several features to defeat these
techniqes. First, the large block size allows for rapid diffusion without penalty
of speed. Second, the attacker can control only four words of the sixteen-word
input to the block cipher stage. Nevertheless, we can construct an attack based
on multiple truncated differentials which breaks five rounds of the cipher.

Where r = 5, the output of the PRF is m + R5(m). Eight of the sixteen
cells in m are known to us; the other eight cells contain the key. We can thus
straightforwardly infer eight of the sixteen cells in R5(m). If we correctly guess
k3, this will give us a complete row in R5(m), to which we can apply Q−1 to
infer a complete row of R4(m).

To go further back, we observe that if every input word but the first to Q−1

is known, the final output word may be inferred, and if every input but the
second is known, the first may be inferred. If we can guess the key words k3...7,
this allows us to infer these entries of R5(m) given H(m):

• ? ? ?
• • • •
• • • •
• • • •


Applying Q−1 to each row except the first allows us to infer these entries in

R4(m): 
? • • •
? • • •
? • • •
? • • •
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from which we can infer these entries in R3(m):
? ? ? ?
? ? ? ?
? ? ? ?
• ? ? •


Given a sufficiently powerful distinguisher for the function family fk(v, i) =

(Salsa20k(v, i)3,0,Salsa20k(v, i)3,3) we can therefore test our guesses at k3...7.
Consider this example of a low-weight (ie high-probability) truncated differ-

ential trail suitable for our purposes, identifed using the techniques of [2]. The
limitations on the bits under the attacker’s control make it difficult to identify
trails that start with useful combinations of bits; each word we control is com-
bined with three we do not before the results are combined with each other.
Thus, our input difference is simply a single bit in the high word of the stream
position, chosen to minimize the nonlinear avalanche. Before round 1:

0 0 0 0
0 0 0 0
0 0x80000000 0 0
0 0 0 0


After round 1 (with probability 1

2 ):
0 0 0 0

0x00201000 ? 0x80000000 0x00000100
0 0 0 0
0 0 0 0


After round 2 (with probability 2−9):

? 0x00201000 0x40200000 0x02000800
? ? ? ?
? ? ? 0x00000040
0 0x00001000 0x00200000 0x04000080


And after round 3 (with probability 2−12):

? ? ? ?
? ? ? ?
? ? ? ?

0x02002802 ? ? ?


This trail has sufficiently high probability to act as a suitable distinguisher

from which an attack can be built. However, we can do much better. The prob-
ability of this difference appearing in the output is much higher than this trail
would suggest—in fact, it is closer to 2−9. This is because there are many other

200



low-weight differential trails that result in this difference in R3(m)3,0. Further-
more, there are many high-probability differentials in this word. By experiment,
we have even determined a few differential trails whose probability appears to
be twice as high as their weight would suggest—this is presumably because of
problems with the independence assumption, and suggests that there may be
trails which are less probable than their weight would suggest.

By considering many trails, we can build a far more effective attack. Many
tradeoffs are possible; we give one example here. We have experimentally deter-
mined a set of 1024 possible differences in R3(m)3,0 from this one input difference
such that the probability of one of them being right appears to be roughly 30%.
With 32 output pairs, the probability that 5 or more of these pairs show a dif-
ference in the set is greater than 1− 2−3, while the probability of this threshold
being met or exceeded by chance is less than 2−99. We try all 2160 possible values
of k3...7; for each that meets the threshold, we try to determine k0...2 by simple
brute-force search. The true key will be among these values with probability
1 − 2−3 as noted, and we can expect 2160−99 = 261 false positives; the cost of
the brute-force search stage will thus be roughly 296+61 = 2157, much less than
the cost of determining our candidates for k3...7.

3 Conclusions and open questions

It is clear that a naive attack of this type cannot be extended to more than a
handful of rounds; this has no negative implications for the security of the full
Salsa20-32/20 presented to eSTREAM.

Nonetheless, the degree of clustering exhibited by these differential charac-
teristics is surprising; it is more usual for a single differential trail to dominate.
It is also striking to find differential trails whose overall probability is so greatly
mispredicted by the products of the probabilities of its components, marking
a violation of the independence assumption usual in differential cryptanalysis.
In both instances, it would bear investigation whether other ciphers that rely
heavily on addition mod 2n to introduce nonlinearity in GF (2) would also show
these properties in differential cryptanalysis, or related properties in other forms
of cryptanalysis.
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A Anomalous differential trails

We give here examples of differential trails whose observed frequency is markedly
different from that predicted by the simplifying assumptions of differential crypt-
analysis. The trails below should appear with frequency 2−9, but in 226 trials
appeared not the expected 131072 times, but 262018 and 262412 times respec-
tively. Both trails start 

0 0 0 0
0 0 0 0
0 0x80000000 0 0
0 0 0 0




0 0 0 0
0x00601000 ? 0x80000000 0x00000100

0 0 0 0
0 0 0 0


One goes on thus:

? 0x00601000 0x40200000 0x02000800
? ? ? ?
? ? ? 0x00000040
0 0x00000100 ? ?


and the other thus:

? 0x00601000 0x40200000 0x02001800
? ? ? ?
? ? ? 0x00000040
0 0x00000100 ? ?
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Abstract. In this paper, we propose a new stream cipher construction
based on block cipher design principles. The main idea is to replace
the building blocks used in block ciphers by equivalent stream cipher
components. In order to illustrate this approach, we construct a very
simple synchronous stream cipher which provides a lot of flexibility for
hardware implementations, and seems to have a number of desirable
cryptographic properties.

1 Introduction

In the last few years, widely used stream ciphers have started to be systematically
replaced by block ciphers. An example is the A5/1 stream cipher used in the
GSM standard. Its successor, A5/3, is a block cipher. A similar shift took place
with wireless network standards. The security mechanism specified in the original
IEEE 802.11 standard (called ‘wired equivalent privacy’ or WEP) was based on
the stream cipher RC4; the newest standard, IEEE 802.11i, makes use of the
block cipher AES.

The declining popularity of stream ciphers can be explained by different fac-
tors. The first is the fact that the security of block ciphers seems to be better
understood. Over the last decades, cryptographers have developed a rather clear
vision of what the internal structure of a secure block cipher should look like.
This is much less the case for stream ciphers. Stream ciphers proposed in the
past have been based on very different principles, and many of them have shown
weaknesses. A second explanation is that efficiency, which has been the tradi-
tional motivation for choosing a stream cipher over a block cipher, has ceased
to be a decisive factor in many applications: not only is the cost of comput-
ing power rapidly decreasing, today’s block ciphers are also significantly more
efficient than their predecessors.

Still, it seems that stream ciphers could continue to play an important role in
those applications where high througput remains critical and/or where resources
are very restricted. This poses two challenges for the cryptographic community:
first, restoring the confidence in stream ciphers, e.g., by developing simple and

? The work described in this paper has been partly supported by the European Com-
mission under contract IST-2002-507932 (ECRYPT), by the Fund for Scientific Re-
search – Flanders (FWO), and by the Austrian Science Fund (FWF project P18138).
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reliable design criteria; secondly, increasing the efficiency advantage of stream
ciphers compared to block ciphers.

In this paper, we try to explore both problems. The first part of the article
reviews some concepts which lie at the base of today’s block ciphers (Sect. 3), and
studies how these could be mapped to stream ciphers (Sects. 4–5). The design
criteria derived this way are then used as a guideline to construct a simple and
flexible hardware-oriented stream cipher in the second part (Sect. 6).

2 Security and Efficiency Considerations

Before devising a design strategy for a stream cipher, it is useful to first clearly
specify what we expect from it. Our aim in this paper is to design a hardware-
oriented binary additive stream cipher which is both efficient and secure. The
following sections briefly discuss what this implies.

2.1 Security

The additive stream cipher which we intend to construct takes as input a k-bit
secret key K and an n-bit IV. The cipher is then requested to generate up to
2d bits of key stream zt = SK(IV, t), 0 ≤ t < 2d, and a bitwise exclusive OR
of this key stream with the plaintext produces the ciphertext. The security of
this additive stream cipher is determined by the extent to which it mimics a
one-time pad, i.e., it should be hard for an adversary, who does not know the
key, to distinguish the key stream generated by the cipher from a truly random
sequence. In fact, we would like this to be as hard as we can possibly ask from
a cipher with given parameters k, n, and d. This leads to a criterion called
K-security [1], which can be formulated as follows:

Definition 1. An additive stream cipher is called K-secure if any attack against

this scheme would not have been significantly more difficult if the cipher had been

replaced by a set of 2k functions SK : {0, 1}n
×{0, . . . , 2d

−1} → {0, 1}, uniformly

selected from the set of all possible functions.

The definition assumes that the adversary has access to arbitrary amounts of
key stream, that he knows or can choose the a priory distribution of the secret
key, that he can impose relations between different secret keys, etc.

Attacks against stream ciphers can be classified into two categories, depend-
ing on what they intend to achieve:

– Key recovery attacks, which try to deduce information about the secret key
by observing the key stream.

– Distinguishing attacks, the goal of which is merely to detect that the key
stream bits are not completely unpredictable.

Owing to their weaker objective, distinguishing attacks are often much easier
to apply, and consequently harder to protect against. Features of the key stream
that can be exploited by such attacks include periodicity, dependencies between
bits at different positions, non-uniformity of distributions of bits or words, etc.
In this paper we will focus in particular on linear correlations, as it appeared
to be the weakest aspect in a number of recent stream cipher proposals such
as Sober-tw [2] and Snow 1.0 [3]. Our first design objective will be to keep
the largest correlations below safe bounds. Other important properties, such as
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a sufficiently long period, are only considered afterwards. Note that this ap-
proach differs from the way LFSR or T-function based schemes are constructed.
The latter are typically designed by maximizing the period first, and only then
imposing additional requirements.

2.2 Efficiency

In order for a stream cipher to be an attractive alternative to block ciphers, it
must be efficient. In this paper, we will be targeting hardware applications, and
a good measure for the efficiency of a stream cipher in this environment is the
number of key stream bits generated per cycle per gate.

There are two ways to obtain an efficient scheme according to this measure.
The first approach is illustrated by A5/1, and consists in minimizing the number
of gates. A5/1 is extremely compact in hardware, but it cannot generate more
than one bit per cycle. The other approach, which was chosen by the designers of
Panama [4], is to dramatically increase the number of bits per cycle. This allows
to reduce the clock frequency (and potentially also the power consumption)
at the cost of an increased gate count. As a result, Panama is not suited for
environments with very tight area constraints. Similarly, designs such as A5/1
will not perform very well in systems which require fast encryption at a low
clock frequency. One of the objectives of this paper is to design a flexible scheme
which performs reasonably well in both situations.

3 How Block Ciphers are Designed

As explained above, the first requirement we impose on the construction is that
it generates key streams without exploitable linear correlations. This problem is
very similar to the one faced by block cipher designers. Hence, it is natural to
attempt to borrow some of the techniques used in the block cipher world. The
ideas relevant to stream ciphers are briefly reviewed in the following sections.

3.1 Block Ciphers and Linear Characteristics

An important problem in the case of block ciphers is that of restricting linear
correlations between input and output bits in order to thwart linear cryptanal-
ysis [5]. More precisely, let P be any plaintext block and C the corresponding
ciphertext under a fixed secret key, then any linear combination of bits

Γ
T

P · P + Γ
T

C · C ,

where the column vectors ΓP and ΓC are called linear masks, should be as
balanced as possible. That is, the correlation

c = 2 ·

|{P | Γ
T

P · P = Γ
T

C · C}|

|{P}|

− 1

has to be close to 0 for any ΓP and ΓC . The well-established way to achieve
this consists in alternating two operations. The first splits blocks into smaller
words which are independently fed into nonlinear substitution boxes (S-boxes);
the second step recombines the outputs of the S-boxes in a linear way in order to
‘diffuse’ the nonlinearity. The result, called a substitution-permutation network,
is depicted in Fig. 1.
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x1 x2 x3 x4

S S S S

S S S S

y1 y2 y3 y4

M

Fig. 1. Three layers of a block cipher

In order to estimate the strength of a block cipher against linear cryptanaly-
sis, one will typically compute bounds on the correlation of linear characteristics.
A linear characteristic describes a possible path over which a correlation might
propagate through the block cipher. It is a chain of linear masks, starting with a
plaintext mask and ending with a ciphertext mask, such that every two succes-
sive masks correspond to a nonzero correlation between consecutive intermediate
values in the cipher. The total correlation of the characteristic is then estimated
by multiplying the correlations of all separate steps (as dictated by the so-called
Piling-up Lemma).

3.2 Branch Number

Linear diffusion layers, which can be represented by a matrix multiplication
Y = M · X , do not by themselves contribute in reducing the correlation of a
characteristic. Clearly, it suffices to choose ΓX = M

T
· ΓY , where M

T denotes
the transpose of M , in order to obtain perfectly correlating linear combinations
of X and Y :

Γ
T

Y · Y = Γ
T

Y · MX = (MT
ΓY )T · X = Γ

T

X · X .

However, diffusion layers play an important indirect role by forcing characteris-
tics to take into account a large number of nonlinear S-boxes in the neighboring
layers (called active S-boxes). A useful metric in this context is the branch num-

ber of M .

Definition 2. The branch number of a linear transformation M is defined as

B = min
ΓY 6=0

[wh(ΓY ) + wh(MT
ΓY )] ,

where wh(Γ ) represents the number of nonzero words in the linear mask Γ .

The definition above implies that any linear characteristic traversing the struc-
ture shown in Fig. 1 activates at least B S-boxes. The total number of active
S-boxes throughout the cipher multiplied by the maximal correlation over a
single S-box gives an upper bound for the correlation of the characteristic.

The straightforward way to minimize this upper bound is to maximize the
branch number B. It is easy to see that B cannot exceed m + 1, with m the
number of words per block. Matrices M that satisfy this bound (known as the
Singleton bound) can be derived from the generator matrices of maximum dis-
tance separable (MDS) block codes.
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. . . , x4, x3 S D D D D S y3, y2, . . .

f

g

Fig. 2. Stream equivalent of Fig. 1

Large MDS matrices are expensive to implement, though. Therefore, it is
often more efficient to use smaller matrices, with a relatively low branch number,
and to connect them in such a way that linear patterns with a small number
of active S-boxes cannot be chained together to cover the complete cipher. This
was the approach taken by the designers of Rijndael [6].

4 From Blocks to Streams

In this section, we try to adapt the concepts described above to a system where
the data is not processed in blocks, but rather as a stream.

Since data enters the system one word at a time, each layer of S-boxes in
Fig. 1 can be replaced by a single S-box which substitutes individual words
as they arrive. A general mth-order linear filter can take over the task of the
diffusion matrix. The new system is represented in Fig. 2, where D denotes the
delay operator (usually written as z

−1 in signal processing literature), and f and
g are linear functions.

4.1 Polynomial Notation

Before analyzing the properties of this construction, we introduce some nota-
tions. First, we adopt the common convention to represent streams of words
x0, x1, x2, . . . as polynomials with coefficients in the finite field:

x(D) = x0 + x1D + x2D
2 + . . . .

The rationale for this representation is that it simplifies the expression for the
input/output relation of the linear filter, as shown in the following equation:

y(D) =
f(D)

g(D)
·

[

x(D) + x
0(D)

]

+ y
0(D) . (1)

The polynomials f and g describe the feedforward and feedback connections of
the filter. They can be written as

f(D) = D
m
·

(

fmD
−m + · · · + f1D

−1 + 1
)

,

g(D) = 1 + g1D + g2D
2 + · · · + gmD

m
.

The Laurent polynomials x
0 and y

0 represent the influence of the initial state s
0,

and are given by x
0 = D

−m
·

(

s
0
· g mod D

m
)

and y
0 = D

−m
·

(

s
0
· f mod D

m
)

.

207



. . . , 0, 0, 1 0 0 1 0 y

Fig. 3. A 4th-order linear filter

Example 1. The 4th-order linear filter depicted in Fig. 3 is specified by the poly-
nomials f(D) = D

4
· (D−2 +1) and g(D) = 1+D

3 +D
4. Suppose that the delay

elements are initialized as shown in the figure, i.e., s
0(D) = D. Knowing s

0, we
can compute x

0(D) = D
−3 and y

0(D) = D
−1. Finally, using (1), we find the

output stream corresponding to an input consisting, for example, of a single 1
followed by 0’s (i.e., x(D) = 1):

y(D) =
D

−1 + D + D
2 + D

4

1 + D3 + D4
+ D

−1

= D + D
3 + D

5 + D
6 + D

7 + D
8 + D

12 + D
15 + D

16 + D
18 + . . .

4.2 Linear Correlations

In order to study correlations in a stream-oriented system we need a suitable way
to manipulate linear combinations of bits in a stream. It will prove convenient
to represent them as follows:

Tr
[

[γx(D−1) · x(D)]
0

]

.

The operator [·]0 returns the constant term of a polynomial, and Tr(·) denotes the
trace to GF(2). The coefficients of γx, called selection polynomial, specify which
words of x are involved in the linear combination. In order to simplify expressions
later on we also introduce the notation γ

∗(D) = γ(D−1). The polynomial γ
∗ is

called the reciprocal polynomial of γ.
As before, the correlation between x and y for a given pair of selection poly-

nomials is defined as

c = 2 ·

|{(x, s
0) | Tr[[γ∗

x · x]
0
] = Tr[[γ∗

y · y]
0
]}|

|{(x, s0)}|
− 1 .

4.3 Propagation of Selection Polynomials

Let us now analyze how correlations propagate through the linear filter. For each
selection polynomial γx at the input, we would like to determine a polynomial
γy at the output (if it exists) such that the corresponding linear combinations
are perfectly correlated, i.e.,

Tr[[γ∗
x · x]

0
] = Tr[[γ∗

y · y]
0
], ∀x, s

0
.

If this equation is satisfied, then this is still be the case after replacing x by
x
′ = x+x

0 and y by y
′ = y+y

0, since x
0 and y

0 only consist of negative powers,
none of which can be selected by γx or γy. Substituting (1), we find

Tr[[γ∗
x · x

′]
0
] = Tr[[γ∗

y · f/g · x
′]

0
], ∀x, s

0
,
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which implies that γ
∗
x = γ

∗
y ·f/g. In order to get rid of negative powers, we define

f
? = D

m
· f

∗ and g
? = D

m
· g

∗ (note the subtle difference between both stars),
and obtain the equivalent relation

γy = g
?
/f

?
· γx . (2)

Note that neither of the selection polynomials γx and γy can have an infinite
number of nonzero coefficients (if it were the case, the linear combinations would
be undefined). Hence, they have to be of the form

γx = q · f
?
/ gcd(f?

, g
?) and γy = q · g

?
/ gcd(f?

, g
?) , (3)

with q(D) an arbitrary polynomial.

Example 2. For the linear filter in Fig. 3, we have that f
?(D) = 1 + D

2 and
g

?(D) = D
4
· (D−4 + D

−3 + 1). In this case, f
? and g

? are coprime, i.e.,
gcd(f?

, g
?) = 1. If we arbitrarily choose q(D) = 1 + D, we obtain a pair of

selection polynomials

γx(D) = 1 + D + D
2 + D

3 and γy(D) = 1 + D
2 + D

4 + D
5
.

By construction, the corresponding linear combinations of input and output bits
satisfy the relation

Tr(x0 + x1 + x2 + x3) = Tr(y0 + y2 + y4 + y5), ∀x, s
0
.

4.4 Branch Number

The purpose of the linear filter, just as the diffusion layer of a block cipher,
will be to force linear characteristics to pass through as many active S-boxes as
possible. Hence, it makes sense to define a branch number here as well.

Definition 3. The branch number of a linear filter specified by the polynomials

f and g is defined as

B = min
γx 6=0

[wh(γx) + wh(g
?
/f

?
· γx)]

= min
q 6=0

[wh(q · f
?
/ gcd(f?

, g
?)) + wh(q · g?

/ gcd(f?
, g

?))] ,

where wh(γ) represents the number of nonzero coefficients in the selection poly-

nomial γ.

From this definition we immediately obtain the following upper bound on the
branch number

B ≤ wh(f?) + wh(g?) ≤ 2 · (m + 1) . (4)

Filters for which this bound is attained can be derived from MDS convolutional
(2, 1, m)-codes [7]. For example, one can verify that the 4th-order linear filter
over GF(28) with

f(D) = D
4
·

(

02xD
−4 + D

−3 + D
−2 + 02xD

−1 + 1
)

,

g(D) = 1 + 03xD + 03xD
2 + D

3 + D
4
,

has a branch number of 10. Note that this example uses the same field polynomial
as Rijndael, i.e., x

8 + x
4 + x

3 + x + 1.
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5 Constructing a Key Stream Generator

In the previous section, we introduced S-boxes and linear filters as building
blocks, and presented some tools to analyze how they interact. Our next task is to
determine how these components can be combined into a key stream generator.
Again, block ciphers will serve as a source of inspiration.

5.1 Basic Construction

A well-known way to construct a key stream generator from a block cipher is to
use the cipher in output feedback (OFB) mode. This mode of operation takes
as input an initial data block (called initial value or IV), passes it through the
block cipher, and feeds the result back to the input. This process is iterated and
the consecutive values of the data block are used as key stream. We recall that
the block cipher itself typically consists of a sequence of rounds, each comprising
a layer of S-boxes and a linear diffusion transformation.

By taking the very same approach, but this time using the stream cipher
components presented in Sect. 4, we obtain a construction which, in its simplest
form, might look like Fig. 4(a). The figure represents a key stream generator

S

S

z

(a)

S

S

z

(b)

Fig. 4. Two-round key stream generators

consisting of two ‘rounds’, where each round consists of an S-box followed by a
very simple linear filter. Data words traverse the structure in clockwise direction,
and the output of the second round, which also serves as key stream, is fed back
to the input of the first round.

While the scheme proposed above has some interesting structural similarities
with a block cipher in OFB mode, there are important differences as well. The
most fundamental difference comes from the fact that linear filters, as opposed
to diffusion matrices, have an internal state. Hence if the algorithm manages to
keep this state (or at least parts of it) secret, then this eliminates the need for a
separate key addition layer (another important block cipher component, which
we have tacitly ignored so far).
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5.2 Analysis of Linear Characteristics

As stated before, the primary goal in this paper is to construct a scheme which
generates a stream of seemingly uncorrelated bits. More specifically, we would
like the adversary to be unable to detect any correlation between linear combi-
nations of bits at different positions in the key stream. In the following sections,
we will see that the study of linear characteristics provides some guidance on
how to design the components of our scheme in order to reduce the magnitude
of these correlations.

Applying the tools from Sect. 4 to the construction in Fig. 4(a), we can
easily derive some results on the existence of low-weight linear characteristics.
The term ‘low-weight’ in this context refers to a small number of active S-boxes.
Since we are interested in correlations which can be detected by an adversary,
we need both ends of the characteristic to be accessible from the key stream. In
order to construct such characteristics, we start with a selection polynomial γu

at the input of the first round, and analyze how it might propagate through the
cipher.

First, the characteristic needs to cross an S-box. The S-box preserves the po-
sitions of the non-zero coefficients of γu, but might modify their values. For now,
however, let us only consider characteristics for which the values are preserved
as well. Under this assumption and using (2), we can compute the selection
polynomials γv and γw at the input and the output of the second round:

γv = g
?
1
/f

?
1
· γu and γw = g

?
2
/f

?
2
· γv .

Since all three polynomials γu, γv , and γw need to be finite, we have that

γu = q · f
?
1
f

?
2
/d , γv = q · g

?
1
f

?
2
/d , and γw = q · g

?
1
g

?
2
/d ,

with d = gcd(f?
1 f

?
2 , g

?
1f

?
2 , g

?
1g

?
2) and q an arbitrary polynomial. Note that since

both γu and γw select bits from the key stream z, they can be combined into a
single polynomial γz = γu + γw.

The number of S-boxes activated by a characteristic of this form is given by
W = wh(γu) + wh(γv). The minimum number of active S-boxes over this set of
characteristics can be computed with the formula

Wmin = min
q 6=0

[wh(q · f
?
1 f

?
2 /d) + wh(q · g

?
1f

?
2 /d)] ,

from which we derive that

Wmin ≤ wh(f?
1 f

?
2 ) + wh(g?

1f
?
2 ) ≤ wh(f?

1 ) · wh(f?
2 ) + wh(g

?
1) · wh(f

?
2 ) .

Applying this bound to the specific example of Fig. 4(a), where wh(f
?
i ) =

wh(g?
i ) = 2, we conclude that there will always exist characteristics with at most

8 active S-boxes, no matter where the taps of the linear filters are positioned.

5.3 An Improvement

We will now show that this bound can potentially be doubled by making the
small modification shown in Fig. 4(b). This time, each non-zero coefficient in
the selection polynomial at the output of the key stream generator needs to
propagate to both the upper and the lower part of the scheme. By constructing
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linear characteristics in the same way as before, we obtain the following selection
polynomials:

γu = q ·
f

?
1
f

?
2

+ f
?
1
g

?
2

d
, γv = q ·

f
?
1
f

?
2

+ g
?
1
f

?
2

d
, and γz = q ·

f
?
1
f

?
2

+ g
?
1
g

?
2

d
,

with d = gcd(f?
1 f

?
2 + f

?
1 g

?
2 , f

?
1 f

?
2 + g

?
1f

?
2 , f

?
1 f

?
2 + g

?
1g

?
2). The new upper bounds

on the minimum number of active S-boxes are given by

Wmin ≤ wh(f
?
1
f

?
2

+ f
?
1
g

?
2
) + wh(f?

1
f

?
2

+ g
?
1
f

?
2
)

≤ 2 · wh(f?
1 ) · wh(f?

2 ) + wh(f
?
1 ) · wh(g

?
2) + wh(g?

1) · wh(f?
2 ) ,

or, in the case of Fig. 4(b), Wmin ≤ 16. In general, if we consider extensions of
this scheme with r rounds and wh(f

?
i ) = wh(g

?
i ) = w, then the bound takes the

form:
Wmin ≤ r

2
· w

r
. (5)

This result suggests that it might not be necessary to use a large number of
rounds, or complicated linear filters, to ensure that the number of active S-
boxes in all characteristics is sufficiently large. For example, if we take w = 2 as
before, but add one more round, the bound jumps to 72.

Of course, since the bound we just derived is an upper bound, the minimal
number of active S-boxes might as well be much smaller. First, some of the
product terms in f

?
1 f

?
2 + f

?
1 g

?
2 or f

?
1 f

?
2 + g

?
1f

?
2 might cancel out, or there might

exist a q 6= d for which wh(γu) + wh(γv) suddenly drops. These cases are rather
easy to detect, though, and can be avoided during the design. A more important
problem is that we have limited ourselves to a special set of characteristics,
which might not necessarily include the one with the minimal number of active
S-boxes. However, if the feedback and feedforward functions are sparse, and the
linear filters sufficiently large, then the bound is increasingly likely to be tight.
On the other hand, if the state of the generator is sufficiently small, then we can
perform an efficient search for the lowest-weight characteristic without making
any additional assumption.

This last approach allows to show, for example, that the smallest instance of
the scheme in Fig. 4(b) for which the bound of 16 is actually attained, consists
of two 11th-order linear filters with

f
?
1
(D) = 1 + D

10
, g

?
1
(D) = D

11
· (D−3 + 1) ,

f
?
2 (D) = 1 + D

9
, g

?
2(D) = D

11
· (D−8 + 1) .

5.4 Linear Characteristics and Correlations

In the sections above, we have tried to increase the number of active S-boxes
of linear characteristics. We now briefly discuss how this number affects the
correlation of key stream bits. This problem is treated in several papers in the
context of block ciphers (see, e.g., [6]).

We start with the observation that the minimum number of active S-boxes
Wmin imposes a bound on the correlation cc of a linear characteristic:

c
2

c ≤ (c2

s)
Wmin

,

where cs is the largest correlation (in absolute value) between the input and the
output values of the S-box. The squares c

2

c and c
2

s are often referred to as linear
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probability, or also correlation potential. The inverse of this quantity is a good
measure for the amount of data that the attacker needs to observe in order to
detect a correlation.

What makes the analysis more complicated, however, is that many linear
characteristics can contribute to the correlation of the same combination of key
stream bits. This occurs in particular when the scheme operates on words, in
which case there are typically many possible choices for the coefficients of the
intermediate selection polynomials describing the characteristic (this effect is
called clustering). The different contributions add up or cancel out, depending
on the signs of cc. If we now assume that these signs are randomly distributed,
then we can use the approach of [6, Appendix B] to derive a bound on the
expected correlation potential of the key stream bits:

E(c2) ≤ (c2

s)
Wmin−n

. (6)

The parameter n in this inequality represents the number of degrees of freedom
in the choice for the coefficients of the intermediate selection polynomials.

For the characteristics propagating through the construction presented in
Sect. 5.3, one will find, in non-degenerate cases, that the values of n = r · (r−1) ·
w

r−1 non-zero coefficients can be chosen independently. Hence, for example, if
we construct a scheme with w = 2 and r = 3, and if we assume that it attains the
bound given in (5), then we expect the largest correlation potential to be at most
c
2·48
s . Note that this bound is orders of magnitude higher than the contribution

of a single characteristic, which has a correlation potential of at most c
2·72
s .

Remark 1. In order to derive (6), we replaced the signs of the contributing linear
characteristics by random variables. This is a natural approach in the case of
block ciphers, where the signs depend on the value of the secret key. In our case,
however, the signs are fixed for a particular scheme, and hence they might, for
some special designs, take on very peculiar values. This happens for example
when r = 2, w is even, and all non-zero coefficients of fi and gi equal 1 (as in
the example at the end of the previous section). In this case, all signs will be
positive, and we obtain a significantly worse bound:

c
2
≤ (c2

s)
Wmin−2·n

.

6 Trivium

In this final section, we present an experimental cipher based on the approach
outlined above. Because of space restrictions, we limit ourselves to a very rough
sketch of some basic design ideas behind the scheme. The complete specifi-
cations of the cipher, which was submitted to the eSTREAM Stream Cipher
Project under the name Trivium, can be found at http://www.ecrypt.eu.

org/stream/ [8].

6.1 A Bit-Oriented Design

The main idea of Trivium’s design is to turn the general scheme of Sect. 5.3 into
a bit-oriented stream cipher. The first motivation is that bit-oriented schemes
are typically more compact in hardware. A second reason is that, by reducing the
word-size to a single bit, we may hope to get rid of the clustering phenomenon
which, as seen in the previous section, has a significant effect on the correlation.
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Of course, if we simply apply the previous scheme to bits instead of words,
we run into the problem that the only two existing 1 × 1-bit S-boxes are both
linear. In order to solve this problem, we replace the S-boxes by a component
which, from the point of view of our correlation analysis, behaves in the same
way: an exclusive OR with an external stream of unrelated but biased random
bits. Assuming that these random bits equal 0 with probability (1 + cs)/2, we
will find as before that the output correlates with the input with correlation
coefficient cs.

The introduction of this artificial 1× 1-bit S-box greatly simplifies the corre-
lation analysis, mainly because of the fact that the selection polynomial at the
output of an S-box is now uniquely determined by the input. Thanks to this
lack of freedom, we neither need to make special assumptions about the values
of the non-zero coefficients, nor to consider the effect of clustering: the maximum
correlation in the key stream is simply given by the relation

cmax = c
Wmin

s . (7)

The obvious drawback, however, is that the construction now relies on external
streams of random bits, which have to be generated somehow. Trivium attempts
to achieve this by interleaving three identical key stream generators, where each
generator obtains streams of biased bits (with cs = 1/2) by ANDing together
state bits of the two other generators. The result is shown in Fig. 5.

zi

s1

s
6
6

s 9
4

s162

s
1
7
8

s 2
4
3

s288

Fig. 5. Trivium
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Abstract. Modularity of the design of Edon80 stream cipher allows us
to define a family of stream ciphers Edon-(2m, 2k) where the value 2m
is the number of internal quasigroup transformations and 2k is the bit
size of the key. That allows us further to derive the distribution of the
periods of the keystreams produced by every stream cipher in that family.
We show that the obtained distribution is LogNormal when m → ∞.
Having a formula for that distribution, we can compute the parameter
m for every combination of key and IV sizes such that Edon-(2m, 2k)
will meet any predetermined security criteria. 3

Key words: hardware, synchronous stream cipher, Latin square, quasi-
group, quasigroup string processing

1 Introduction

In this paper we derive a formula for the distribution of the periods of the
proposed stream cipher Edon80 as well as for a family of Edon-(2m, 2k) stream
ciphers to which Edon80 belongs. We have initially announced this result in
our response [1] to the remarks of Hong given in [2]. Here we give a precise
analysis and a precise formula for computing the distribution of the periods of
the keystreams for the Edon-(2m, 2k) family.

Although all stream ciphers proposed for the eSTREAM project have given
the expected periods of their keystreams, very few of them have precise analysis
and strong mathematical claims for the produced keystream periods. Beside the
security scalability that does not influence the speed performance of the Edon80

3 This work was carried out during the tenure of an ERCIM fellowship of D. Gligoroski
visiting Q2S - Centre for Quantifiable Quality of Service in Communication Systems
at Norwegian University of Science and Technology - Trondheim, Norway.
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(when realized in hardware), we think that having such a precise mathemati-
cal description of the periods of its keystreams is one of the strongest points
compared to the other eSTREAM submissions.

The paper is organized as follows: In Section 2 we derive a precise mathe-
matical model and precise mathematical expressions for the probabilities of the
keystream periods, in Section 3 we discuss two security criteria and how Edon80
or Edon-(2m, 2k) can meet them, and in Section 4 we give the conclusions.

2 Probabilistic model for the periods produced by
Edon-(2m, 2k) stream ciphers

Here we will give a brief description of Edon80. For a detailed description see [3].
Edon80 uses 4 quasigroups of order 4 (shown in Table 1) that process the initial
string consisting of letters “0 1 2 3 0 1 2 3 0 ...” in 80 steps and output every
second letter that forms the keystream of the stream cipher (see Table 2). The
processing in every step is done by a quasigroup ∗i and a leader ai, i = 0, . . . , 79
chosen in the IVSetup process that have the property to map the initial 80-bit
key (40 2-bit letters) and initial 64-bit IV (32 2-bit letters) equiprobable in the
space {0, 1, 2, 3}80.

•0 0 1 2 3
0 0 2 1 3
1 2 1 3 0
2 1 3 0 2
3 3 0 2 1

•1 0 1 2 3
0 1 3 0 2
1 0 1 2 3
2 2 0 3 1
3 3 2 1 0

•2 0 1 2 3
0 2 1 0 3
1 1 2 3 0
2 3 0 2 1
3 0 3 1 2

•3 0 1 2 3
0 3 2 1 0
1 1 0 3 2
2 0 3 2 1
3 2 1 0 3

Table 1. Quaigroups used for the design of Edon80

∗i 0 1 2 3 0 1 2 3 0 . .
∗0 a0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5 a0,6 a0,7 a0,8 . .
∗1 a1 a1,0 a1,1 a1,2 a1,3 a1,4 a1,5 a1,6 a1,7 a1,8 . .
. . . . . . . . . . . . .
∗79 a79 a79,0 a79,1 a79,2 a79,3 a79,4 a79,5 a79,6 a79,7 a79,8 . .

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

Table 2. Representation of quasigroup string e-transformations of Edon80 during the
Keystream mode

In what follows we will describe the mathematical probabilistic model that
explains the distribution of the periods obtained by quasigroup string transfor-
mations like those used in Edon80.

For that purpose we need the following definitions:
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Definition 1. (Quasigroup) A quasigroup is a groupoid (Q, ∗) satisfying the
laws

(∀u, v ∈ Q)(∃x, y ∈ Q)(u ∗ x = v, y ∗ u = v),

x ∗ y = x ∗ z =⇒ y = z, y ∗ x = z ∗ x =⇒ y = z.

Definition 2. (Quasigroup String Transformations) For a finite set Q let us
denote by Q+ the set of all nonempty words (i.e. finite strings) formed by the
elements of Q. Let the elements of Q+ be denoted by α = a1a2 . . . an where
ai ∈ Q. Let ∗ be a quasigroup operation on the set Q. For each l ∈ Q the
function el,∗ : Q+ → Q+, called the e-transformation based on the operation ∗
with leader l, is defined as follows:

el,∗(α) = b1 . . . bn ⇐⇒ bi+1 = bi ∗ ai+1 (1)

for each i = 0, 1, . . . , n− 1, where b0 = l.

Definition 3. (Period of a string) The string α = a1a2 . . . an ∈ Q+, where ai ∈
Q, has a period p if p is the smallest positive integer such that ai+1ai+2 . . . ai+p =
ai+p+1ai+p+2 . . . . . . ai+2p for each i ≥ 0.

Definition 4. (Edon-(2m, 2k)) Let Key be a 2k bit string represented as a string
of k 2-bit letters, i.e. Key = K0K1 · · ·Kk−1. For every m ∈ N, m ≥ k, let
q = 2m − k be the length of the string Const, i.e. Const = c0c1 · · · cq−1. Let
S0 = s0s1 . . . s2m−1 be a concatenation of the strings Key and Const i.e. S0 =
Key||Const.

Let us assign 2m working quasigroups by the following formula:

(Q, ∗i) ← (Q, •Ki mod k
), 0 ≤ i ≤ 2m− 1,

and assign 2m leaders by the following formula:

ti = s2m−1−i, 0 ≤ i ≤ 2m− 1.

Let us perform 2m e-transformations on the string S0 with quasigroups ∗i

and leaders ti, 0 ≤ i < 2m, i.e.

Si+1 = e∗i,ti(Si), 0 ≤ i ≤ 2m− 1,

and let S2m = a0a1 . . . a2m−1.
Let us denote by Γ0 = “0 1 2 3 0 1 2 3 0 . . . ” the infinite sting consisting of

infinite concatenations of the substrings “0 1 2 3”.
Let us perform 2m e-transformations on the string Γ0 with quasigroups ∗i

and leaders ai, 0 ≤ i < 2m, i.e.

Γi+1 = e∗i,ai(Γi), 0 ≤ i ≤ 2m− 1,

and let Keystream = Γ2m|2i where operator |2i means that Keystream consists
of every second letter of Γ2m.
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The particular definition of Edon80 will be equivalent to our definition of
Edon-(80, 80) if we put m = 40, k = 40 and thus q = 40, and in the string
Const = c0c1 · · · c39, we put IV = c0c1 . . . c31 and we fix c32c33 . . . c39 ≡ 3 2 1 0 0
1 2 3.

Definition 5. (Keystream periods of Edon-(2m, 2k) stream ciphers seen as
stochastic process) Let Ξ be a stochastic process {Xi} defined as a family of
random variables indexed by a parameter i. Further, let every Xi have its own
distribution over the sample space Ω where the values of Ω denote how many
times the period pΓi

of the string Γi is larger then the period pΓi−1 of the string
Γi−1.

Theorem 1. (Ever non-decreasing periodicity of quasigroup string transforma-
tions) Let (Q, ∗) be a quasigroup of order r, let Γ ∈ Q∗ be an infinite string with
period p and let Γ ′ = e∗,l(Γ ) have a period p′. Then p′/p ∈ {1, 2, . . . , r}.

The proof of the Theorem 1 is given in the appendix of FSE 2005 paper [4].
Simple exhaustive investigation of all choices for all of the four quasigroups

and for each case an investigation of all four possibilities for choosing the leader
gives the following distribution of X1.

Lemma 1. The distribution of X1 is
(

1 2 3 4
1
8

1
2

3
8 0

)
. ¤

Further, we will assume stationarity of the defined stochastic process by the
following assumption:

Assumption 1 The stochastic process Ξ ≡ {Xi}, i = 1, 2, 3, . . . of discrete ran-

dom variables Xi converge to a stationary distribution X =
(

1 2 3 4
1
4

1
4

11
32

5
32

)
.

It is easy to verify that µ = E(X) = 77
32 , σ2 = V ar(X) = 1079

1024 .

Theorem 2. If Y2m is a random variable describing the period of Edon-(2m, 2k)
then, when m →∞, its cumulative density function can be approximated by the
continuous function:

FY2m(y) =
1
2

(
1 + erf

(
1.00777 (ln(2y)− 1.535086 m)√

m

))
, 0 < y < ∞,

with expectation

E(Y2m) =
1
2
e1.78125 m

and variance

V ar(Y2m) =
1
4
e3.5625 m(e0.492324 m − 1).
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Proof. As a consequence from Theorem 1 it follows that every application of
an e-transformation in a cipher like Edon-(2m, 2k) can be seen as a random
variable receiving values from the set {1, 2, 3, 4}. Since Edon-(2m, 2k) has 2m
e-transformations, we have 2m random variables X1, X2, . . . , X2m (that can be
treated as statistically independent under the assumption that one-way IVSetup
procedure is well defined and maps the initial 2k bits of the Key and 2q bits of
the string Const without bias into 4m bits, i.e. into 2m 2-bit letters).

Let us first compute the distribution of the periods of the string Γ2m. If we
denote by Z2m the random variable that describes the periods of the string Γ2m,
then Z2m can be seen as a product of 2m independent random variables Xi, i.e.
Z2m = X1X2 · · ·X2m. The most important task is to find the distribution of
the variables Xi, i = 1, . . . , 2m. If we take into account the Assumption 1 then
we can assume that (although there is a transition period for the distribution
of the first several Xi, 1 ≤ i ≤ 16), if the number of applied transformations
2m is large (for example 2m > 40) then we can compute the distribution of the
multiplication of 2m i.i.d. r.v. and that distribution will be close to the actual
distribution of Z2m.

After numerous numerical experiments of performing e-transformations on
the strings obtained in Edon-(2m, 2k) stream ciphers, we have found the nu-
merical values for the distributions of the random variables Xi, i = 1, 2, . . . , 16,
which are clearly supporting Assumption 1 and they are shown in Table 3.

i Xi i Xi

1

(
1 2 3 4
1
8

1
2

3
8

0

)
9

(
1 2 3 4

0.2505 0.2510 0.3416 0.1569

)

2

(
1 2 3 4

0.1485 0.1875 0.3522 0.3118

)
10

(
1 2 3 4

0.2503 0.2536 0.3397 0.1564

)

3

(
1 2 3 4

0.2369 0.3355 0.2539 0.1738

)
11

(
1 2 3 4

0.2502 0.2510 0.3407 0.1581

)

4

(
1 2 3 4

0.2536 0.2661 0.3115 0.1688

)
12

(
1 2 3 4

0.2516 0.2461 0.3445 0.1577

)

5

(
1 2 3 4

0.2457 0.2512 0.3448 0.1584

)
13

(
1 2 3 4

0.2479 0.2524 0.3429 0.1568

)

6

(
1 2 3 4

0.2498 0.2484 0.3457 0.1561

)
14

(
1 2 3 4

0.2500 0.2502 0.3421 0.1577

)

7

(
1 2 3 4

0.2474 0.2518 0.3432 0.1576

)
15

(
1 2 3 4

0.2538 0.2515 0.3378 0.1569

)

8

(
1 2 3 4

0.2488 0.2493 0.3451 0.1568

)
16

(
1 2 3 4
1
4

1
4

11
32

5
32

)

Table 3. The distribution of the random variables Xi for the first 16 values of i.

Since

Z2m = X1X2 · · ·X2m
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we can apply ln on both sides and obtain:

ln(Z2m) = ln(X1) + ln(X2) + · · · ln(X2m).

If we assume that all Xi has the same distribution as the discrete random variable
X (Assumption 1), then they have the same mean µX = 77

32 and the same
variance σ2

X = 1079
1024 . Then, the random variable W = ln(X) has a mean µW =

E(W ) ≈ 0.767543 and a variance σ2
W = V ar(W ) ≈ 0.246162. Thus, the sum

of 2m random variables S2m =
∑2m

i=1 ln(Xi) =
∑2m

i=1 Wi, as a consequence of
the Central Limit Theorem, will have a normal distribution with mean µS2m

≈
2mµW ≈ 1.535086 m and σ2

S2m
≈ 2mσ2

W ≈ 0.492324 m. Now, having Z2m =
eS2m and S2m being the normal distribution N (1.535086 m, 0.492324 m) we can
compute the pdf of Z2m (the so called LogNormal Distribution) by the following
formula (found in many introductory probability textbook - see for example [5]):

fZ2m
(z) =

1
z
√

0.492324 m
√

2π
exp

(
− (ln(z)− 1.535086 m)2

2× 0.492324 m

)
, 0 < z < ∞,

that by a little simplification will take the form:

fZ2m(z) =
1

0.701658 z
√

2πm
exp

(
− (ln(z)− 1.535086 m)2

0.984648 m

)
, 0 < z < ∞.

The formulas for computing the mean E(Z2m) and the variance V ar(Z2m)
can be found also in [5]:

E(Z2m) = e1.78125 m, V ar(Z2m) = e3.5625 m(e0.492324 m − 1).

If we bear in mind that Y2m = 1
2Z2m (because the keystream of Edon-

(2m, 2k) consists of every second letter from the string Γ2m) we have that pdf,
mean and variance for Y2m can be computed as fY2m(y) = 2fZ2m(2y), E(Y2m) =
1
2E(Z2m) and V ar(Y2m) = 1

4V ar(Z2m), i.e.

fY2m(y) =
1

1.40332 y
√

2πm
exp

(
− (ln(2y)− 1.535086 m)2

0.984648 m

)
, 0 < y < ∞,

(2)

E(Y2m) =
1
2
e1.78125 m, V ar(Y2m) =

1
4
e3.5625 m(e0.492324 m − 1).

From the obtained pdf for Y2m we can easily compute the cumulative density
function as:

FY2m(y) =
1
2

(
1 + erf

(
1.00777 (ln(2y)− 1.535086 m)√

m

))
, 0 < y < ∞. (3)

¤
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We have derived equation (3) as a useful tool when designing Edon-(2m, 2k)
stream ciphers that will satisfy different security requirements as we will see in
the next section. However, we have to note that, since we have approximated a
discrete random variable Y2m by a continuous function in (3), it makes no sense
to use a continuous pdf equation (2) for computing probabilities for obtaining a
specific period. For example, Edon-(2m, 2k) does not produce periods of length
216 + 1 and so the actual probability for obtaining such a period in the discrete
case is 0, but the pdf equation (2) gives some positive probability. On the other
hand, the approximations made by (3) are satisfactory and in fact are guaranteed
by the Central Limit Theorem. In Figure 1 we show the results of our simulation
for Edon-(16, 16). The red line is obtained by equation (3) and the green one is
obtained by making exhaustive search changing all 216 values for the Key.

1 100 10000 1. ´ 106 1. ´ 108 1. ´ 1010
0

0.2

0.4

0.6

0.8

1

Fig. 1. Comparison between our mathematical model and concrete experimental re-
sults for the periods of Edon-(16,16). The red line represents values from the model
and green line represents obtained results after exhaustive search for all 216 keys for
Edon-(16, 16).

It is a relatively simple iterative procedure to numerically obtain the cdf
and pdf for a concrete discrete random variable Y2m (without approximation by
continuous functions) and in Figure 2 and Figure 3 we show our experimentally
obtained cdf’s compared with cdf’s that are obtained by equation (3) for Edon-
(80, 80) and Edon-(160, 80).
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0.1 1. ´ 108 1. ´ 1017 1. ´ 1026 1. ´ 1035 1. ´ 1044

0

0.2

0.4

0.6

0.8

1

Fig. 2. Comparison between our mathematical model and concrete experimental re-
sults for the cumulative distribution of the periods of Edon-(80,80). The red line repre-
sents values from the model and green line represents experimentally obtained discrete
distribution.

3 How Edon-(2m, 2k) meets different security criteria

In this section we would like to give an answer to the questions: “Is there a weak
key attack on Edon80?” and “Is the design of Edon-(2m, 2k) adaptable to more
demanding security criteria?”. For that purpose let us recall briefly the security
criteria that were posted for the eSTREAM - ECRYPT Stream Cipher Project.
During the initial phase of the project the security criteria for hardware and
software stream ciphers were set and announced formally as follows:

– Any key-recovery attack (including time-memory-data tradeoff at-
tacks) should be at least as difficult as exhaustive search.

– Also, distinguishing attacks are likely to be of interest to the cryp-
tographic community. However the relative importance of high com-
plexity distinguishing attacks may become an issue for wider discus-
sion.

– Clarity of design is likely to be an important consideration.

Special attention to the time-memory-data tradeoff attacks has been payed
since the publication of Hong-Sarkar paper [6], which resulted in an update of
the initial requirements for the size of the key and IV in eSTREAM call for
participation (the rationale can be found in Cannière, Lano and Preneel’s com-
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1. ´ 1011 1. ´ 1024 1. ´ 1037 1. ´ 1050 1. ´ 1063

0

0.2

0.4

0.6

0.8

1

Fig. 3. Comparison between our mathematical model and concrete experimental re-
sults for the cumulative distribution of the periods of Edon-(160,80). The red line
represents values from the model and green line represents experimentally obtained
discrete distribution.

ments to TMD attacks in [7]). However, from many comments on the eSTREAM
forum (as well as from the comments of Hong in [2]) it can be concluded that
sometimes the workloads that are equivalent to the amount of work of a simple
exhaustive key search are not satisfactory as a security criterion (at least as in-
tuitive perception). In particular, that can be said about the distribution of the
lengths of the keystream periods.

Since the length of the keystream in Edon-(2m, 2k) stream ciphers depends
on the choice of the (Key, IV ) pair, we can say that an attack on the cipher
when the key stream has short period can be treated as weak key attack. Weak
key attacks were successful cryptanalytic tools against IDEA and Lucifer (see
for example [8–10]). The basic idea is that if the key consists of 2k bits and so
the exhaustive search needs 22k operations, if there is a set of weak keys with
volume of V = 2f and the membership testing procedure whether a key is weak
needs 2w operations, then the complexity of the weak key attack is 22k−f+w. So
if w − f < 0 i.e. if w < f then a weak key attack can break the cipher with
complexity less then the exhaustive key search.

In the situation for IDEA and Lucifer, the testing procedure was based on
differential cryptanalysis and it needed 24 and 236 operations respectably. For
Edon-(2m, 2k) the membership test whether the length of the keystream is 2w

needs 2w computations. For Edon-(2m, 2k) we have a “controllable” part in the
design that will prevent weak key attack from being effective. This is the value
of m in the formula (3). More precisely, we can state the following:
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Lemma 2. For any predetermined and fixed key size 2k, the minimum number
of necessary 2m e-transformations in Edon-(2m, 2k) to make weak key attack
ineffective can be computed by the following expression:

min
m

(
y

FY2m
(y)

≥ 22m, ∀y > 0
)

.

Proof. The probability that a keystream has a period less than y = 2w can be
expressed as power of 2, i.e. let us denote FY2m

(y) = 2−f . Since that probability
can be interpreted as a ratio between the number of weak (Key, IV ) pairs and
the total number of (Key, IV ) pairs of size 22m i.e. FY2m

(y) = 2−f = V/22m the
volume of the weak (Key, IV ) pairs can be computed as V = 22m−f . Since the
membership test needs y = 2w operations, the cipher is resistant against a weak
key attack if 22k−(2m−f)+w ≥ 22k i.e. if 2w+f ≥ 22m which is equivalent with
the expression

y

FY2m(y)
≥ 22m. ¤

We have tested whether Edon-(80,80) is vulnerable to a weak key attack
and the findings are presented in Figure 4. Edon-(80,80) is not totally resistant
against a weak key attack since the minimum of the function y

FY80 (y) is obtained
for y ≈ 260.55 and the value is 276.89 i.e. 60.55 + 76.89 = 137.44 which is less
than 144. Here we want to stress the fact that the search space has the size of
2144 and not 2160 since in the design of Edon80 we have 16 fixed bits.

A simple tweak with 2m = 84 e-transformations will result in full resistance
against a weak key attack since the minimum of the function y

FY84 (y) is obtained
for y ≈ 263.5676 and the value is 280.6428 i.e. 63.5676 + 80.6428 = 144.21.

As we mentioned in the beginning of this section, an intuitive requirement
for security of a certain stream cipher primitive is as follows:

The stream cipher has to have the property that finding a (Key, IV )
pair that gives period less then 22k has probability less then 2−2k. More
specifically, the security criterion in this case is:

∀p < 2k, P [Keystream period < 2p] < 2−2k. (4)

For the latest criterion we have the following Lemma:

Lemma 3. For any predetermined and fixed key size 2k, the minimum num-
ber of necessary 2m e-transformations to meet the requirements of the criterion
expressed in formula (4) can be computed by the following expression:

FY2m(y) ≤ 2−2k, ∀y ≤ 22k. ¤

From the results of the analysis of Edon-(80,80), it is clear that it does not
comply with the requirements of security criterion (4).

Although the practical value of the criterion (4) is disputable, since the total
workload for practical attacks that will use the noncompliance with it is much
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1. ´ 1010 1. ´ 1014 1. ´ 1018 1. ´ 1022 1. ´ 1026 1. ´ 1030
1. ´ 1023

1. ´ 1025

1. ´ 1027

1. ´ 1029

Fig. 4. The log–log plot of the function y
FY80 (y)

. The minimum is obtained for the

periods y ≈ 260.55 and the value is 276.89.

bigger then exhaustive search, Edon-(2m, 2k) stream ciphers can comply with
that criterion. For example, for the key size of 80 bits, Edon-(160,80) meets the
requirements of criterion (4) and the probability of obtaining a keystream with
period less then 280 is 2−86.1351.

4 Conclusions

We have built a mathematical probabilistic model by which the periods pro-
duced by the family of stream ciphers Edon-(2m, 2k) (where Edon80 belongs)
can be modelled. The Edon-(2m, 2k) stream ciphers are based on a solid math-
ematical background and by increasing the number of rounds we can increase
some security aspects of the primitive in a controllable manner. Further, by us-
ing the mathematical model we have developed and described in this paper we
can build distinct types of stream ciphers with any size of the key and IV , that
will comply with different types of security requirements, without any loss of
operating speed of the cipher.
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CRYPTANALYSIS OF CRYPTMT: EFFECT OF HUGE PRIME
PERIOD AND MULTIPLICATIVE FILTER

MAKOTO MATSUMOTO, MUTSUO SAITO, TAKUJI NISHIMURA,
AND MARIKO HAGITA

Abstract. CryptMT (Cryptographic Mersenne Twister) is an 8-bit pseudo-
random integer generator for a stream cipher. It combines an F2-linear gen-
erator of period 219937 − 1 and a multiplicative filter with 31-bit memory.
We analyze its security against some standard cryptanalytic attacks for filter
generators. It is proved that CryptMT has strong resistance against them:
CryptMT has a period of 219937 − 1, the correlations among the consecutive
624-bytes of outputs are of order 2−19937, the algebraic degree of the output
bits with respect to the bits in Key and IV is expected to be near to the size
of Key and IV. The Key size and IV size are variable, up to 2048-bit for each.
We claim that CryptMT has the same security level with the minimum of the
key size and the IV size. CryptMT is 1.5–2.0 times faster than the optimized
AES CTR mode with 256-bit security level.

1. Introduction

In the previous article[16], we proposed an 8-bit-integer pseudorandom number
generator Cryptographic Mersenne Twister (CryptMT) for a stream cipher, and
FUBUKI block/stream cipher. In this article, we explain the design rationale of
CryptMT and analyze its resistance against some standard attacks.

2. Design rationale of CryptMT

CryptMT is a variant of classical filter generators. Conventional method is to use
LFSR as a mother generator1 and to transform its outputs by a nonlinear Boolean
function (i.e. without memory) called a filter.

CryptMT adopted Mersenne Twister(MT) as the mother generator and a multi-
plicative filter with memory, as explained below. Properties of MT stated here are
proved in [14].

MT generates a pseudorandom 32-bit integer sequence by the F2-linear recursion

x624+i = x397+i ⊕ ((xi&0x80000000)|(x1+i&0x7fffffff))A (i = 0, 1, 2, . . .).

Date: January 23, 2006.
Key words and phrases. Cryptographic Mersenne Twister, CryptMT, SNOW, stream cipher,

multiplicative filter, algebraic attack, algebraic degree, correlation attack.
CryptMT stream cipher analyzed in this manuscript was proposed to eSTREAM Stream Ci-

pher Proposal http://www.ecrypt.eu.org/stream/. The reference codes are available there. The
first author was supported in part by JSPS Grant-In-Aid #16204002, and Hiroshima University
President’s Discretion Fund ’05.

1It seems there is no standard terminology for the source generator in a filtered generator: in
many articles it is referred merely as the LFSR. We shall refer the source generator as the “mother
generator” in this article.
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Here xi (i = 0, 1, 2, . . .) are 32-bit integers, each of which is considered as a 32-
dimensional row vector over the two element field F2. The binary operator ⊕
denotes the bitwise exclusive-or, i.e., addition as a vector. The C-like hexadecimal
notation 0x80000000 denotes the vector whose components are all zero except for
the left most 1, and & denotes the bitwise AND operator. Thus,

((wi&0x80000000)|(w1+i&0x7fffffff))

is the row vector obtained by concatenating the MSB of wi and all bits but the
MSB of w1+i. To this vector a constant 32 × 32 matrix A is multiplied from the
right, which is defined and computed by

xA =
{

shiftright(x) (if the LSB of x is 0)
shiftright(x)⊕ a (if the LSB of x is 1),

where a is a constant vector a = (a31, a30, . . . , a0) = 0x9908B0DF. Let us fix a j,
1 ≤ j ≤ 32. If we look at the j-th bit of xi for i = 0, 1, 2, . . ., they constitute
a linear recurring sequence over F2 with order 19937 with 135 terms. Its period
is P := 219937 − 1, and 623-dimensional tuples (xi, xi+1, . . . , xi+622) assume every
possible (there are 2623·32) bit pattern twice, except for the all 0 pattern which
occurs once, in a whole period 0 ≤ i ≤ P − 1.

We then consider xi as 32-bit integers modulo 232, i.e. as elements of Z/232, and
pass them to the following simple filter with memory. We set y1 to an odd integer
(chosen to be 1 in CryptMT), and generate a sequence of 32-bit integers yi by

yi+1 := (xi|1)× yi mod 232,

where (xi|1) denotes xi with its LSB set to 1. We use the most significant 8 bits
of yi as the output. In the implementation, we prepare a variable accum of 32-bit
integer, and substitute it iteratively by

accum = (output of MT() | 1)× accum mod 232.

We call such type of filter with memory, based on the multiplication and the use of
MSBs, a multiplicative filter.

The resynchronization (initialization) scheme will not be discussed in this article;
it is described in [16] (and we propose a new faster version [17]).

To explain the design rationale, we compare CryptMT with SNOW2.0 (or its
original version SNOW1.0) [7][8], which is also a linear generator with a filter with
memory. The mother generator of SNOW is a LFSR of order 16 over F232 , and
its filter has two memories of 32-bit word size. The transition function of the
filter is a combination of an integer addition and an exclusive-or, with nonlinearity
introduced by 4 copies of an 8-bit S-box (based on the 7th-power operation in F28

in SNOW1.0, and on the inverse operation in F28 in SNOW2.0).
Design of CryptMT comes from the two observations: (1) we may use a huge

state in a software, (2) we may use integer multiplication instead of S-box. We
shall discuss on these two.

2.1. Use a linear generator with huge (19937-bit) internal state space.
Many attacks depend on the size of the internal state, and become infeasible when
the size is large. Typical filter generators have 128–512 bits of internal state. How-
ever, we may use more memory in a software implementation. In addition, in many
platforms, the generation speed is even faster, when the internal state is larger (if
the number of operations to generate one word is independent of the size, such as
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in the case of MT), due to the cache memory and pipeline-processing. Thus, we
propose to use a large-state generator such as MT.

There is a trade-off between the memory size and security. Our claim is that,
there should be some needs for a cipher with astronomical resistance, at the cost of
625 words (2.5KB) of memory. We may also argue that a fast software implemen-
tation of AES consumes roughly four times memory than MT [1], due to a large
look-up table. The memory size of CryptMT seems not a big issue in a software.

2.2. Use of filter with memory, based on multiplication. A most conven-
tional design is a linear generator with memoryless filter. However, the (fast) al-
gebraic attacks are always threats to such generators, see for example an attack[6]
to Sfinks[2] (this attack seems not practical, but shows some potential weakness).
According to a claim in [6], such attacks show the necessity of big margins for the
security in such stream ciphers.

In a recent study [5], N. Courtois shows that some fast algebraic attack is also
applicable for filter with memory, but if the memory size is large (say, more than 4
bits) then it becomes infeasible. Thanks to the filter with 64-bit memory, SNOW2.0
seems safe at present.

A difference on the filter between CryptMT and SNOW2.0 is that CryptMT
utilizes multiplication in Z/232 to introduce non-linearity, whereas SNOW utilizes
four copies of one same S-box of 8-bit size, based on arithmetic operations in F28 .
In a fast implementation, SNOW uses a large size of look-up table (depending on
the implementations: 28 words to 216 words). However, recent studies [19][3] warn
about the possibility of cache-timing attacks for ciphers using a large look-up table.
CryptMT is safe with respect to this attack.

Moreover, recent trend shows that modern CPUs tend to have a faster multipli-
cation instruction, so the cost of the multiplication would probably become even
smaller in near future.

One may feel that the integer multiplication is simpler and hence vulnerable,
compared to S-boxes based on operations in the finite field. We feel converse: since
the mother generator is based on the finite fields over F2, operations not from such
finite fields would be preferable in the filter. A toy model of CryptMT shows high
algebraic degrees and nonlinearity for the multiplicative filter, which supports its
effectiveness. See §4.7 and §4.8.

3. Advantages of CryptMT

An advantage of CryptMT over other ciphers is that the key size and IV size are
variable and can be specified by the users, both up to 2048 bits (up to 64 words
of 32-bit integers), thanks to the 19937+32-1 bits of internal state (the memory of
the filter being odd, hence 32− 1).

Because of the progress of attacks (such as the new kind[12] of time-memory-
tradeoff attacks, which claims that every stream cipher has security level less than
its key length), it may perhaps become necessary to consider a larger key than 256
bits, in future. Even if that occurs, CryptMT can be used with no change.

Another advantage is that its period is 219937−1 (see Theorem A.1 for ≥ 219937−
1, and the appendix of [16] for the equality). This is in contrast to most generators
with non-linear recursion, which have the danger of short period cycles.
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4. Resistance to standard attacks

We shall use the letter ` to denote the size of the internal state of the mother
generator (` = 19937 for MT case), and w to denote the size of the memory in the
multiplicative filter (w = 32 for CryptMT).

4.1. Time-Memory-Tradeoff attacks. A naive time-memory-tradeoff attack con-
sumes the computation time of roughly the square root of the size of the state space,
which is O(

√
2`+w−1) = O(29984) for CryptMT.

The new class of time-memory-tradeoff attacks introduced in [12] is independent
of the state size, and depending only on the key size. It is applicable to any stream
ciphers. We will not discuss on the resistance of CryptMT against this attack here.
Still, we note that in CryptMT both the key size and the IV size are up to 2048
bits, which will allow the users to choose a security level against such attacks.

4.2. An abstract description of CryptMT. CryptMT can be considered as an
automaton with no inputs, with the state space F2

` × (Z/2w)×, where × denotes
the set of invertible elements. In the following analysis, it is convenient to fix a
model for generators using a filter with memory.

Definition 4.1. (Mother generator + filter with memory.) Let S be the state space
of the mother generator, h : S → S its state transition function, and o : S → X
its output function (X: output symbols). Let Y be the state space of the filtering
automaton, and

f : X × Y → Y

be the state transition function, where X is now considered as the set of input
symbols. The output function of the filtering automaton is g : Y → B, where B is
the output symbols of the filtering automaton.

The composed generator C is an automaton, with the state space S × Y , the
transition function

(s, y) 7→ (h(s), f(o(s), y)),

and the output function
(s, y) 7→ g(y) ∈ B.

4.3. A cheating argument on a modified generator. Before going into an
analysis on correlation attacks, we would like to prepare a cheating argument.

Fix an initial state s0 of the mother generator from now on. Consider an initial
state (s0, y0) of the composed generator. We assume that the transition function h
of the mother generator is bijective. Let P be its period (for the initial state s0).
After P times transitions, the state of the composed generator will be (s0, y

′
0) for

a unique y′0 ∈ Y determined by y0, which gives a mapping (for fixed s0)

φ : Y → Y, y0 7→ y′0.

We assume that the transition function of the filter f(x, y) is a bijection for any
fixed x, that is, for any x ∈ X,

f(x,−) : Y → Y, y 7→ f(x, y)

is bijective. These assumptions assure that the transition function of the composed
generator is bijective. Hence, φ : y0 7→ y′0 is bijective and Y is partitioned into
some orbits of φ. Suppose that there are k orbits. We choose representatives
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y0, y1, . . . , yk−1 from each orbit, and construct a new automaton C ′. The state
space and the output function are the same with C, and the state transition is

(s, y) 7→
{

(h(s), f(o(s), y)) if (h(s), f(o(s), y)) 6= (s0, yj) for any j
(s0, y(j+1 mod k)) if h(s) = s0 and f(o(s), y) = yj .

This transition is chosen to have a maximally long orbit, as follows. The outputs
of C and C ′ are identical before C returns to the initial state. Immediately before
C returns to the initial state, C ′ changes its state to the next orbit specified by
the representative y1, and works in the same way with C, until the state returns to
(s0, y1). Just one step before to reach to (s0, y1), C ′ changes the state to (s0, y2).
This assures the following.

Proposition 4.2. For any s ∈ S in the orbit of the mother generator started from
s0, and for any y ∈ Y , the state (s, y) occurs exactly once in the orbit of C ′ starting
from (s0, y0). The period of the state transition is P ×#(Y ).

Proof. By the construction of C ′ by patching the orbits, the period is P ×#(Y ).
Since this coincides with the number of possible (s, y), each of these must appear
in the orbit exactly once. ¤

Our cheating argument is

Assumption 4.3. If the period of the mother generator P is large enough, then
in practice our consumptions of the outputs of C can not reach to P . Hence, we
do not need to distinguish C and C ′. We assume that the statistical analysis on C ′

for full period will give a good approximation to that on C.

This last assumption may seem to be cheating, but this level of “dishonesty”
is hidden in many arguments, such as the statistical analysis on LFSRs [9], where
the distribution property and the correlation are computed under the assumption
that the full-period is used, but in reality a small fraction of the period is used.
In this regard, the identification of C and C ′ seems just as sinful as such standard
arguments. We use C ′ in the following statistical analysis, instead of C. Another
way to justify such an assumption is to choose y0 randomly at each synchronization.

4.4. n-dimensional distribution. A sequence of X with period P is said to be
n-dimensionally equidistributed with defect d and multiplicity M , if its outputs
x0, x1, . . . satisfy the following. Let

On := {(xi, xi+1, . . . , xi+n−1) | 0 ≤ i ≤ P − 1}
be the multi-set of the n-tuples for one period, counted with multiplicity. Then,

#((MXn) \On) = d

holds, where MXn denotes the multiset which contains every element of Xn with
multiplicity M , \ denotes the difference, and the cardinality is computed with
counting the multiplicity.

MT as a 32-bit integer generator has this property with n = 623, M = 2, and
d = 1, see [14]. The difference comes from the zero state.

Proposition 4.4. We keep the set-up of Definition 4.1. Assume that h is bijective,
that f is bijective at both variables, namely, f(−, y) : X → Y, x 7→ f(x, y) is
bijective for any fixed y, and so is f(x,−) : X → Y, y 7→ f(x, y) for any fixed x.
Assume that the output function g : Y → B is uniformly N to 1 (i.e. #(g−1(b)) =
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N for any b ∈ B). Take an initial state (s0, y0). Suppose that the mother generator
is n-dimensionally equidistributed with multiplicity M with defect d. Then, the
modified generator C ′ is (n + 1)-dimensionally equidistributed with defect d#(Y ).

Proof. We may replace S with the orbit starting from s0. Then, replace S with its
quotient set where two states are identified if the output sequences from them are
identical. Thus, we may assume #(S) = P .

Consider the n-tuple output function of the mother generator on : S → Xn,
which maps a state s to the consecutive n outputs from the state s. Then, the
equidistribution property is equivalent to

on(S) = MXn \D,

where D ⊂ Xn is a multiset of cardinality d corresponding to the defect. The
(n + 1)-tuple output function OC′ of the modified generator C ′ is the composite

OC′ : S × Y
on×idY→ Xn × Y

µ→ Y n+1 gn+1

→ Bn+1,

where the second map µ is given by

µ : ((xn, xn−1, . . . , x1), y1) 7→ (yn+1, yn, . . . , y1)

where yi’s are inductively defined by yi+1 := f(xi, yi) (i = 1, 2, . . . , n). The
assumption on f implies the bijectivity of µ. The third map is uniformly Nn+1 to
1. By taking the image of S × Y , we have

OC′(S × Y ) = Nn+1MBn+1 \ gn+1 ◦ µ(D × Y ),

which shows (n + 1)-dimensional equidistribution of the output of C ′ with defect
#(gn+1 ◦ µ(D × Y )) = d#(Y ). ¤

Corollary 4.5. The modified CryptMT in the sense of §4.3 is 624-dimensionally
equidistributed with defect 231.

Proof. MT is 623-dimensionally equidistributed with defect 1 [14]. This is true even
when the LSB of the output is set to 1. Now X is the set of 32-bit odd integers, and
Y = X. Then the multiplication X×Y → Y is bijective at the both variables. Thus
the assumptions in Proposition 4.4 are satisfied. The output function g : Y → F2

8

taking 8 MSBs is uniform. ¤

4.5. Correlation attacks and distinguish attacks.

Proposition 4.6. Let F be any real-valued function whose inputs are (less than or
equal to) (n+1) elements of B. Let EC′(F ) be the average value of F applied to the
consecutive (n + 1) outputs of the modified generator C ′ stated in Proposition 4.4
for a full period, where all conditions of the proposition are assumed. Then the
error term is bounded by

|EC′(F )− E(F )| ≤ 2d||F ||/(P + d),

where E(F ) is the expectation of F when the (n + 1) variables are independently
and uniformly randomly chosen from B, and ||F || is the maximum of the absolute
value of F .

Proof. By Proposition 4.4, C ′ is (n + 1)-dimensionally equidistributed with some
multiplicity N ′ and defect d#(Y ), that is

O′ := OC′(S × Y ) = (N ′Bn+1) \ T
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for #(T ) = d#(Y ), and hence #(N ′Bn+1) = #(S × Y ) + #(T ) = (P + d)#(Y ).
By definition

EC′(F ) =
∑

b∈O′
F (b)/#(O′), E(F ) =

∑

b∈N ′Bn+1

F (b)/#(N ′Bn+1).

Then we have

|EC′(F )− E(F )|

=
|#(N ′Bn+1)

∑
b∈O′ F (b)−#(O′)

∑
b∈N ′Bn+1 F (b)|

#(O′)#(N ′Bn+1)

≤ |#(T )
∑

b∈O′ F (b)−#(O′)
∑

b∈T F (b)|
#(O′)#(N ′Bn+1)

≤ #(T )
#(N ′Bn+1)

( |∑b∈O′ F (b)|
#(O′)

+
|∑b∈T F (b)|

#(T )

)
≤ 2d||F ||/(P + d).

¤

Corollary 4.7. We mean by a simple distinguishing attack of order N to choose
a function F (with up to N variables) and to detect the deviation of the values
of F applied to the consecutive N -outputs. Then, its deviation is bounded by
2d||F ||/(P + d), and hence we need O((P/d)2) samples to detect it statistically.

Corollary 4.8. The security level of CryptMT to such attacks for N ≤ 624 is
219937×2.

By this reason, it seems very difficult to apply a correlation attack to CryptMT.
One needs to observe the correlation of outputs with the lag more than 624. Because
of the high nonlinearity of the multiplicative filter discussed below, we guess this is
infeasible.

One might think that MT would be weak since its recurrence is sparse and we
can easily find many three-term relations between bits among the consecutive 624
words of MT. However, the digits of the dependent bits differ [14]. Suppose that
the output word-sequence (xj) satisfy a linear relation of type

xN+j =
N−1∑

i=0

aixi+j , (ai ∈ F2)

where each word is considered as a vector in F2
32. If the number of nonzero co-

efficients (including that of xN+j) is t, then we call the above relation as an N -th
order t-term linear word-relation. The smallest order linear word-relation is of order
19937 with 135 terms for MT (see [14]).

This invalidates improved correlation attacks such as the attack [18] to LILI-
128 or the attack to SNOW1.0 [11][8], both of which depend on a few-term linear
word-relation of the mother generator. In the former case, the attackers found a
four-term linear word-relation xi +xi+j1 +xi+j2 +xi+j3 = 0. In LILI-128, a filtering
Boolean function F without memory is used. An analysis in [18] showed that

Prob(F (xi) + F (xi+j1) + F (xi+j2) + F (xi+j3) = 0) ≥ 1
2

+
1

2(2w − 1)
,
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where w is the number of tapping positions from the mother generator to the filter
function. They gave a more exact value using the Walsh spectrum of F , and since
it is significantly greater than 1/2 a distinguishing attack is possible.

This attack is not feasible to CryptMT, at least as is, since the filter of CryptMT
has memory. Even if we consider a memoryless filter + MT, this attack is infeasible,
because even the fast algorithm [20] to find a four-term relation requires the runtime
complexity O(N log N) and memory complexity O(N), where N = 2`/3 = 26645.7

for MT.

4.6. Advantage of a Mersenne exponent extension, over LFSRs with co-
efficients in F232 . One weakness of SNOW1.0 utilized in the guess and determine
attack [11][8] is that its mother generator is a LFSR on F232 , with the recursion
polynomial being for an α ∈ F232

p(x) = x16 + x13 + x7 + α−1 ∈ F232 [x].

Since the 232-th power operation is the identity on F232 , we have a multiple of p(x)

p(x)2
32

= x16·232
+ x13·232

+ x7·232
+ α−1 ∈ F232 [x],

and by eliminating α−1 from these two equations, we obtain a linear relation be-
tween 6 words, with coefficients equal to 1.

In SNOW2.0, several improvements are introduced. One of them is to replace
p(x) with

π(x) = αx16 + x14 + α′x5 + 1
for an element α′ ∈ F232 (actually it is α−1). This would be practically enough,
but we can eliminate α, α′ from three equations

π(x) = 0, π(x)2
32

= 0, π(x)2
64

= 0.

The result is

det




x16 x5 x14 + 1
x16N x5N x14N + 1
x16N2

x5N2
x14N2

+ 1


 = 0,

having 24 terms (here N = 232). This would be useless to design an attack, but
still gives a slight negative flavor to the recursion.

Perhaps, to choose a linear recursion over a non-prime field (such as F232) may
be not a best idea. In the case of Mersenne Twister, the characteristic polynomial
of the state transition has degree 19937, which is a prime. Hence, no intermediate
field exists, and it seems impossible to apply the above trick.

Moreover, since 219937 − 1 is a prime number, it seems difficult to obtain any
information from decimation techniques.

4.7. A proposition on the algebraic degree of integer products. To dis-
cuss about algebraic attacks, we prepare a lemma on the algebraic degree. Let
f(c1, c2, . . . , cn) be a boolean function, i.e., ci’s are variables each of which assumes
0 or 1, and the value of f is 0 or 1. Then, f can be represented by an n-variable
polynomial function with coefficients in F2, namely as a function

f =
∑

T⊂{1,2,...,n}
aT cT

holds, where aT ∈ F2 and cT =
∏

t∈T ct. This representation is unique, and called
the algebraic normal form. Its degree is called the algebraic degree of f .
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The following lemma is well-known.

Lemma 4.9. It holds that aT =
∑

U⊂T f(U), where f(U) := f(c1, . . . , cn) with
ci = 0, 1 according to i /∈ U , ∈ U , respectively.

Definition 4.10. Let us define a boolean function ms,N of (s− 1)N variables, as
follows. Consider N of s-bit integer variables x1, . . . , xN . Let

cs−1,ics−2,i · · · c0,i

be the 2-adic representation of xi, hence cj,i = 0, 1. We fix c0,i = 1 for all i =
1, . . . , N , i.e. assuming xi odd. The boolean function ms,N has variables cj,i (j =
1, 2, . . . , s− 1, i = 1, 2, . . . , N), and whose value is the s-th digit (from the LSB) of
the 2-adic expansion of the product x1x2 · · ·xN as an integer.

Proposition 4.11. Assume that N, s ≥ 2. The algebraic degree of ms,N is bounded
from below by

min{2s−2, 2blog2 Nc}.
Proof. For s = 2, the claim is easy to check. We assume s ≥ 3.

Case 1. s − 2 ≤ log2 N . In this case, it suffices to prove that the algebraic
degree is at least 2s−2. Take a subset T of size 2s−2 from {1, 2, . . . , N}, say
T = {1, 2, . . . , 2s−2}. Then, we choose c1,1, c1,2, . . . , c1,2s−2 as the #T variables
“activated” in Lemma 4.9, and consequently, the coefficient of c1,1c1,2 · · · c1,2s−2 in
the algebraic normal form of ms,N is given by the sum in F2:

aT :=
∑

U⊂T

(s-th bit of x1 · · ·xn, where cj,i = 1 if and only if j = 1 and i ∈ U).

Note that c0,i = 1. It suffices to prove aT = 1. Now, each term in the right
summation is the s-th bit of the integer 3#U , so the right hand side equals to

2s−2∑
m=0

[(
2s−2

m

)
× the s-th bit of 3m

]
.

However, the well-known formula

(x + y)2
s−2 ≡ x2s−2

+ y2s−2
mod 2

implies that the binary coefficients are even except for the both end, so the sum-
mation is equal to the s-th bit of 32s−2

.
A well-known lemma says that if x ≡ 1 mod 2i and x 6≡ 1 mod 2i+1 for i ≥ 2,

then x2 ≡ 1 mod 2i+1 and x2 6≡ 1 mod 2i+2. By applying this lemma inductively,
we know that

32s−2
= (1 + 8)2

s−3 ≡ 1 mod 2s, 6≡ 1 mod 2s+1.

This means that s-th bit of 32s−2
is 1, and the proposition is proved.

Case 2. s − 2 > blog2(N)c. In this case, we put t := blog2(N)c + 2, and hence
s > t and 2t−2 ≤ N . We apply the above arguments for T = {1, 2, . . . , 2t−2}, but
this time instead of c1,i, we activate

{cs−t+2,i | i ∈ T}.
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The same argument as above reduces the non-vanishing of the coefficient of the
term cs−t+2,1 · · · cs−t+2,2t−2 to the non-vanishing of

2t−2∑
m=0

[(
2t−2

m

)
× the s-th bit of (1 + 2s−t+2)m

]
.

Again, only the both ends m = 0 and m = 2t−2 can survive, and the above
summation is the s-th bit of (1 + 2s−t+2)t−2. Since s − t + 2 ≥ 2, the lemma
mentioned above implies that

(1 + 2s−t+2)2
t−2 ≡ 1 mod 2s, 6≡ 1 mod 2s+1,

which implies that its s-th bit is 1. ¤

4.8. Simulation by toy models. Since the filter has a memory, it is not clear how
to define the algebraic degree or non-linearity of the filter. Instead, if we consider
all bits in the initial state as variables, then each bit of the outputs is a boolean
function of these variables, and algebraic degree and non-linearity are defined.

However, it seems difficult to compute them explicitly for CryptMT, because of
the size. So we made a toy model and obtained experimental results. Its mother
generator is a linear generator with 16-bit internal state, and generates a 16-bit
integer sequence defined by

xj+1 := (xj >> 1)⊕ ((xj&1) · a),

where >> 1 denotes the one-bit shift-right, (xj&1) denotes the LSB of xj , a =
1010001001111000 is a constant 16-bit integer, and (xj&1) · a denotes the product
of the scaler (xj&1) ∈ F2 and the vector a.

Then it is filtered by

yj+1 = (xj |1)× yj mod 216,

where (xj |1) denotes xj with LSB set to 1, as defined previously. We put y0 = 1,
and compute the algebraic degree of each of the 16 bits in the outputs y1 ∼ y16,
each regarded as a polynomial function with 16 variables being the bits in x0.
The result is listed in Table 1. The lower six bits of the table clearly show the
pattern 0, 1, 1, 2, 4, 8, which suggests that the lower bound 2s−2 for s ≥ 2 given in
Proposition 4.11 would be tight, when the iterations are many enough. On the
other hand, eighth bit and higher are “saturated” to the upper bound 16, after 12
generations.

We expect that the same will occur for the CryptMT case. So, if we consider
each bit of the internal state of MT as a variable, then the algebraic degree of the
8 MSBs of yi will be near to ` = 19937, after some steps of generations.

Also, we computed the non-linearity of the MSB of each yi (i = 1, 2, . . . , 8) of
this toy model. The result is listed in Table 2, and each value is near to 216−1. This
suggests that there would be no good linear approximation of CryptMT.

4.9. Algebraic attacks. Assume that the filter by multiplication is used for free
variable inputs. Then, as proved in Proposition 4.11, the algebraic degree of the
s-th bit increases at least up to 2s−2 in the long run. In the case of CryptMT, the
32nd to 24th bits are used, and their degrees would be 230 to 222, respectively. This
is huge when compared to the ordinary memoryless filters with limited number of
input-bits, say, 16.
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Table 1. Table of the algebraic degrees of output bits of a toy model.

y1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
y2 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 0
y3 15 15 14 13 12 11 10 9 8 6 4 3 2 1 1 0
y4 15 16 15 14 13 12 11 10 9 7 5 4 2 1 1 0
y5 16 16 15 15 14 13 12 11 10 7 5 4 2 1 1 0
y6 16 16 15 15 15 14 13 11 10 9 7 4 2 1 1 0
y7 16 15 16 16 15 15 14 13 12 9 7 4 2 1 1 0
y8 15 15 15 16 16 15 15 14 13 10 8 4 2 1 1 0
y9 16 15 16 15 15 16 15 15 13 10 8 4 2 1 1 0
y10 15 16 16 16 16 16 15 15 14 12 8 4 2 1 1 0
y11 15 16 16 15 15 15 16 15 15 12 8 4 2 1 1 0
y12 15 16 16 16 16 15 16 16 15 13 8 4 2 1 1 0
y13 16 15 15 15 15 15 16 15 16 13 8 4 2 1 1 0
y14 15 15 16 15 15 16 16 15 16 15 8 4 2 1 1 0
y15 15 16 16 16 15 16 16 16 15 14 8 4 2 1 1 0
y16 16 15 16 15 15 15 15 15 16 14 8 4 2 1 1 0

Table 2. The non-linearity of the MSB of each output of a toy model.

output y1 y2 y3 y4 y5 y6 y7 y8 y9

nonlinearity 0 32112 32204 32238 32201 32211 32208 32170 32235

By these arguments and from the above experiments with the toy-model, we
expect that the algebraic degree of the outputs of CryptMT with respect to the
bits of the initial state would be close to the upper bound ` = 19937 after sufficiently
many steps.

This is in contrast to a filter without memory, where the algebraic degree of each
output bit is bounded by the algebraic degree of the filter function since all output
bits of a linear mother generator have algebraic degree one. For example, Sfinks
stream cipher [2] has a memoryless filter of algebraic degree 15, but [6] utilized a
degree-reduction technique which reduces the algebraic degree to 7. Such reduction
seems very difficult for a filter with 31-bit memory.

4.10. Berlekamp-Massey attacks. The linear complexity (LC) of an F2-linear
generator with `-bits of the internal state with memoryless filter with algebraic
degree d is expected to be approximately

(
`
d

)
, and the Berlekamp-Massey attack

requires 2 · LC data and (LC)2 computational complexity. CryptMT has a filter
with memory, so such estimation can not be applied. A heuristic guess is that
d would be rather high if it is appropriately extended to the case of filter with
memory. The size ` = 19937 seems to make these attacks infeasible, too.

5. Conclusion

CryptMT has a huge period of 219937 − 1. Because of the size 19937+31 of the
internal state and the multiplicative filter with 31-bit memory and 8-bit output,
CryptMT puts two large margins for the security on both the mother generator
and the filter.
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By a tricky argument, we showed that the generated key stream can be regarded
to have negligible (in the order of 2−19937) correlation between the consecutive 624
outputs, so standard correlation attacks are very hard to apply.

We proved a proposition giving a lower bound of the algebraic degree of the mul-
tiplicative filter. The result, together with the experiments through a toy model,
shows the tendency that the algebraic degree of the outputs with respect to the
initial state of the mother generator increases after each step, until they become
saturated near the upper bound 19937. The toy-model also suggests that the non-
linearity with respect to the key and the initial value would be close to the upper
bound.

CryptMT admits variable key-size and IV-size, upto 2048 bits for each. We claim
that its security level is at least the minimum of the key size and the IV size.

Differently from the fast implementations of AES, CryptMT uses no look-up
tables, so it has resistance against cache-timing attacks. It is 1.5–2.0 times faster
than AES CTR mode with 256-bit security level (depending on the platform, if the
CPU is slow at multiplication, then it is slower than AES).

6. Tweaks

6.1. Resynchronization scheme. The present resynchronization scheme in [16]
is redundant and slow, since it was designed for a large scale Monte Carlo simulation
where the initialization speed is not so important. We propose a much faster
resynchronization scheme [17].

6.2. MT replaced with other generators. We reported a new version of MT
[10], pulmonary MT, with better bit-mixing property. We propose to replace MT
with this [17].

6.3. Change of the filter. The simple choice f(x, y) = x × y mod 232 and out-
putting the most significant 8 bits would have enough resistance against attacks,
but still the adversary can get some information. For example, if the 8 MSBs of yi

and yi+1 do not coincide, then we know that xi 6= 1. Similarly, we can know that
xi 6= 3, 5, . . . 255 nor their multiplicative inverses in Z/232, for some pairs of the 8
MSBs. Since the multiplication is associative, we can get similar information on
xixi+1 · · ·xi+j−1 from the 8 MSBs of yi and those of yi+j .

We may change f to address the above point. Theorem A.1 assure that the
period is no less than 219937 − 1, as far as f is bijective at the both variables.

Appendix A. A theorem on the period

Theorem A.1. Consider a combined generator C as in Definition 4.1. Assume that
the mother generator is purely periodic for an initial state s0 with period P = Qq
for a prime Q and an integer q, S is an orbit (by replacing S if necessary), and that
on : S → Xn mapping the state to the next n outputs of the mother generator is
surjective. Suppose that f is bijective at both variables as in Proposition 4.4. Let
y0, y1, . . . ∈ Y be the state transition of the filter of C. Let r be the ratio of the
size of the maximum inverse image of g : Y → B in Y , namely

r = max
b∈B

{#(g−1(b))}/#(Y ).

If
r−(n+1) > q(#(Y ))2,
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then the period of the output sequence g(y0), g(y1), . . . of C is a nonzero multiple
of Q.

Proof. We may assume that #(S) = P as in the proof of Proposition 4.4.
In this proof, we do not consider multi-sets. Consider the mappings

OC : S × Y
on×idY→ Xn × Y

µ→ Y n+1 gn+1

→ Bn+1

defined in the proof of Proposition 4.4. (The difference between C and C ′ does not
matter in this proof.) Since on is surjective and µ is bijective, the image I ⊂ Y n+1 of
S×{y0} by µ◦(on×idY ) has the cardinality #(X)n. By the assumption of the pure
periodicity of xi and the bijectivity of f , the output sequence g(yi) (i = 0, 1, 2, . . .)
is purely periodic. Let p be the period. Then, gn+1(I) ⊂ Bn+1 can have at most p
elements. Thus, by the assumption on g and the definition of r,

#(I) ≤ p(r#(Y ))n+1.

Since #(X)n = #(I) and #(X) = #(Y ), we have an inequality

r−(n+1) ≤ p#(Y ).

The period P ′ of the state transition of C is a multiple of P = Qq. Since the state
size of C is P ×#(Y ), P ′ = Qm holds for some m ≤ q#(Y ). Consequently, p is a
divisor of Qm. If p is not a multiple of Q, then p divides m and p ≤ q#(Y ). Thus
we have

r−(n+1) ≤ q#(Y )2,
contradicting to the assumption. ¤

Corollary A.2. Each bit of the output of CryptMT has period at least 219937− 1.
This is true even if we replace f with any function which is bijective at both
variables.

Proof. Let S be the set of the nonzero states. Let g : Y → B = F2 be the observed
bit of the state y of the filter. Then r = 1/2, and

2(623+1) > 1 · (#(Y ))2 = 262.

¤
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CRYPTMT VERSION 2.0: A LARGE STATE GENERATOR
WITH FASTER INITIALIZATION

MAKOTO MATSUMOTO, MUTSUO SAITO, TAKUJI NISHIMURA,
AND MARIKO HAGITA

Abstract. As a pseudorandom number generator (PRNG) for a stream ci-
pher, we propose a combination of (1) an F2-linear generator of a wordsize-
integer sequence with huge state space, and (2) a filter with one wordsize
memory, based on the accumulative integer multiplication and extracting some
most significant bits from the memory. We proposed CryptMT as an example.
Merits of this type of generators are (1) the strength against various attacks
assured by the huge state, (2) assurance on the period and the distribution,
and (3) high algebraic degree and nonlinearity obtained by the integer multi-
plication.

One problem of such configuration is the cost at the initialization required
to set the huge state. In this article, we introduce a method to avoid this cost
by means of a booting PRNG with small state space. We propose CryptMT
Ver.2.0 with this quick initialization. In addition, an improved F2-linear gen-
erator, Pulmonary Mersenne Twister, is used as the mother generator. The
result is: almost same speed in the stream generation, and 15 times faster in
the initial value setup than the original version of CryptMT.

1. Introduction

In this article, we discuss on pseudorandom number generators (PRNGs) for
stream ciphers. We denote by w the computer’s word size, and assume that w = 32
as the default value. We consider implementations in software only. Our proposal
is to combine a huge state generator M (called the mother generator) and a filter
based on integer-multiplication as follows.

(1) The mother generator M should have very long period and high dimen-
sional equidistribution property. Our proposal for M is an F2-linear gen-
erator with a huge (say more than 200 words of) state space. The outputs
x0, x1, x2, . . . of M is a w-bit integer sequence.

(2) Put these integers into a filter with one word-size memory. Let accum
(accumulator) be a w-bit integer variable. In the initialization, we set
accum to some initial value, as well as initializing M . Then, at the i-th
step, we assign

accum := f(accum, xi)
and output g(xi), where f is a function based on the integer multiplication
(modulo 2w), and g(xi) is to take some fixed bits of xi.

Date: January 23, 2006.
Key words and phrases. Cryptographic Mersenne Twister, CryptMT, Pulmonary Mersenne

Twister, stream cipher, booter.
CryptMT is proposed to eSTREAM Proposal http://www.ecrypt.eu.org/stream/. The first

author was supported in part by JSPS Grant-In-Aid #16204002.
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Figure 1. Combined generator = linear generator + filter with memory.

Figure 2. CryptMT Version 2.0: MT is replaced with Pulmonary
MT. The new initialization is not described here.

Pictorial description is in Figure 1. We call this configuration the combined
generator in this article. Note that this filter is nothing but a finite state automa-
ton. We proposed CryptMT [4][5] as an example, where the mother generator is
Mersenne Twister (MT) 32-bit integer generator [3] with 19937-bit internal state
with period 219937 − 1, and the filter is given by

(1) f(y, x) := y × (x|1) mod 232, g(y) := 8 MSBs of y

where (x|1) denotes x with LSB set to 1, and 8 MSBs mean the most significant
8 bits of w-bit integer y. CryptMT is proved to have period 219937 − 1 and to
be very strong to standard attacks in [5]. CryptMT has also assurance of the
high dimensional equidistribution property, namely, the consecutive 624 bytes are
uniformly equidistributed [5, Corollary 4.5, Proposition 4.6]. These are inherited
from the mother generator. Also, the high nonlinearity introduced by the integer
multiplication would imply high algebraic degree and high nonlinearity (a lower
bound on the algebraic degree of most significant bits of accumulated products
[5, Proposition 4.11], together with experiments by toy models [5, Tables 1 and
2], supports this). The security margin obtained by discarding 3/4 of each 32-bit
integer raises the hardness to break.

On the other hand, a demerit of such configurations is the high cost at the initial-
ization, necessary to fill the huge state space of the mother generator. In this article,

243



we propose a cheating solution to this problem, by using another random number
generator called a booter, which has smaller state space, until the initialization of
the mother generator is done.

We also introduce a new mother generator, Pulmonary Mersenne Twister (PMT),
for faster generation and improved linear dependencies from MT.

2. A fast initialization of a large state space

2.1. A cheating method: use a smaller generator for a while. Let X be
the set of w-bit integers. Let xi ∈ X (i = 0, 1, 2, . . .) be a sequence generated by a
recursion

xN+i := F (xN−1+i, xN−2+i, . . . , x1+i, xi),

for some F : XN → X. Suppose that this recursion is used as the mother generator,
and hence N is large (e.g. N = 624 for MT). A software implementation of such a
recursion is: to prepare an array of elements of X with size N , and to use pointers
and a cyclic array. It is inevitable to give x0, x1, . . . , xN−1 as the initial state, in
other words, to fill up the state array, before generation. Thus, we need to generate
N of pseudorandom numbers in the initialization.

However, if one wants to encrypt a much shorter message than N , then this
is not efficient. A possible solution is to use a PRNG with relatively small state
space (called the booter) which can be quickly initialized, and use it to generate
x0, x1, . . . , xN−1 from the key and the initial value (IV). If the message length is
smaller than N , then the mother generator is never used: only the booter is used for
the necessary times. This seems a little cheating. However, the difference is merely
to use x0, x1, . . . (the output of the booter for the first N steps) or xN , xN+1, . . .
(involving the mother generator). Also, the attacks to the booter is rather limited,
since at most N outputs are used. A large period is not necessary. Attacks based on
long outputs, such as time-memory-trade-off attacks or Berlekamp-Massey LFSR
synthesis attacks, are not applicable to the booter. On the other hand, the booter
must have resistance against the attacks designed for the block cipher, since the
role of the booter is to “encrypt” IV into a block of N wordsize integers by using
the key, without leaking any information on the key even for chosen IVs. This
situation is closer to the block ciphers than stream ciphers. A typical attack is the
differential attack with respect to the IV.

2.2. The key, IV, and the Booter. Here we consider the following situation.

(1) The algorithm is implemented in a software, where we have enough memory
and fast integer multiplication.

(2) The user gives the key in the array KEYARRAY of w-bit integers with
length KEYSIZE, and the IV in the array IVARRAY of w-bit integers with
length IVSIZE.

(3) The key setup does not occur frequently, so the speed does not matter.
(4) The IV setup occurs frequently, so the speed does matter.
(5) Every IV is known to and can be chosen by the adversary.

The booter’s role is to expand the key and IV to N wordsize integers. Since the
first outputs of the booter are used as the outputs of the combined generator after
filtered, the booter should have enough strength against chosen IV attacks. We
choose the following strategy.
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Figure 3. The PRNG for the booter

(1) Since the key setup stage is allowed to be slow, we expand the key to
two long extended keys, namely two arrays KEY1 and KEY2, by some
expanding function.

(2) The booter’s inputs are KEY1, KEY2 and IVARRAY. The state space of
the booter consists of one cyclic array (a shift register of words) of IVSIZE
integers, together with one wordsize memory called the accumulator.

(3) In the IV setup, we setup the state space of the booter, and the accumulator
of the filter. This is done by copying IVARRAY to the state array of
the booter, copying IVARRAY[1] to the accumulator with LSB set to 1,
and then by running the booter 2×IVSIZE times without outputting (for
idling), except for the IVSIZE-th output which is copied to accum, the
accumulator of the multiplicative filter, with LSB set to 1.

(4) When the encryption starts, the booter is called to generate one word.
The word is used to fill the first member of the state array of the mother
generator, as well as the input to the filter. This is iterated N times,
namely, until the state space of the mother generator is initialized.

(5) After N steps, the generation by the mother generator starts.
The PRNG used as the booter is described in Figure 3. Every line in the figure
denotes w=32-bit data. The bit-wise EOR is denoted by ⊕, the integer multiplica-
tion (summation) modulo 232 is denoted by × (+), respectively. The right bottom
x⊕ (̃ x>>16) means the following: x̃ denotes the bit-wise inversion of x, >> 16 is
the shift to the right by 16 bits. Thus, the formula denotes a function mapping x to
x⊕ (̃ x>>16), which is bijective because it is inverse to itself. The purpose of the
right-shift is to feedback the MSBs of the product, which gather the information of

245



Figure 4. The booter generating N words

all bits, to the LSBs, where the information of the higher bits would not be reflected
otherwise. The left-shift one-bit function (x << 1) below the accumulator in the
figure is to pick up the LSB of the middle tap. Without this, the information of
LSBs is not well circulated since the LSBs are neglected by the multiplier. The
state transition is chosen to be bijective.

The idea of the accumulator comes from the following observation. In a software
implementation, we need wordsize variables to compute intermediate results in the
computation of the recursion. Usually, the variables are reset by some part of the
shift register at every generation. However, we may use the variable as a part of
the state space, with paying little cost at the generation stage.

An actual implementation of the booter is pictorially described in Figure 4. It
has a shape similar to the Turing machine. The finite state automaton (FSA) at
the right-top in Figure 4, having three inputs and two outputs, is the right-bottom
box in Figure 3. The IV is copied to the top of the array at the left of Figure 4, and
KEY2 is copied below it, while KEY1 is input to the FSA one by one. The output
of Figure 3 is written in the same array. The FSA is moved one-step below for each
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Figure 5. Left: a standard LFSR. Right: a pulmonary LFSR

generation. The KEY2 is already copied to the array, so no need to input to FSA:
in the C-like notation, ^= suffices. At the IV setup, we run the booter 2×IVSIZE
times for discarding first outputs. Then, the booter’s output is used for the first
N steps of encryptions. This configuration automatically records the outputs of
the booter in the array. Thus, to initialize the mother generator, it suffices to copy
N words from the array to the state array of the mother generator (or, we may
put a pointer to the array, to use it as the state array of the mother generator.)
Because of the idling for 2×IVSIZE steps, it is necessary to prepare N +2×IVSIZE
of extended keys in each of KEY1 and KEY2.

The key extension is done by the same method. The same FSA in Figure 3 is
used, where the size of the shift register in Figure 3 is KEYSIZE. As for the two in-
puts, KEY2 is set to all zeroes and KEY1[j]:=j+IVSIZE−2, for j = 0, 1, . . .. In the
key setup, the KEYARRAY is copied to the shiftregister, and the KEYARRAY[1]
is copied to the accumulator of the booter with LSB set to 1. Then we generate and
discard the first 2×KEYSIZE outputs. Then we generate (N+2×IVSIZE) outputs
and copy to KEY1, and again generate (N+2×IVSIZE) outputs and copy to KEY2.

3. An improved mother generator PMT

In a typical filtered generator, the mother generator is chosen to be a linear
feedbacked shift register (LFSR) described in the left of Figure 5. Here each word
is regarded as a w-dimensional vector over F2, and the feedback is a linear function.
MT is one of these.

In [2], we introduced the pulmonary LFSR, described in the right half of Figure 5
(its name was Hearty Twister: we changed the name according to a suggestion by
Art Owen). The difference is the existence of one variable lung as a component in
the state space. This introduces a short length feedback, and improves the depen-
dency on the initial state. The name of “lung” comes from the blood circulating
systems of fish and Amphibia. Regard the linear function as the heart, and the
array as the body. Then, the standard LFSR has a single loop similarly to the fish,
and the pulmonary LFSR has two feedback loops similarly to the Amphibia.

Suppose that the feedback function is a sparse linear function. If the bits in the
array contain too many 0’s and only small number of 1’s, that is, the (Hamming)
weight of the array is too small, (like anoxia: 1’s are considered as oxygen), then
the tendency continues for long in the standard LFSR. The recovery is faster in the
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Figure 6. Pulmonary Mersenne Twister: Light Version

pulmonary LFSR because of the short cycle containing the lung, which recovers the
weight of the lung quickly.

The standard LFSR can be described by a single recursion of order N , but the
pulmonary LFSR requires two recursions. The example in Figure 5 is given by

ui+1 := F1(xi+M , xi, ui)
xi+N := F2(xi+M , xi, ui),

where xi denotes the content of the i-th member of the array and ui denotes the
content of the lung. We propose to use Pulmonary Mersenne Twister-Light-19937
(PMTL19937), whose recursion is given by

ui+1 := (xi<<b)⊕ xi+M ⊕ ui;
xi+N := xi ⊕Rc(ui+1),

where Rc(x) := x⊕ (x>>c) with parameters specified by N = 623, M = 609, b = 7
and c = 3. Pictorial description is in Figure 6.

We checked the following by using a computer and mathematical algorithms
based on the Berlekamp-Massey method and Lenstra’s lattice method. For the
detail, we plan to write a paper on PMT.

Proposition 3.1. PMTL19937 is an automaton with 19968 = 32 × 624 bits of
state space S, which consists of an array of 623 words and a 32-bit memory lung.

(1) The transition function h of PMTL19937 is an F2-linear bijection, whose
characteristic polynomial is factorized as

χh(t) = χ19937(t)× χ31(t),

where χ19937(t) is a primitive polynomial of degree 19937 and χ31(t) is a
polynomial of degree 31.

(2) The state S is uniquely decomposed into a direct sum of h-invariant sub-
spaces of degrees 19937 and 31

S = V19937 + V31,

where the characteristic polynomial of h restricted to V19937 is χ19937(t).
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(3) From any initial state s0 not contained in V31, the period P of the state
transition is a multiple of the 24th Mersenne Prime 219937 − 1, namely
P = (219937 − 1)q holds for some 1 ≤ q ≤ 231 − 1 (q may depend on s0).
The period of the output sequence is also P .

In this case, in addition, the sequence of the most significant 31 bits of
each output integer is 624-dimensionally equidistributed with defect q in
the sense of [5, §4.4] (one dimension larger than MT).

(4) There is a 32-dimensional constant vector v such that if the lung-part of
s0 coincides with v, then s0 /∈ V31. We set the lung to this value at the
initialization.

(5) χh(t) has 205 nonzero terms (which is larger than 135 of MT), and χ19937(t)
has 9945 nonzero terms.

There are a few more advantages of PMT over MT. Firstly, because of the
simplicity of the recursion, the generation speed is a little faster than MT. Secondly,
one can eliminate ui from the recursion to obtain

xi+N = xi + xi+1 + xi+N−1 + Rc(xi<<b) + Rcxi+M ,

which shows that there are 5-bit relations among consecutive 624 outputs of this
PMT (in the case of MT, there are 3-bit relations).

By the way, the above choice of the recursion is to keep the high speed, and is
not the best one from the viewpoint of random number generation for MonteCarlo
purpose. We will explain this in a forthcoming paper.

4. Resistance of CryptMTV2 to Standard Attacks

CryptMTV2.0 (CryptMT Version 2.0) is the above modified generator obtained
from CryptMT by changing the initialization and the mother generator. The crypt-
analysis developed in §4 in [5] for CryptMT is equally valid to CryptMTV2.0, which
we briefly recall.

Time-memory-trade-off attack. A naive time-memory-tradeoff attack consumes
the computation time of roughly the square root of the size of the state space, which
is O(

√
219968+31) = O(29999.5) for CryptMTV2.0.

Dimension of Equidistribution. As stated in Proposition 3.1, PMTL19937 sat-
isfies all conditions in §4.2–§4.3 of loc. cit., with period P = (219937− 1)q, n = 624-
dimensional equidistribution with defect d = q. Proposition 4.4 (loc. cit.) implies
that CryptMTV2.0 (more precisely, its indistinguishable modification stated in As-
sumption 4.3 there) is 625-dimensionally equidistributed with defect q · 231 < 262.

Correlation attacks and distinguishing attack. By Corollary 4.7 (loc. cit.),
if we consider a simple distinguishing attack to CryptMTV2.0 of order N ≤ 625,
then its security level is 219937×2, since P/d = 219937 − 1.

Correlation attacks based on a four-term relation is infeasible, since the com-
putational complexity to find such a relation is of order of O(N log N), where
N ≥ 219937/3 for CryptMTV2.0.
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Algebraic degree of the filter. Proposition 4.11 (loc. cit.) is about the mul-
tiplicative filter, so it is valid for CryptMTV2.0 as it is. This gives a supportive
evidence to that each bit of the output of CryptMTV2.0 would have high algebraic
degree, close to the upper bound coming from the number of variables. The exper-
imental results by the toy models stated in the next section also support this, so
algebraic attacks and Berlekamp-Massey attacks would be infeasible, by the same
reasons stated in §4.9 and §4.10 of loc. cit.

5. Simulation by toy models

We consider all bits in the initial state as variables, and then each bit of the out-
puts is a boolean function of these variables, so algebraic degree and non-linearity
are defined. However, they are hard to compute because of the size of the state
space. Similarly to §4.8 of loc. cit., we made a toy model and obtained experimen-
tal results. Since the mother generator of CryptMTV2.0 is a PMT, we made a toy
model of 16-bit state space, which generates a 16-bit integer sequence defined by

t := xj ⊕ (xj << 7)
xj+1 := t⊕ (t >> 3)

where t is a temporary 16-bit variable and xj is a 16-bit integer, and then it is
filtered by

yj+1 = (xj |1)× yj mod 216.

We put y0 = 1, and compute the algebraic degree of each of the 16 bits in the
outputs y1 ∼ y16, each regarded as a polynomial function with 16 variables being
the bits in x0. The result is listed in Table 1. The lower six bits of the table clearly
show the pattern 0, 1, 1, 2, 4, 8, whereas the eighth bit and higher are “saturated” to
the upper bound 16, after 8 generations, which is slightly better than 12 generations
for the toymodel of CryptMT, see Table 1, loc. cit.

We expect that the same will occur for CryptMTV2.0. So, if we consider each
bit of the internal state of MT as a variable, then the algebraic degree of the 8
MSBs of yi will be near to 19968, after some steps of generations.

Also, we computed the non-linearity of the MSB of each yi (i = 1, 2, . . . , 8) of
this toy model. The result is listed in Table 2, and each value is near to 216−1.
This suggests that there would be no good linear approximation of CryptMTV2.0,
similarly to CryptMT.

6. Differential attacks on IV and Key

So far, we do not argue on the attacks at the resynchronization. Since the first
623 outputs of CryptMTV2.0 is the filtered output of the booter, we need to discuss
on the resistance of the booter with multiplicative filter.

As a first step to the cryptanalysis of the booter, we conducted a statistical test
based on a naive differential attack. We set the extended keys KEY1 and KEY2
both to all zeroes. Then we consider the booter as functions Bn(IV), which maps
the IV to the n-th output of the booter initialized by that IV. We fix a 256-bit
(8-word) IV. Then, we compute

∆(IV, i) := Bn(IV ⊕ Ei)⊕Bn(IV)

for E1, . . . , E256 being the 256-dimensional unit vectors (i.e., of Hamming weight
one). The Hamming weight of ∆(IV, i) should conform to the binomial distribution
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Table 1. Table of the algebraic degrees of output bits of a toy model.

y1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
y2 15 15 15 14 13 12 10 8 7 6 4 3 2 1 1 0
y3 16 16 15 16 15 15 13 11 9 7 5 3 2 1 1 0
y4 15 16 16 15 15 15 15 13 12 9 6 4 2 1 1 0
y5 15 16 16 16 15 16 16 16 13 9 6 4 2 1 1 0
y6 16 15 15 15 16 15 15 16 15 11 7 4 2 1 1 0
y7 16 15 15 15 15 15 16 16 15 11 7 4 2 1 1 0
y8 16 16 16 15 16 16 15 15 16 12 8 4 2 1 1 0
y9 15 15 16 16 15 15 16 16 15 12 8 4 2 1 1 0
y10 16 15 15 16 15 15 15 16 16 12 8 4 2 1 1 0
y11 15 16 15 16 15 16 16 16 15 14 8 4 2 1 1 0
y12 15 15 16 15 16 15 16 15 16 13 8 4 2 1 1 0
y13 16 15 16 15 16 16 16 15 16 14 8 4 2 1 1 0
y14 15 16 16 15 16 15 15 16 15 15 8 4 2 1 1 0
y15 16 15 16 15 16 16 16 15 16 14 8 4 2 1 1 0
y16 16 15 15 16 15 16 15 16 15 16 8 4 2 1 1 0

Table 2. The non-linearity of the MSB of each output of a toy model.

output y1 y2 y3 y4 y5 y6 y7 y8 y9

nonlinearity 0 32118 32246 32206 32218 32165 32233 32103 32213

B(32, 1/2) for an ideal booter. We have 256 samples of the Hamming weights for
i = 1, 2, . . . , 256. We choose 1000 random samples of IV, and thus 256000 samples
of Hamming weights, for each 1 ≤ n ≤ 24. We separate 33 weights into 9 categories

{0...12}, {13}, {14}, {15}, {16}, {17}, {18}, {19}, {20...32}
and conduct χ2-tests. The corresponding p-values are listed in Table 3. We iterated
this five times. The p-values show that the first 9 outputs are deviated, but the 10th
and after seem to be O.K. In the initialization, the booter discards 2×IVSIZE=16
outputs, which seem to be enough.

7. Performance comparison

We used the performance testing tool from eSTREAM [1] to see the speed of
the IV setup with the platform Pentium-M 1.4GHz. The original version con-
sumes 31113 cycles for IV setup, while CryptMTV2.0 consumes 2145 cycles, namely,
speed-up by a factor of 15. Accordingly, the cycles per byte to encrypt 40 bytes is
reduced from 806 to 74. However, the key-setup time is increased from 34 cycles
to 22487 cycles. Also, the column STREAM (measuring the time for long stream
without IV setup) shows 2% slow-down compared to the original version. Probably
this is because the first block is ciphered by the booter, which is slower than PMT.

8. conclusion

We introduced a method to initialize a huge state space with little cost, by using
a booter, a smaller PRNG. This solves the slowness in the IV setup of the first
version of CryptMT. However, we need to test the resistance of the booter, too.
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Table 3. The p-values of the Hamming weight test of the n-th
output of the booter (0 suppressed).

Outputs 1st 2nd 3rd 4th 5th
B1 1. 1. 1. 1. 1.
B2 1. 1. 1. 1. 1.
B3 1. 1. 1. 1. 1.
B4 1. 1. 1. 1. 1.
B5 1. 1. 1. 1. 1.
B6 1. 1. 1. 1. 1.
B7 1. 1. 1. 1. 1.
B8 0.999858 1. 0.999884 0.99988 1.
B9 1. 1. 0.999968 1. 0.926248
B10 0.415646 0.10617 0.369702 0.810966 0.0591573
B11 0.349149 0.269581 0.546788 0.0783579 0.478834
B12 0.656057 0.904608 0.719275 0.709268 0.886417
B13 0.0636272 0.292971 0.439085 0.926816 0.354477
B14 0.994904 0.388312 0.688698 0.0523952 0.610518
B15 0.943661 0.457131 0.173981 0.34268 0.659302
B16 0.806287 0.313299 0.211509 0.495947 0.762681
B17 0.892633 0.514589 0.552164 0.0554408 0.3439
B18 0.44802 0.344326 0.578483 0.963813 0.665435
B19 0.441611 0.355715 0.0319679 0.216351 0.828746
B20 0.0219037 0.775335 0.445655 0.653318 0.330011
B21 0.0359443 0.86928 0.791367 0.238231 0.751933
B22 0.434032 0.119962 0.19941 0.013384 0.626764
B23 0.469654 0.113235 0.539935 0.482852 0.0602773
B24 0.739223 0.197051 0.917797 0.643172 0.8482

We experimented a simple differential attack on IV to the booter, and the result
was satisfactory. Actually, we may use any block cipher as the booter, as far as
they have enough strength, so we have plenty of choice.
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T-function based streamcipher TSC-4
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Abstract. In this article, we present a synchronous stream-cipher named
TSC-4, together with security analysis and implementation results. TSC-

4 is designed to be well suited for constrained hardware with an intended
security level of 80 bits. With 4× 4 s-boxes at its core, the design leaves
open the possibility for implementations of very low power consumption.
As an improvement of TSC-3, TSC-4 shows better resiliency against dis-
tinguishing attacks.

Keywords: TSC-4, T-function, single cycle, streamcipher, s-box, non-
linear filter

1 Introduction

Few years ago, Klimov and Shamir started developing the theory of T-functions[1–
3]. A T-function is a function acting on a collection of memory words, with a
weak one-wayness property. It started out as a tool for block ciphers, but is now
more of a building block for a stream cipher.

An important class of T-functions consists of those with single cycle property.
Any T-function with single cycle property is equivalent to a LFSR of maximum
length, and has potential to construct a very fast stream cipher. Unfortunately,
only a small family of single cycle T-functions are known for now.

In 2004, we presented a new class of single cycle T-function[4, 5]. Although
previous T-functions targeted software implementations, our T-function was de-
signed to be light and was well suited for constrained hardware. Also, we pro-
posed the stream cipher based on this T-function, TSC-1, TSC-2[5] and TSC-
3[6]. We used the T-function to resist against the powerful attacks which are
applied to the stream ciphers based on LFSR, such as algebraic attacks [10–12]
and correlation attacks[8, 9] and to be possible to work out the period. However,
Künzli et al. and Muller et al. described distinguishing and key recovery attacks
against TSC family[13, 14]. This attack was used that our T-function did not
offer a sufficient level of diffusion. In order to prevent distinguishing attacks, we
modified the cipher by carefully choosing an s-box and a nonlinear function in
it.

In this article, we present a synchronous stream-cipher named TSC-4 (T-
function based Stream-Cipher ver 4), together with security analysis and imple-
mentation results. The main environment of the cipher is targeted to constrained
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hardware with an intended security level of 80 bits. With 4 × 4 s-boxes at its
core, the design leaves open the possibility for implementations of very low power
consumption.

2 Cipher specification

In this section, we describe specifications of TSC-4, including the internal state,
the cipher body and state initialization. As seen in Fig. 1, TSC-4 is a filter
generator based on T-functions, whose internal state consists of two 128-bit
states of T-functions. After each update, an 8-bit output keystream is produced
from the states through a nonlinear filter.

2.1 Internal state of T-function

We denote a 128-bit state by

x = (xk)3k=0
,

where each word xk, k = 0, . . . , 3 has 32 bits in length. Let [x]i, i = 0, . . . , n − 1
denote the i-th bit of an n-bit word x. Then the word(vector) x will interchange-
ably represent an integer, if necessary, by the following equation:

x =

n−1
∑

i=0

[x]i2
i
. (1)

With the above notations, we can represent each internal state in a matrix
form as follows:

x =

















x3

x2

x1

x0

↑

LSB

↑

MSB

=

← LSB

← MSB

[x]i [x]0

















Here [x]i denotes the i-th column of state x.

2.2 Main body

TSC-4 takes an 80-bit length secret key K and an 80-bit length public initial-
ization vector IV . The structure of TSC-4 is illustrated in Fig. 1.
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Fig. 1. The structure of TSC-4

Parameters: Two parameters p1(x) and p2(y) are defined with a number of
temporary variables as follows:

π(x) = x0 ∧ x1 ∧ x2 ∧ x3,

o1(x) = π(x) ⊕ (π(x) + 0x51291089),

e(x) = (x0 + x1 + x2 + x3)¿1,

p1(x) = o1(x) ⊕ e(x),

π(y) = y0 ∧ y1 ∧ y2 ∧ y3,

o2(y) = π(y) ⊕ (π(y) + 0x12910895),

e(y) = (y0 + y1 + y2 + y3)¿1,

p2(y) = o2(y) ⊕ e(y),

(2)

where ∧, ⊕ and ¿ denote bitwise AND, bitwise XOR operation, and left shift of
32-bit words, respectively. The additions are done modulo 232 using the equation
(1). Note that oi, i = 1, 2 are odd parameters and e is an even parameter [5].

S-box application: We fix a 4 × 4 s-box S, defined in C-language style as
follows:

S[16] = {9,2,11,15,3,0,14,4,10,13,12,5,6,8,7,1}; (3)

Now T-functions Ti, i = 1, 2 on input states x, y are defined as follows:

[T1(x)]i =

{

S ([x]i) if [p1(x)]i = 1,

S
6([x]i) if [p1(x)]i = 0,

(4)
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[T2(y)]i =

{

S ([y]i) if [p2(y)]i = 1,

S
6([y]i) if [p2(y)]i = 0,

(5)

where the columns [x]i, [T1(x)]i, [y]i and [T2(y)]i are regarded as 4-bit integers
by the equation (1).

Nonlinear filter: The filter produces the actual output keystream from the
current internal states. We compute six 8-bit temporary variables (a0, · · · , a5)
as follows:

a0 = ((x3)À24 ∧ 0xff) + ((y1)À8 ∧ 0xff),

a1 = ((x0)À24 ∧ 0xff) + ((y2)À8 ∧ 0xff),

a2 = ((x2)À16 ∧ 0xff) + ((y3)À16 ∧ 0xff), (6)

a3 = ((x1)À16 ∧ 0xff) + ((y0)À16 ∧ 0xff),

a4 = ((x3)À8 ∧ 0xff) + ((y2)À24 ∧ 0xff),

a5 = ((x0)À8 ∧ 0xff) + ((y1)À24 ∧ 0xff),

where the additions are done modulo 28. Now the 8-bit keystream z is defined
to be

z = a0 ⊕ (a1)≫5 ⊕ (a2)≫2 ⊕ (a3)≫5 ⊕ (a4)≫6 ⊕ (a5)≫2, (7)

where ≫ denote rotation to the right.

2.3 State initialization

We now describe how the state is initialized from a given key and an IV. The
internal state consists of 8 words as seen in Fig. 2.

x =

















x3

x2

x1

x0

y =

















y3

y2

y1

y0

Fig. 2. Internal state of TSC-4
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Key/IV Loading: Let K = (k79, k78, · · · , k1, k0) and IV = (iv79, iv78, · · · , iv1,

iv0) be an 80-bit key and an 80-bit IV, respectively. Then the internal state is
initialized as follows:

1. x0 = (k31, k30, · · · , k1, k0)
2. x1 = (k63, k62, · · · , k33, k32)
3. x2 = (iv31, iv30, · · · , iv1, iv0)
4. x3 = (iv63, iv62, · · · , iv33, iv32)
5. y0 = (iv15, · · · , iv0, iv79, · · · , iv64)
6. y1 = (iv47, iv46, · · · , iv17, iv16)
7. y2 = (k15, · · · , k0, k79, · · · , k64)
8. y3 = (k47, k46, · · · , k17, k16)

Warm-up: Once the internal state is initialized, the K and IV are mixed by
the following process.

1. Run cipher body once to produce a single 8-bit output.
2. Rotate x1 and y0 to the left by 8 bits.
3. XOR the output to the least significant 8 bits of x1 and y0.

The key and IV setup is completed by repeating the above three steps by eight
times.

3 Security

TSC-4 is intended for 80-bit security. For the moment, the best attack on TSC-4

we know of is the brute force attack of complexity 280.

3.1 Statistical tests

We have done tests similar to the ones presented in [7] and have verified that
this proposal gives good statistical results.

3.2 Period

The period of TSC-4 is 2128. To see this, we already know that the period of each
T-function is 2128, as guaranteed by the single cycle property [5]. So, first note
that the period of TSC-4 has to be a divisor of 2128. Now, initialize two register
contents with the all zero state and consider what each content of the registers
would be after 2124 iterated applications of the T-function. Since the period of
each T-function restricted to the lower 31 columns is 2124, all columns except
the most significant column should be zero. Now we can show that there exists
a nonzero bit in the output 8-bit keystream, since the most significant columns
determine the i-th output bit for i=1, 2, 5, 7. Furthermore, when observed every
2124 iterations apart, due to description (4) and (5) and the definition of an odd
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parameter, the change of the most significant columns follow some fixed odd
power of the S-box, which is of cycle length 16. Explicit calculation of the 16
keystream output words for each odd power of the s-box confirms that, in all
odd power cases, one has to go through all 16 points before reaching the starting
point. Hence the period of the cipher is 16 · 2124 = 2128.

3.3 Correlation attack

Difficulty of correlation attacks can also be obtained from the rotations in the
filter. In the last step of a correlation attack, one needs to guess a part of the
state and compare calculated outputs with the actual keystream, checking for
the occurrence of expected correlation.

In our situation, any correlation found to exist with a single output bit will
involve multiple input bits. Hence correlation attacks do not seem to be appli-
cable.

3.4 Algebraic attack

In many cases, algebraic attacks are possible on stream ciphers built on LFSRs.
Once a single equation connecting the internal state to the output keystream is
worked out, the cipher logic can be run forward to produce more such equations.
During this process, the linear property of LFSRs keep the degree of new equa-
tions equal to the first equation. And this is the main reason for the success of
algebraic attacks on streamciphers.

In the case of TSC-4, the source of randomness, i.e., the T-function, is already
nonlinear. During the action of T-functions T1 and T2 on internal states x and
y, the degree of new equation increase in the degree of a previous equation.
Hence algebraic attacks do not seem to be applicable.

3.5 Guess-then-determine attack

One property of T-functions, that could be bad from the viewpoint of security,
is that it can be restricted to any number of its lower columns. In other words a
part of internal state of T-function can be guessed and run forward indefinitely,
opening up the possibility of a guess-then-determine attack.

The rotations used in the filter eliminates this weakness. They have been
chosen so that any single output bit receives direct effect of more twelve bits
that are spread widely apart within two states. So it is not possible to calculate
any output bit with the information of any small number of internal states.

Even if all modular additions in the filter were replaced with XORs, in order to
calculate any one of the 8 output bits continuously, one would need to guess 96
bits (8×12 bits), so no meaningful attack can be achieved through this approach.

259



3.6 Distinguishing attack

Bit-flip probability: We have chosen the s-box (3) to satisfy the following
conditions.

1. At the application of S, each of the four bits has bit-flip probability of 1

2
.

2. The same is true for S
6.

More precisely, the first condition states that

#{ 0 ≤ t < 16 | the k-th bit of t ⊕ S(t) is 1} = 8,

for each k = 0, 1, 2, 3. Due to this property, regardless of the behavior of the odd
parameters p1(x) and p2(y), every bit in the state is guaranteed to have bit-flip
probability 1

2
at the action of T.

Bit-flip bias of multiple applications of T-function: There are strong dis-
tinguishing attacks[13, 14] applicable to previous versions[5, 6] of this cipher. The
main observation used in the attack is that even though the bit-flip probability
of T-function is close to 1

2
, this is not true for its multiple applications. This

property is still present in the current design. However, TSC-4 is designed to be
resistant to the distinguishing attacks by taking the following cases into account:

Case 1 The strongest bit-flip bias between the same bit position for multiple
applications. The algorithms TSC-1 and TSC-2[5] are analyzed using this
property[13, 14]. In this case, we deal with the bias of [z]ti ⊕ [z]t+δ

i , where δ

is the number of iterations of T-function.
Case 2 The strongest bit-flip bias between the distinct bit position in the same

column for multiple applications. The algorithm TSC-3[6] is analyzed using
this property[14]. In this case, we deal with the bias of [z]ti ⊕ [z]t+δ

j , i 6= j.
Case 3 The strongest bit-flip bias between the linear relations of the same bits

for multiple applications. This property is considered in this paper. In this
case, we deal with the bias of [z]ti ⊕ [z]tj ⊕ [z]t+δ

j ⊕ [z]t+δ
j , i 6= j.

Table 1. Bit-flip bias of [xk]t
i

= [xk]t+δ

i
(1 ≤ δ ≤ 15)

δ 1 2 3 4 5 6 7 8

| log2ε| ∞ ∞ 5 6 7 6 ∞ 8.42

δ 9 10 11 12 13 14 15 · · ·

| log2ε| 9.42 7.42 13 9.91 6.25 7.94 10.71 · · ·

First of all, we could obtain the property that a bit-flip bias between the
same bit positions for δ (1 ≤ δ ≤ 1000) iterations of T-function is less than 2−5

through the experiments (Fig. 3). The pattern of the plot in Fig. 3 suggests that
the property holds for δ > 1000 iterations. Table 1 shows the exact bit-flip bias
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Fig. 3. Bit-flip bias of [xk]t
i

= [xk]t+δ

i
(1 ≤ δ ≤ 1000)

“ε”1 between the same bit positions after δ (1 ≤ δ ≤ 15) times iteration, where
xt+δ denote Tδ(xt). By using the nonlinear filter, we can obtain a linear relation
of the output filter like this (i = 0, · · · , 7):

[z]ti ⊕ [z]t+δ
i = ([a0]

t
i ⊕ [a0]

t+δ
i ) ⊕ ([a1]

t
i+5( mod 8)

⊕ [a1]
t+δ
i+5( mod 8)

)

⊕ ([a2]
t
i+2( mod 8)

⊕ [a2]
t+δ
i+2( mod 8)

) ⊕ ([a3]
t
i+5( mod 8)

⊕ [a3]
t+δ
i+5( mod 8)

)

⊕ ([a4]
t
i+6( mod 8)

⊕ [a4]
t+δ
i+6( mod 8)

) ⊕ ([a5]
t
i+2( mod 8)

⊕ [a5]
t+δ
i+2( mod 8)

).

In this relation, each [ak]ti ⊕ [ak]t+δ
i (k = 0, · · · , 5) is approximated as a linear

relation like this:

[a0]
t
i ⊕ [a0]

t+δ
i = [x3]

t
i+24

⊕ [x3]
t+δ
i+24

⊕ [y1]
t
i+8

⊕ [y1]
t+δ
i+8

⊕ R0(i),

[a1]
t
i+5( mod 8)

⊕ [a1]
t+δ
i+5( mod 8)

= [x0]
t
i+24

⊕ [x0]
t+δ
i+24

⊕ [y2]
t
i+8

⊕ [y2]
t+δ
i+8

⊕ R1(i),

[a2]
t
i+2( mod 8)

⊕ [a2]
t+δ
i+2( mod 8)

= [x2]
t
i+16

⊕ [x2]
t+δ
i+16

⊕ [y3]
t
i+16

⊕ [y3]
t+δ
i+16

⊕ R2(i),

[a3]
t
i+5( mod 8)

⊕ [a3]
t+δ
i+5( mod 8)

= [x1]
t
i+16

⊕ [x1]
t+δ
i+16

⊕ [y0]
t
i+16

⊕ [y0]
t+δ
i+16

⊕ R3(i),

[a4]
t
i+6( mod 8)

⊕ [a4]
t+δ
i+6( mod 8)

= [x3]
t
i+8

⊕ [x3]
t+δ
i+8

⊕ [y2]
t
i+24

⊕ [y2]
t+δ
i+24

⊕ R4(i),

[a5]
t
i+2( mod 8)

⊕ [a5]
t+δ
i+2( mod 8)

= [x0]
t
i+8

⊕ [x0]
t+δ
i+8

⊕ [y1]
t
i+24

⊕ [y1]
t+δ
i+24

⊕ R5(i),

where Rk(i) (k = 0, · · · , 5) represents the carry bit. By using the above linear
approximation, we have a plausible argument that show the bit-flip bias of filter
output to be much less than 2−49(= 2−1

× (2−4)12). The bit-flip bias is approx-
imated using the Piling-up Lemma in case of δ = 3. In order to detect this bias,
data size of more than 298 is needed.

1 If ε = 0 then we represent | log2ε| as “∞”
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Table 2. Bit-flip bias of [xk]t
i

= [xk
′ ]t+δ

i
(| log2ε|)

case δ = 1
PPPPPPPinput

output
[x0]

t+1

i
[x1]

t+1

i
[x2]

t+1

i
[x3]

t+1

i

[x0]
t

i
∞ 4 4 ∞

[x1]
t

i
3 ∞ ∞ 4

[x2]
t

i
∞ 3 ∞ 4

[x3]
t

i
4 ∞ 3 ∞

case δ = 2
PPPPPPPinput

output
[x0]

t+2

i
[x2]

t+2

i
[x2]

t+2

i
[x3]

t+2

i

[x0]
t

i
∞ ∞ ∞ ∞

[x1]
t

i
∞ ∞ ∞ ∞

[x2]
t

i
∞ ∞ ∞ ∞

[x3]
t

i
∞ ∞ ∞ ∞

case δ = 3
PPPPPPPinput

output
[x0]

t+3

i
[x1]

t+3

i
[x2]

t+3

i
[x3]

t+3

i

[x0]
t

i
5 ∞ 5 5

[x1]
t

i
∞ 5 6 5

[x2]
t

i
5 6 5 ∞

[x3]
t

i
5 5 ∞ 5

case δ = 4
PPPPPPPinput

output
[x0]

t+4

i
[x1]

t+4

i
[x2]

t+4

i
[x3]

t+4

i

[x0]
t

i
6 5 4 ∞

[x1]
t

i
6 6 ∞ 4

[x2]
t

i
∞ 5 6 5

[x3]
t

i
4 ∞ 6 6

case δ = 5
PPPPPPPinput

output
[x0]

t+5

i
[x1]

t+5

i
[x2]

t+5

i
[x3]

t+5

i

[x0]
t

i
7 4.6 5.4 8

[x1]
t

i
5.6 7 6.8 5.4

[x2]
t

i
8 6.5 7 4.6

[x3]
t

i
5.4 8 6 7
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The second, we observe a certain pair of distinct bit positions in the same
column yields a bit-flip bias worse than any bias between the same bit positions,
as seen in Table 2. These pairs with this property are like this:

The pair (x0, x1): The bit-flip bias of [x0]
t
i = [x1]

t+1

i is 2−4 and the bit-flip
bias of [x1]

t
i = [x0]

t+1

i is 2−3.
The pair (x2, x3): The bit-flip bias of [x2]

t
i = [x3]

t+1

i is 2−4 and the bit-flip
bias of [x3]

t
i = [x2]

t+1

i is 2−3.
The other pair: At least one case of the bit-flip bias is “0”. For example, the

bit-flip bias of [x0]
t
i = [x3]

t+1

i is “0”, the bit-flip bias of [x3]
t
i = [x0]

t+1

i is
2−4.

By using the property, we remove the nonlinear filter from relation of the pair
(x0, x1), (x2, x3). The nonlinear filter of TSC-4 is carefully chosen such that its
linear approximation contains the minimum number of pairs whose bit-flip bias
is less than 2−5.

Finally, we check the bit-flip bias between the linear relations of the same
bits for multiple applications. Those linear relations are as follows:

1. [x0]
t
i ⊕ [x1]

t
i = [x0]

t+δ
i ⊕ [x1]

t+δ
i , [x2]

t
i ⊕ [x3]

t
i = [x2]

t+δ
i ⊕ [x3]

t+δ
i .

2. [x0]
t
i ⊕ [x2]

t
i = [x0]

t+δ
i ⊕ [x2]

t+δ
i , [x1]

t
i ⊕ [x3]

t
i = [x1]

t+δ
i ⊕ [x3]

t+δ
i .

3. [x0]
t
i ⊕ [x3]

t
i = [x0]

t+δ
i ⊕ [x3]

t+δ
i , [x1]

t
i ⊕ [x2]

t
i = [x1]

t+δ
i ⊕ [x2]

t+δ
i .

Since the first relation is removed in the nonlinear filter, we consider other two
relations. Table 3 shows the bit-flip biases for each case.

Table 3. Bit-flip bias of [xk]t
i
⊕ [xk

′ ]t
i

= [xk]t+δ

i
⊕ [xk

′ ]t+δ

i
(| log2ε|)

δ (k, k′) = (0, 2) (k, k′) = (1, 3) (k, k′) = (0, 3) (k, k′) = (1, 2)

1 2.4150 2.4150 2.4150 ∞
2 ∞ ∞ ∞ 3.0000
3 ∞ ∞ ∞ 3.4150
4 ∞ ∞ ∞ 2.6781
5 3.7521 3.7521 3.7521 5.6781

6 3.4150 3.4150 3.4150 2.1926

7 4.9556 4.9556 4.9556 2.6163
8 4.3561 4.3561 4.3561 4.3561
9 8.5406 8.5406 8.5406 2.9860
10 9.4150 9.4150 9.4150 3.0170

11 4.8707 4.8707 4.8707 3.8401
12 7.2996 7.2996 7.2996 3.1703
13 3.7527 3.7527 3.7527 2.3618
14 5.3276 5.3276 5.3276 4.9125
15 5.7574 5.7574 5.7574 3.3714

16 8.3927 8.3927 8.3927 3.0438
...

...
...

...
...
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Combining the two relation (k, k
′) = (0, 2) and (k, k

′) = (1, 3) in δ = 1, we
get the maximum bit-flip bias of this relation as 2−3.83(= 2−1

× (2−1.415)2).
Similarly, In case of (k, k

′) = (0, 3) and (k, k
′) = (1, 2), the maximum bit-flip

bias is 2−4.6076(= 2−1
× 2−2.415

× 2−1.1926) in δ = 6. So, we use the relation of
the pair (x0, x3), (x1, x2) in the nonlinear filter.

Therefore, we can assume that the distinguishing attack is not applicable to
the algorithm TSC-4.

3.7 Time-memory trade-off

We analyze the security of TSC-4 against time-memory-data(TMD) tradeoffs
presented in [18, 19]. Then, it guarantees the security against two well-known
TMD tradeoffs [15–17].

Simple case[18]: Since TSC-4 takes 80-bit key with 80-bit IV, Search space
of an attacker is the entropy space of size N = 2k(k = 160). The cost of TMD
attacks is O(2k/2). So, TMD attacks are expected to have complexity not lower
than O(280).

Sampling case[19]: Since TSC-4 takes 256-bit internal state and we can find
the set of all 256-bit keystream segments which starts with 8 zeros, search space
of an attacker is the entropy space of size N = 2k(k = 248). The cost of TMD
attacks is O(2k/2). So, TMD attacks are expected to have complexity not lower
than O(2124).

3.8 State initialization

We consider security issues related to key setup in this section. Our state retains
160-bit entropy after state initialization.

Entropy loss: Let us consider the question of whether our state initializa-
tion process allows every possible 160-bit state to occur with equal possibility.
This question is closely related to whether each step of the rekeying process is
invertible. Checking all the steps of Key/IV Loading and warm-up presented
in Section 2.3, we can see that all step is invertible. So, the states produced
through our state initialization process has exactly 160-bit entropy. Therefore
no equivalent keys are present.

Statistical property: For a good state initialization process, we would expect
one bit difference in key or IV to result in about half the state bits changing.
We did some basic experiments to verify this on our warm-up process.
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4 Implementation

4.1 Hardware Implementation

TSC-4 consists of two T-functions and a nonlinear filter. In hardware implemen-
tation, critical path is an even parameter of a T-function, and 4 × 4 s-boxes
are components which requires large area. In updating internal states, s-box is
applied to all 64 columns.

In normal hardware design, one implement 64 s-boxes to maximize the through-
put. On the other hand, we can reduce the area by implementing one s-box for
each T-function, or by implementing one T-function instead of two.

Let Type A, Type B, Type C denote normal implementation, implementation
with one s-box for each T-function, implementation with one T-function and one
s-box respectively.

In Table 4 we summarize hardware figures when the implementation was
simulated on ASIC using Samsung 0.13µm library.

Table 4. Hardware related figures for TSC-4

Type State Gate Count Max. Clock Throughput/Power drain
Initialization /Throughput (100KHz clock)

A X 10510 100MHz/800Mbps 800kbps/11.86µW

A O 11878 100MHz/800Mbps 800kbps/12.78µW

B X 3100 250MHz/62.5Mbps 25kbps/4.65µW

B O 4027 198MHz/49.5Mbps 25kbps/5.52µW

C X 3026 230MHz/28.75Mbps 12.5kbps/4.51µW

C O 3958 198MHz/24.75Mbps 12.5kbps/5.50µW

4.2 Software Implementation

Our C-language implementation (not optimized) of TSC-4 shows the following
performance.

machine Pentium-IV 2.4GHz, 1GB RAM
OS Windows XP (SP1)
compiler Microsoft Visual C++ 6.0
encryption 150 cycles/byte

5 Conclusion

A synchronous streamcipher TSC-4 of 80-bit intended security level was pre-
sented with some security analysis and hardware related figures. As a result,
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we failed to find an attack which is better than exhaust key search. The cipher
is suitable for constrained hardware environments, allowing for a wide range of
implementation choices.
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Update on F-FCSR Stream Cipher

F. Arnault∗, T.P. Berger∗ and C. Lauradoux†

Abstract

The F-FCSR family of algorithms have been presented about one year ago with [2] and [1].
While some flaws where found in the initial propositions (on the IV-setup procedure, and a
TMD tradeoff attack), there are yet no known weaknesses of the core of these algorithms.

We sum up here some of the properties of the automaton that are better understood now,
and that have been presented in [2], [3], [4], and [6] and we propose two revised algorithms
correcting all known weaknesses.

1 Recalls on F-FCSR

1.1 FCSR automaton

Detailed descriptions can be found in [3, 1, 2].
A Feedback with Carry Shift Register (FCSR) is an automaton which computes the binary

expansion of a 2-adic number p/q, where p and q are some integers, with q is odd. We will
assume that q < 0 < p < |q|. The size n of the FCSR is such that n + 1 is the bitlength of |q|.

In our applications, p depends on the secret key (and the IV), and q is a public parameter.
The choice of q induces many properties of the keystream. The most important one is that it
completely determines the length of the period of the keystream. The conditions for an optimal
choice are:

Conditions 1

• q is a (negative) prime of bitsize n + 1.

• The order of 2 modulo q is |q| − 1.

• T = (|q| − 1)/2 is also prime.

• Set d = (1 + |q|)/2. The Hamming weight W (d) of the binary expansion of d is not too
small. Typically, W (d) > n/2.

1.1.1 Software description of the transition function

The FCSR automaton contains two registers (sets of cells): the main register M and the carries
register C.

The main register M contains n cells. We denote mi (0 ≤ i ≤ n − 1) the binary digits
contained in these cells and we call the integer m =

∑n−1
i=0 mi2i the content (or state) of M .

∗XLIM, Université de Limoges, 123 avenue A. Thomas, 87060 Limoges CEDEX, France
Email : arnault@unilim.fr thierry.berger@unilim.fr

†INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
Email : cedric.lauradoux@inria.fr
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Let d be the positive integer d = (1 − q)/2 and d =
∑n−1

i=0 di2i its binary expansion. The
carries register contains ` cells where ` + 1 is the number of nonzero di digits. More precisely,
the carries register contains one cell for each nonzero di with 0 ≤ i ≤ n − 2. We denote ci the
binary digit contained in this cell. We also put ci = 0 when di = 0 or when i = n − 1. We
call the integer c =

∑n−2
i=0 ci2i the content (or state) of C. The Hamming weight of the binary

expansion of c is at most `.
The transition function can be described by

m(t + 1) := (m(t)÷ 2)⊕ c(t)⊕m0(t)d

c(t + 1) := (m(t)÷ 2)⊗ c(t)⊕ c(t)⊗m0(t)d⊕m0(t)d⊗ (m(t)÷ 2)

where ⊕ denotes bitwise XOR, ⊗ denotes bitwise AND, and ÷2 is a just a shift to the right.
Note that m0(t) is the least significant bit of m(t). The integers m(t), c(t) and d are integers

of bitsize n (or less).

1.1.2 Hardware description of the transition function

With the same notations, the hardware description of the FCSR generator is

pn−1 - pn−2 - p1 - p0 --

6
dp

6
dp6

6
dp6

6
dp6-dn−1 -dn−2 -d1 -d0

where the symbol � denotes the addition with carry, i.e., it corresponds to the following scheme:

��

HH
-a
-b
-ci−1

- s=a⊕b⊕ci−1

ci=ab⊕aci−1⊕bci−1

�

As an example, if q = −347, so d = 174 = 0xAE, n = 8 and ` = 4, we obtain the following
diagram:

m(t) m7 m6 m5 m4 m3 m2 m1 m0- - - - - - - --
6 6 6 6

c(t) 0 0 c5 0 c3 c2 c1 0

? ? ? ?

6 6 6 6

d 1 0 1 0 1 1 1 0

268



1.2 Filtering

We extract each pseudorandom bit from the state of the main register of the FCSR automaton
using a filter. This filter describes which cells are selected to produce the pseudorandom bit.
In order to obtain a multi-bit output, eight or sixteen one bit subfilters are used to extract an
output 8 or 16 bits word after each transition of the automaton.

1.2.1 Principle of one bit filtering

The filter F is a bitstring (f0, . . . , fn−1) of length n (or equivalently the integer
∑n−1

i=0 fi2i). The
output bit is obtained by computing the weight parity of the bitwise AND of the state M of the
main register and of the filter F :

Output bit :=
n−1⊕
i=0

fimi.

Or, equivalently: S = M ⊗ F Output bit := parity(S)

1.2.2 Word filtering

In a similar way, we propose a method to extract an s bits word from the state of the FCSR.
The value of s will be 8 for F-FCSR-H, and 16 for F-FCSR-16.

The filter F is also a bitstring (f0, . . . , fn−1) of length n (which is a multiple of s). It splits
into s subfilters F0, . . . , Fs−1 each defined by

Fj =
n/s−1∑
i=0

fsi+j2i.

Each subfilter Fj selects some cells mi in the main register among the ones satisfying i ≡ j
modulo s. The parity of the binary word obtained gives one pseudorandom bit :

bit j of output word :=
n/s−1⊕
i=0

fsi+jmsi+j .

As there are s subfilters, we get s bits at each transition of the automaton.
This procedure can be described equivalently as follows. The filter F and the state of M are

combined with the AND function. The result is split into n/s words. The pseudorandom word
is obtained by XORing these n/s words:

S := M ⊗ F
Define Si by S =

∑n/s−1
i=0 Si · 2si, with 0 ≤ Si ≤ 2s − 1

Output word :=
⊕n/s−1

i=0 Si.

Note that it is faster to extract a whole word than a single bit.

2 Known issues on F-FCSR

2.1 Structure of the cycles of an FCSR automaton

Consider the transition function of an FCSR automaton. It is easy to see that it has two fixed
points, namely the state with all cells containing a 0 bit, and the state with all cells containing
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a 1 bit. The values of (m, c) for these states are (0, 0) and (2n − 1, d − 2n) respectively, and
they correspond to the developpement of the 2-adic fractions 0/q = 0 and |q|/q = −1. All other
states are noninvariant by the transition function.

Since we assume that the order of 2 modulo q is |q| − 1, we can prove that the graph of the
transition function consists of exactly three connected components: the two single point compo-
nents corresponding to the two fixed points and another component containing all the 2n+l − 2
remaining points. Moreover, this component consists in a cycle of size |q| − 1 and pathes con-
verging to it. More details on the transition function of FCSR automatons can be found in [3].

Definition 1 Two states (m1, c1) and (m2, c2) are said equivalent if they satisfy m1 + 2c1 =
m2 + 2c2.

The following fundamental property can be shown:

Proposition 1 Two noninvariant states are equivalent if and only if they eventually converge
to the same state of the main cycle in the same number of steps.

As |q| − 1 ' 2n, the expected number of states which eventually converge to a given state of
the cycle is approximatively 2l.

It can be shown also that the relative number of leaves for the transition function is 1−(3/4)l,
which (for l ≥ 2) is much larger than for a random function, where it is e−1.

From the existence of a large cycle and of a large number of leaves, we can expect that the
length of the pathes converging to the cycle are very short. Experimentally, this is indeed the
case. Convergence occurs generally in less than (n+ l)/2 iterations, while this should be 2(n+l)/2

if the transition function was a random one.
The following figure shows the main composant of the graph associated to q = −13. The

couples of numbers correspond to a state (m, c) and the single numbers to the value p = m+2c.
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Ĵ

•
(3,3)

HHH
HHj

•
(7,1)@

@
@

@@R•
(5,3)

•
(6,0)
HH

HHHY

•
(2,2)
@

@
@

@@I

•
(4,1)
J

J
J

J
J

J
J]

•
(1,1)
@

@
@

@@I

•
(2,3)
@

@
@

@@I

•
(4,2)
J

J
J

J
J

J
J]

•
(0,2)
HH

HHHY

•
(4,0)
@

@
@

@@I
•

(2,0)

270



2.2 Consequences for Time/Memory/Data tradeoff attacks

First, the states that are not on the main cycle have only a very small impact on the cost of a
Time/Memory/Data tradeoff attacks. So the number of states that should be considered when
evaluating security of FCSRs with static filter should be |q| − 1 instead of 2n+l.

Hence, in the first version of F-FCSR-8 submitted to Ecrypt, the size k = 128 of the key
was equal to the length of the main register. But we also used a dynamic filter to increase the
number of total states of our automaton.

However, using the fact that we used 8 subfilters of length 16 to output 8 bits at each
transition, and using the fact that the number of possible such subfilters was too small, E.
Jaulmes and F. Muller showed in [5] that the presence of a dynamic filter does not provide
enough security. Their attack has a time cost in 280 and uses data of size about 267.

The solution to prevent TMD-attacks is to increase the size of the prime q up to n = 2×128 =
256. Note that in this case, it is possible to output two bytes instead of a single one at each
iteration. Hence the number of operations per output byte is not increased and in fact the speed
of the generator will be slightly better. Moreover, dynamic filter is no longer needed, and this
greatly simplifies hardware and also software implementations.

There exist recent developpements on TMDtreadoffs cryptanalysis of stream cipher genera-
tors [8]. We want to notice that it possible to increase the size of IV of F-FCSR stream cipher
until the size k of the key without any information. Moreover, in the procedure of change of IV,
the key is concatened to the IV, which ensure a total entropy of our system equals to the size
of the key plus the size of the IV.

2.3 Algebraic cryptanalysis

For the F-FCSR generator, the transition function of the automaton Tq is quadratic, and the
filter Fl is linear.

We denote by x the initial state of the generator: it is a binary vector of size equal to the
number of the unknown values of the registers. The algebraic attack consists in the determination
of x from the equations F (T i(x)) = si, where the si are the successive observed bits output by
the generator.

This leads to a system of equations Fl(T i
q(x)) = si. The degree of the i-th equation is the

degree of T i
q . The first equation is linear, the second quadratic. An increase of the degree is

expected at each iteration. However this increase depends on many factors as the choice of the
filter or the values of Id. It seems not possible to find a formula available in the general case.

However, In [4], M. Minier and T. Berger studied these equations in more details and designed
an attack on an earlier version of F-FCSR proposed at FSE 05 [2]. In that situation, there was
only 6 iterations after each change of IV.

The main result is the fact that, even if the degree of equations increases at each iteration,
the number of monomials remains smaller than expected as long as the number of iterations is
less than the size n of the register. The following Proposition describes this property:

Proposition 2 The value of the content of the i-th register at the t-iteration mi(t) depends
only on the initial values (m0(0), · · · ,mt−1(0), c0(0), · · · , ct−2(0) et (mi+1(0), · · · ,mi+t(0),ci(0)
,· · · , ci+t−1(0)).

mi x · · · · · ·
ci · · · · · ·

0123456. . . . . .i. . . . . .i+6. . . . . . . . . . . .
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An example for t = 6

In the attack described in [4], the IV values are known, that is the initial values ci(0) are
given. The following table gives the number of distinct monomials obtained in the algebraic
equations for a register of size 128.

nb of iterations 0 1 2 3 4 5 6
nb of monomials 128 129 256 758 2490 8830 32836
Algebraic degree 1 1 2 3 4 6 8
Binomial bound 129 129 8257 349633 11017633 ≈ 232 ≈ 240

There are some remarks about these results:

• From Proposition 2, the number of monomials is linear in the length n of the generator.

• From a computationnal point of view, the first difficult problem is not to solve the equa-
tions, but to compute them: we were not able to compute the equations corresponding to
the 8-th iteration on a register of size 128. At the present moment, it seems not compu-
tationnaly feasible to complete the 12-th iteration.

• The F-FCSR-8 and F-FCSR-H stream ciphers proposed to Ecrypt are resistant to this
kind of attacks.

2.4 Diffusion of differences

Another possible weakness of the first designs of F-FCSR stream ciphers resides in the slowness
of diffusion of differences. A difference introduced in some cell of the FCSR automaton remains
localized when clocking the automaton, as long as this difference does not reach the feedback
end of the register. In fact, except when this end is reached, the difference only affects the next
right cell after one transition and, with probability 1/2 only, the corresponding carry cell is also
changed. This change in this carry cell, when it occurs, will cause subsequent differences at
subsequent transitions. However, this change in the carry cell has low probability (1/2n after n
transitions) not to disappear.

We illustrate this fact in the following example, where we choosed q = −347. The length n
of the main register is then 8. We have chosen randomly a value m1 for the main register m,
strictly less than 27. For the initial values m1 and m2 = m1 + 27, we computed the differences
obtained in the main register after i iterations of the transition function, for i = 0 up to 9. The
following table gives the typical results obtained this way, with two different values for m1.

Position of carries Position of carries
1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0
Diffusion of difference Diffusion of difference

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
1 0 1 0 1 0 1 1
1 1 1 1 1 0 0 1

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1
1 0 1 0 1 1 1 0
0 1 0 1 0 1 0 1
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This fact was noticed by E. Jaulmes and F. Muller (cf. [6, 5]) and used to design attacks
on the change of IV procedure. They obtained a key recovery attack on F-FCSR-8 and a
distinguishing attack on F-FCSR-H.

There are two independant ways in order to stop these attacks:

1. A better insertion of IV and key in the change of IV procedure. In our first version, we
used a simple concatenation of the values.

2. A larger number of iterations of the transition function before outputing data, greater
than the length n of the register, to ensure a full diffusion of the differences

As an example, in our first version of F-FCSR H , it is sufficient to increase the number of
iterations from 160 to 162 in order to stop the distinguishing attack.

2.5 Other attacks

At the present moment, we do not known any other attack against this design, in particular any
correlation attack.

3 New Design

3.1 F-FCSR-H: Profile 2, output 1 byte per round

This proposal uses keys of length 80 and IV of bitsize v with 32 ≤ v ≤ 80. An IV of value 0
can be used as a default if no value is provided. The core of this new version of the F-FCSR-H
algorithm is identical to the one proposed in [1]. Only the key+IV Setup procedure has been
updated in view of the attacks presented in [6].

The FCSR length (size of the main register) is n = 160. The carries register contains ` = 82
cells. The retroaction prime is

q = −1993524591318275015328041611344215036460140087963

so addition boxes and carries cells are present at the positions matching the ones (except of the
leading one) in the following 160 bits string (which has Hamming weight 83)

d = (1 + |q|)/2 = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)16.

Filtering

To extract one pseudorandom byte, we use the static filter

F = d = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)16

The filter F splits in 8 subfilters (subfilter j is obtained by selecting the bit j in each byte of F )

F0 = (0011 0111 0100 1010 1010)2, F4 = (0111 0010 0010 0011 1100)2,
F1 = (1001 1010 1101 1100 0001)2, F5 = (1001 1100 0100 1000 1010)2,
F2 = (1011 1011 1010 1110 1111)2, F6 = (0011 0101 0010 0110 0101)2,
F3 = (1111 0010 0011 1000 1001)2, F7 = (1101 0011 1011 1011 0100)2.
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Recall that the bit bi (with 0 ≤ i ≤ 7) of each extracted byte is expressed by

bi =
19⊕

j=0

f
(j)
i m8j+i where Fi =

∑19
j=0 f

(j)
i 2j

and where the mk are the bits contained in the main register.

a+b. Key+IV setup (Inputs a key K of length k = 80 and an IV of length v ≤ 80)

1. The main register M is initialized with the key and the IV:

M := K + 280 · IV = (080−v‖IV‖K).

2. The carries register is initialized to 0 :

C := 0 = (082).

3. A loop is iterated 20 times. Each iteration of this loop consists in clocking the FCSR
and then extracting a pseudorandom byte Si (0 ≤ i ≤ 19) using the filter.

4. The main register M is reinitialized with these bytes:

M :=
19∑
i=0

Si = (S19‖ · · · ‖S1‖S0).

5. The FCSR is clocked 162 times (output is discarded in this step).

c. Extraction of pseudorandom data After setup phase, the pseudorandom stream is pro-
duced by repeating the following process as many times as needed

• Clock the FCSR

• Extract one pseudorandom byte using filter F as described above.

3.2 Upgrade from F-FCSR-8 to F-FCSR-16

In the F-FCSR-8 algorithm presented in [1], the pseudorandom stream was extracted using a
dynamic filter. The purpose of this filter was to enlarge the number of states of the FCSR-
automaton, in order to prevent Time-Memory-Data tradeoff attacks. However, the paper [6]
shows that such a dynamic filter does not provide the expected security. In the light of this
result, the new algorithm F-FCSR-16 uses a static filter and the required number of states of
the automation is obtained by enlarging the size of the registers. Note that the larger size of
the register allows to extract more pseudorandom bits at each transition of the automaton. So
the new algorithm is as fast as the previous one.

3.2.1 F-FCSR-16: Profile 1, output 2 bytes per round

This proposal uses keys of length k = 128 and an IV of length v = 128 or 64 (any length v ≤ 128
can be used). An IV of value 0 can be used as a default if no value is provided by the application.

According to Conditions 1 we choose for q the following number

−q = 183971440845619471129869161809344131658298317655923135753017128462155618715019
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as the public parameter of the automaton. The corresponding bitstring d = (|q| + 1)/2 which
describes the positions of the carries cells is

d = (CB5E129F AD4F7E66 780CAA2E C8C9CEDB 2102F996 BAF08F39 EFB55A6E 390002C6)16.

Its Hamming weight is 131 and there are ` = 130 cells (the Hamming weight of d∗ = d − 2255)
in the carries register and n = 256 cells in the main register.

To extract two pseudorandom bytes, we use the static filter

F = d

The filter F splits in 16 subfilters (subfilter j is obtained by selecting the bit j in each 16-bit
word of F )

F0 = (0110 0011 0001 1000)2, F8 = (1010 0000 1101 1010)2,
F1 = (1111 0101 1100 0101)2, F9 = (1101 0101 0011 1101)2,
F2 = (1111 1100 0100 1101)2, F10 = (0011 0001 0001 1000)2,
F3 = (1110 1111 0001 0100)2, F11 = (1011 1111 0111 1110)2,
F4 = (1100 0001 0111 1000)2, F12 = (0101 1000 0110 0110)2,
F5 = (0001 0100 0011 1100)2, F13 = (0011 1100 1110 1010)2,
F6 = (1011 0011 0010 0101)2, F14 = (1001 1011 0100 1100)2,
F7 = (0100 0011 0110 1001)2. F15 = (1010 0111 0111 1000)2.

Recall that the bit bi (with 0 ≤ i ≤ 15) of each extracted word is expressed by

bi =
15⊕

j=0

f
(j)
i m16j+i where Fi =

∑15
j=0 f

(j)
i 2j

and where the mk are the bits contained in the main register.

a+b. Change of IV (Input: an IV of bitsize v ≤ 128)

M := K + 2128 · IV = (0128−v‖IV ‖K)
C := 0 = (0130) (Clear the carries)
For i from 0 to 15 Repeat

Clock the FCSR automaton
Extract a pseudorandom word Si using the filter F

End For
M :=

∑15
i=0 Si · 256i = (S15‖ · · · ‖S0)

C := 0 = (0130) (Clear the carries)
Clock the FCSR automaton 258 times (discard output in this step)

c. Extraction of the pseudorandom stream We use the word filtering method described
above, with s = 16, while pseudorandom data is needed. At each clock of the FCSR
automaton, the content of the main register M is ANDed with the filter F :
S = M ⊗ F
S is split in 16 words each of bitlength 16 S =

∑15
i=0 Si216i

The pseudorandom byte is the XOR of these bytes: Output word :=
⊕15

i=0 Si
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3.2.2 F-FCSR-16, Profile 2

The F-FCSR-16 algorithm can also satisfy profile 2. As in this case the key-length is 80, the
first line of the Change of IV procedure now reads

M := K + 2128 · IV = (0128−v‖IV ‖048‖K)

Comparing to F-FCSR-H, the pseudorandom word extracted at each transition of the au-
tomaton is twice larger, while the size of the registers is only 8/5 larger. In applications with
profile 2 where extremely high speed of pseudorandom data generation is needed, the F-FCSR-16
algorithm should be also considered.

4 Performances

The software performance of F-FSCR-16 stream cipher depends on the processor register width.
For instance, we observe a speedup by four with 128-bits Altivec implementation over 32-bits
implementation. This observation was already performed in [9] with F-FCSR-8. The main
mechanisn of F-FCSR-H remains unchanged and results on its implementation can be found in
[9].

CISC target parameters performance
Frequency L2 Cache Size Speed Code Initialization

Pentium 3 800 Mhz 256KB 83 cycles/B 8 KB 39140 cycles/IV
Pentium 4 2.3 Ghz 512KB 85 cycles/B 8 KB 54491 cycles/IV
Pentium 4 2.6 Ghz 512KB 95 cycles/B 8 KB 38351 cycles/IV
Pentium 4 3.2 Ghz 1MB 82 cycles/B 6 KB 43354 cycles/IV

RISC target parameters performance
Frequency L2 Cache Size Speed Code Initialization

PPC 7457 1.2 Ghz 512 KB 90 cycles/B 18 KB 44860 cycles/IV
PPC 7457 (Altivec) 1.2 Ghz 512 KB 22 cycles/B 14 KB 11828 cycles/IV

Figure 1: F-FCSR-16 32-bit evaluation and Altivec implementation
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Abstract. ABC is a synchronous stream cipher submitted to eSTREAM.
Here we describe ABC v.2 – a tweaked version of ABC. The tweaks made
ABC v.2 resistant to certain attacks, including the ones presented by
Berbain and Gilbert and by Khazaei. We give a design rationale and a
brief security analysis of ABC v.2. Also it is shown that the distinguishing
attacks against ABC v.2 like the one suggested by Khazaei and Kiaei are
totally impractical. ABC v.2 is extremely fast in software often heading
the eSTREAM benchmark list. Further we define informal requirements
for an industrial software stream cipher and show that ABC v.2 meets
them. Moreover, we demonstrate that ABC v.2 is also suitable for em-
bedded security applications demanding high performance.

Keywords: cryptography, stream cipher, ABC, eSTREAM, ECRYPT,
distinguishing attack, stream cipher performance

1 Introduction

ABC is a synchronous stream cipher optimized for software applications which
was submitted to eSTREAM [7]. ABC v.2 [8] with a 128-bit key and 32-bit
internal variables, offers 128-bit security and is extremely fast in software often
heading the eSTREAM performance benchmark list and ranking first in packet
encryption [2].

This paper first outlines the tweaks to the original ABC that lead to ABC v.2.
Then the attacks and the way the tweaks make ABC v.2 resistant to these attacks
are described. Another possible tweak is discussed. We also show that ‘Theorem
1’ from the paper [12] by S. Khazaei describing an attack on ABC is wrong.

It is shown that the paper [13] by S. Khazaei and M. Kiaei does not present
any distinguishing attack both on ABC v.1 and ABC v.2. The results of ex-
periments are presented, indicating that the distinguisher for ABC v.2 has a
complexity greater than that of a brute force attack.
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Apart from its security properties, ABC v.2 meets a set of requirements which
distinguish a stream cipher well suited for the real-world applications according
to a number of features. We call these industrial software implementation re-

quirements which are the following:

– High generic performance for all software platforms including embedded ones
(at least twice as fast as AES on the same platform),

– Low memory consumption,
– Low costs of IV and key setup procedures.

Since these properties are mutually contradictory (e.g. more precomputations
allow as a rule a faster implementation which leads, however, to a higher mem-
ory consumption), the latter two of them can be substituted for flexibility which
means that a good industrial cipher should be capable of an efficient through-
put/memory trade-off. ABC v.2 meets these requirements which is shown in the
paper.

Actually ABC is a family of stream ciphers. This implies not only the flexi-
bility of ABC implementation, but also the natural flexibility of the ABC design,
which enabled us in [6] to suggest the tweaks raising its keystream period from
232

· (263
− 1) 32-bit words to 232

· (2127
− 1) 32-bit words while keeping all the

other properties of ABC stated in [7], including guaranteed uniform distribution
and high linear complexity of the keystream.

Moreover, the ABC stream cipher is highly scalable which gives a possibility
of natural extension of the cipher to a larger computational base (e.g. 64-bit ver-
sion of ABC) and to exchange its separate components with very low overhead.
This was done in ABC v.2 and can be further extended to create a version of
ABC providing 256-bit security with a negligible performance overhead.

The paper is organized as follows. In Section 2 ABC v.2 is introduced and its
differences from ABC v.1 are discussed. Section 3 describes a class of distinguish-
ing and correlation attacks which could be applicable to ABC v.1 and ABC v.2.
In Section 4 a number of ways avoiding this attack possibilities are suggested and
the remedy selection for ABC v.2 is motivated. Section 5 provides experimental
evidence demonstrating that ABC v.2 is robust to the distinguishing attack. In
Section 6 we consider the industrial software implementation requirements, show
that ABC v.2 meets them, discuss in what way ABC v.2 is superior to the other
eSTREAM ciphers and demonstrate that ABC v.2 clearly outperforms AES on
embedded platforms. We conclude in Section 7.

2 Moving from ABC v.1 to ABC v.2

Here the tweaks in the ABC keystream generator making ABC v.2 out of
ABC v.1 are briefly outlined. The adjusted setup procedures described in [6,8]
are not discussed here, we just note that some inaccuracy concerning the initial-
ization routine mentioned in [9] was corrected. The following notation is used in
the description of the cipher.
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x, y ∈ Z/232
Z denote the state of the function B and the output of the

keystream generator respectively;

z is a 128-bit integer value for ABC v.2 and a 64-bit integer value for ABC v.1
denoting the state of the transform A; it can also be represented as z =
(z̄3, z̄2, z̄1, z̄0) ∈ (Z/232

Z)4 for ABC v.2 and z = (z̄1, z̄0) ∈ (Z/232
Z)2 for

ABC v.1, z̄3, z̄2, z̄1, z̄0 ∈ Z/232
Z;

d0, d1, d2, e, e0, e1, . . . , e31 ∈ Z/232
Z denote the coefficients of the transforms B

and C respectively;

w ∈ Z/25
Z denotes the length in bits of the optimization window used in

computation of the transform C;

�i(·) is the i-th bit selection operator returning the value of the i-th bit of an
integer, e.g. �0(x) is the least significant bit of x;

� is the bitwise modulo 2 addition (’XOR’) operation;

�,�, ≫ denote correspondingly left (zero-fill) bit shift, right (zero-fill) bit shift
and right rotation of binary expansion of a 32-bit integer.

B

B(x)

B(x) + z̄3

x

x

x

C

C(x)

y = C(x) + z̄0
plain text stream cipher text stream

z̄3

z̄0

z = (z̄3, z̄2, z̄1, z̄0)
z

A(z)
A

Fig. 1. ABC v.2 keystream generator
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The keystream generator of ABC v.2 is illustrated in Fig. 1. In both versions
of ABC A is a linear transformation of the vector space Vn = GF(2)n with a
cycle of length 2n−1

− 1 (where n = 128 for ABC v.2, and n = 64 for ABC v.1),
B is a single cycle T-function on 32-bit words, and C : Z/232

Z → Z/232
Z is a

filter function: C takes x as argument and produces y in the following way:

ζ = S(x),

y = ζ ≫ 16,
(1)

where ζ ∈ Z/232
Z and S : Z/232

Z → Z/232
Z is a mapping defined by

S(x) = e +

31
∑

i=0

ei�i(x) mod 232
, (2)

e31 ≡ 216 (mod 217). Coefficients e, e0, . . . , e31 ∈ Z/232
Z are obtained from the

key during the initialization procedure.

The single cycle function B used in the ABC v.2 cipher can be specified
through the following equation:

B(x) = ((x � d0) + d1) � d2 mod 232
, (3)

where d0 ≡ 0 (mod 4), d1 ≡ 1 (mod 4), d2 ≡ 0 (mod 4). In the non-modified
ABC v.1 the function B was of the form

B(x) = d0 + 5(x � d1) mod 232
, (4)

with d0 ≡ 1 (mod 2), d1 ≡ 0 (mod 4).

Under the restrictions mentioned above the following properties of the
keystream produced by the ABC v.2 keystream generator are proved:

– The length P of the shortest period of the keystream sequence of 32-bit
words is P = 232

· (2127
− 1).

– The distribution of the keystream sequence of 32-bit words is uniform in the
following sense: For each 32-bit word a the number �(a) of occurrences of a

at the period of the keystream satisfies the following inequality:

∣

∣

∣

∣

�(a)

P
−

1

232

∣

∣

∣

∣

<
1

√

P

.

– The linear complexity λ of the keystream bit sequence satisfies the inequality
231

· (2127
− 1) + 1 ≥ λ ≥ 231 + 1.

Proofs are based on the results presented in [4] and can be found in the
updated ABC specification [8].
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3 Attack Possibilities

In this section we describe some attacks that lead to recovering the internal state
of the (non-modified) ABC v.1, and which are more efficient than a brute force
attack. The corresponding remedies are discussed in Section 4.

Suppose that one has a statistical test T (which is further called a distin-

guisher) that could tell the keystream sequence Y = {yj ∈ Z/232
Z}

∞
j=0

from the

intermediate sequence C(X) = {C(xj) ∈ Z/232
Z}

∞
j=0

, which is the output of the
function C. Then trying different initial states ẑ of the LFSR A and testing the
sequences C(X)(z) = {yj − z̄0,j(ẑ) mod 232

} with T , where z̄0,j(ẑ) is the the 32
low order bits of the output of the LFSR A at the j-th step, one finds z̄.

In other words, if the guess for LFSR state is correct, subtracting the LFSR
sequence from the keystream sequence results in bare C output. If the guess for
LFSR state is incorrect, the subtracting leads to some other sequence C . Now, if
we distinguish C from C, we determine the correct guess. Actually, the awaited
statistical properties of C are as good as those of the keystream sequence Y . So
from the point of view of simplest and effective distinguishers C and Y are the
same. That is why C can be distinguished from C by such a distinguisher that
can tell C from Y .

Under the assumption that T makes no errors in distinguishing, the computa-
tional cost of finding the true initial state of the LFSR is (2n

−1)T computations
of AB, where T is the computational cost of testing one sequence with the test
T , and n is the length of the LFSR registry (i.e., n = 63 in non-modified ABC,
and n = 127 in the modified one). After finding the true initial state ẑ of the
LFSR, one tests coefficients of the function B and then, solving the correspond-
ing congruences modulo 232 with respect to the unknown values of e, e0, . . . , e31,
totally recovers the internal state of the ABC.

Attacks of this kind were mounted by Berbain and Gilbert in [9], and by
Shahram Khazaei in [12]. They were successfully thwarted (actually prior to
their publishing) by the ABC v.2 update, containing the remedies described in
the next section.

4 Remedies

We need only those remedies that do not worsen the important properties of ABC
(long period, uniform distribution and high linear complexity of the keystream)
and/or significantly reduce its performance. There are several such remedies;
two of them are described below.

4.1 Remedy 1: Special Coefficients

Since the coefficients e, e0, . . . , e31 of the function S of (2) are produced in a
pseudorandom way during the initialization stage, the probability the mapping
C of (1) is bijective is too small; see Corollary 1 below for the exact value of that
probability (the estimate of [9] is just an empirical conjecture and the one of [12]
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is based on the erroneous ‘Theorem 1’ of [12]). Hence, with high probability the
distribution of the sequence C(X) = {C(xj) ∈ Z/232

Z}
∞
j=0

, is not uniform since

the distribution of the sequence X = {xj ∈ Z/232
Z}

∞
j=0

, which is the output
if the function B, is uniform. This follows from the results stated [4] and can
be found in [8]. At the same time, the distribution of the keystream sequence
Y = {yj ∈ Z/232

Z}
∞
j=0

is uniform (see Section 2). Hence, the distribution of the

sequence C(X)(ẑ) is not uniform in case of the right guess of the initial state ẑ

of the LFSR A, since the distribution of the output sequence of the LFSR A is
uniform.

Thus, a distinguisher T just tests the uniformity of distribution of the se-
quence C(X)(z) for various z; in case the distribution is not uniform, the cor-
responding z = ẑ is accepted as a true one. Distinguishers of [9] and of [12] are
exactly of this sort.

To make sequences C(X)(ẑ) indistinguishable one from another with respect
to the test T for all the choices of ẑ it suffices to choose coefficients of S in some
special way to ensure that S is bijective.

Thus one needs criteria the coefficients should satisfy to make S bijective. In
[12, Theorem 1] the following ’criterion’ is stated: The function

S(x) = e +
∑k−1

i=0
ei�i(x) (mod 2k),

x, e, ei ∈ Z/2k
Z, i = 0, . . . , k − 1,

(5)

induces a permutation of the residue ring Z/2k
Z iff for each non-empty subset

M ⊂ {0, 1, . . . , k − 1}
∑

i∈M

ei 6≡ 0 (mod 2k).

However, it could be immediately shown that the above ‘criterion’ (as well
as the whole ‘Theorem’ 1 of [12]) are merely wrong: Take k = 3, put e0 = 1,
e1 = 2, e2 = 3 and verify that the mapping x 7→ �0(x) + 2 · �1(x) + 3 · �2(x) is
not a permutation of the residue ring modulo 8.

The right criterion reads the following.

Theorem 1. The function (5) induces a permutation on the ring Z/2k
Z if and

only if

ej0 ≡ 1 (mod 2), ej1 ≡ 2 (mod 4), . . . , ejk−1
≡ 2k−1 (mod 2k),

for some permutation (j0, j1, . . . , jk−1) of (0, 1, . . . , k − 1).

Corollary 1. There are exactly k! ·2
k(k+1)

2 permutations among all 2k(k+1) pair-

wise distinct transformations of the form (5) of the residue ring Z/2k
Z. Hence,

the probability that S is a permutation is k! · 2−
k(k+1)

2 .

In other words, S of (2) is a permutation iff e0, . . . , e31 could be reordered
so that ei = 2i

· e
′
i, where e

′
i are odd, i = 0, 1, . . . , 31. Note that our condition

e31 ≡ 216 (mod 217) is in a certain sense a ‘remnant’ of our Theorem 1.
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Theorem 1 follows immediately from a (more than 10 year old) result of one
of us, see [3, Proposition 4.8]. Also, it could be easily deduced from the older
result of DeBruijn, see [15, Section 4.1, Exercise 30]. Of course, it is not difficult
to prove this theorem directly.

Thus, just to avoid the kind of attack described in [9] and [12] it is sufficient
only to make minor modifications to the initialization procedure so that one of
e0, . . . , e31 always has 1 in the least significant bit position, another has 01 in
its two rightmost bit positions, a further one has 001 in the three rightmost bit
positions, etc. The modification does not change the ABC keystream generation

routine at all, leaving both the performance and other properties (period length,
uniform distribution, linear complexity) unchanged.

So the assumption of [12] by S. Khazaei that ‘The designers of ABC have
not neither evaluated C function theoretically nor using statistical simulations
and just have designed C function to provide a provably minimum period for
its output sequences’ is just not true. We certainly could make S (whence, C)
balanced (that is, bijective) at the very first stage of the ABC design procedure:
We had mathematical tools to construct balanced mappings. These tools have
been developed long before (see e.g. the bibliography in [7] and [8]) and are more
effective than the ones of paper [14]. However, the arbitrary choice of coefficients
in accordance with our Theorem 1 might lead to some attacks unless some special
countermeasures are undertaken.

4.2 Remedy 2: Long LFSR

This solution is based on the usage of LFSR with period 2127
− 1 instead of the

LFSR with period 263
− 1 in the keystream generator, see Fig. 1. In spite of

the fact that it implies modification of the keystream routine (we had also to
modify the B function to compensate some speed reduction), the solution makes
the ABC resistant to all possible attacks of the described kind independently of
concrete distinguishers T they are based on: The computational cost is then
(2127

− 1) · T ≈ 2127
· T ≥ 2128, since we could hardly imagine a distinguisher

with computational cost T = 1, under every reasonable definition of what the
computational cost is. Thus, every attack of the described type becomes less
effective than a brute force attack. As a bonus we obtain certain increase of
security of the function B, since some extra bits of security are added (cf. (3)
and (4)).

4.3 Scalability of ABC Design

The architecture of ABC stream cipher is highly scalable. This provides one with
a possibility of natural extension of the cipher.

First, the extension can aim at a larger computational base, e.g. 64-bit version
of ABC for 64-bit platforms, such as Intel Itanium or PowerPC G5. Second, the
separate components of ABC, namely, A, B and C transforms, can be exchanged
with a very low overhead.
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Moreover, a natural extension of the digit capacity of the components of ABC
can lead to a more secure and efficient cipher. This was done in ABC v.2 and
can be further extended to create a version of ABC providing 256-bit security
with a negligible performance overhead. Such a version of ABC with a 256-
bit word-oriented LFSR, 256-bit key and 256-bit IV encrypts at 4.21 processor
cycles per byte (the measurements were performed on a 1.73 GHz Intel Pentium
M processor using the eSTREAM testing framework), which is only 4 percent
more than for ABC v.2 with a 128-bit LFSR.

5 The Impracticability of Some Distinguishing Attacks

In their paper [13] Shahram Khazaei and Mohammad Kiaei claimed that there is
a distinguisher on both versions of ABC with the complexity of about 232. The
claim was supported by the empirical results of computer experiments with a
set of reduced versions of ABC. However, the authors of [13] have made multiple
errors, see [5] for details.

The idea of the possible attack is to reduce the influence of the LFSR A

on the keystream and then detect a bias originating from the non-balanced
filter function C. One can imagine that the LFSR influence can be reduced by
applying an annihilator of the LFSR sequence to the keystream sequence. The
word-oriented recurrence relation of A for ABC v.2 [8] induces the word-oriented
annihilator

z̄0,i � z̄0,i−2 � (z̄0,i−3 � 31) � (z̄0,i−4 � 1) = 0, (6)

where z̄0,i−4, . . . , z̄0,i are the successive states of the word z̄0 of the LFSR A.
The application of (6) to the keystream sequence {yn} = {cn}+{z0,n} formed

by the output of function C {cn} and the output of LFSR {z0,n} results in the
sequence {un} where

ui = yi � yi−2 � (yi−3 � 31) � (yi−4 � 1), ui ∈ Z/232
Z. (7)

According to the idea of approximating the arithmetic addition modulo 232 with
the bitwise exclusive OR exploited in [13] the keystream word can be seen as
yi = ci � z0,i � wi. The term wi ∈ Z/232

Z is the noise induced by carries of the
arithmetic addition. Hence from (7)we have

ui = ci � ci−2 � (ci−3 � 31) � (ci−4 � 1) � Wi, (8)

where Wi = wi �wi−2 � (wi−3 � 31)� (wi−4 � 1). The idea of [13] now suggests
to detect the bias of un as both wi and ci are biased.

For the observation of the assumed bias in the sequence {un}
N−1

n=0
of length

N the word frequency statistic

χ̄
2 =

2
32−1
∑

a=0

(�̄[a] − λ)

λ
(9)
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is used, where �̄[a] is the number of occurrences of the 32-bit word a in the
sequence {un} and λ is the awaited number of occurrences of each word for a
random sequence (λ = 1 for N = 232). The values of χ̄

2 are supposed to be
biased for the keystream of ABC when compared to the random sequence. The
error probability of distinguishing can be estimated empirically by comparing
the two sets of χ̄

2 values, one for the ABC keystream and another for a good
(pseudo)random sequence.

Our computer experiments with the reduced versions of ABC v.2 [1] modeled
the same distinguishing algorithm and employed good truly random sequences.
The latter were obtained from a physical source of randomness. The experi-
ments showed that distinguishing is completely impossible with time and data
complexities of about 2m for ABC with m-bit words.

Fig. 2. Error probability for m-bit ABC distinguishers

To ensure that distinguishing attacks of this kind on ABC v.2 are impractical,
extensive simulations on a high-performance computing cluster were performed.
The results presented in Fig. 2 indicate that distinguishing of m-bit ABC for
m > 12 in the way suggested in [13] with a negligible error probability cannot
be carried out with time and data complexity less or equal to 24m and with
memory complexity less or equal to 2m (note that m = 32 for the full-size
ABC v.2). Note that 24m the size of the corresponding key space. Therefore, our
experiments suggest that efficiently distinguishing the full-scaled ABC v.2 from
the random sequence requires more time resources than the 2128 brute force key
search. This gives us grounds to conjecture that the application of distinguisher
from [13] against ABC v.2 is nonsensical and totally impractical.
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6 ABC v.2 and Stream Cipher Implementation Issues

In this section it is shown that ABC v.2 meets all the industrial implementation
requirements mentioned above which make it perfectly suitable for various real-
world applications including some embedded security systems.

6.1 ABC v.2 and Generic Performance

In many industrial applications it is difficult to optimize cryptographical al-
gorithms for all concrete computer architectures. This is due to the following
problems:

– High costs of assembly language implementations,
– Code portability requirement.

In practice even rather large firms cannot afford to pay for the optimized
implementation of every cipher from the cryptographical library (the number of
symmetrical cryptographical algorithms that are to be implemented within one
library is often over 10) for every computer platform (the number of the platforms
on which some consumers want to run their cryptographical libraries is often
considerable and can exceed 10−20). Such an implementation would require over
100 = 10 · 10 optimized realizations of individual cryptographical algorithms for
specific computer platforms. This indicates that even inline assembly language
sections can be not allowed. Another reason is that the industry wants to have
the algorithms only once implemented and does not want to spend money every 6
months or 1 year (as new platforms demand immediate action rather frequently)
for the same library again.

Thus, we consider the generic performance of a cipher an extremely important
property for industrial applications. That is, a good stream cipher should be not
only secure and at the least twice faster than AES. It should also provide the
possibility of an easy and very efficient implementation in ANSI C using generic
compilers (maybe with specific options).

We treat the generic implementation performance property as one of the
most important stream cipher properties. For this reason we are not going to
provide assembly language implementations of the ABC v.2 for the eSTREAM
benchmarks since ABC v.2 holds its leading performance positions, even when
implemented in ANSI C.

Here we present the results of the performance evaluation of ABC v.2. All the
throughput values are gained for a generic implementation. Throughput values
and costs of the setup routines for the reference implementation can be found
in Table 1. The table contains results for different optimization window sizes
obtained on a 3.2 GHz Intel Pentium 4 Northwood processor under the same
measurement conditions as described in [7].

According to the performance benchmark tables published at the eSTREAM
web site [2] ABC v.2 performance is very high. ABC v.2 is the fastest candidate
at plain encryption on AMD64, PowerPC G4, and UltraSPARC-III processors,
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Table 1. ABC v.2 performance for Intel Pentium 4

w Speed, Cycles Lookup tables, Key setup, IV setup,
Gbps per byte bytes cycles cycles

2 2.19 11.68 256 2056 372

4 3.36 7.65 512 4792 259

8 6.91 3.70 4096 90519 207

occupying the third place for HP9000 and second place (after Py or TRIVIUM)
in the list for the rest of reported CPUs. Due to the rapid IV setup ABC v.2 is
uneclipsed among Profile II (software ciphers) candidates at the encryption of
short packets on all of the reported CPUs.

6.2 ABC v.2 Key and IV Setup Flexibility

ABC possesses a bundle of properties that make it fit well in various real-life ap-
plications and satisfy the industrial demands. One of these properties is the fast
IV setup, which leads to the very effective packet encryption with a per-packet
nonce. The ABC v.2 performance at packet encryption for various optimization
window sizes (measured on an Intel Pentium M processor) is showed in Fig. 3.

Fig. 3. ABC v.2 performance at packet encryption with IV setup
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Fig. 4. ABC v.2 performance at packet encryption with key and IV setup

Another property is the natural flexibility of the ABC design, which allows
one to choose the optimization parameters suitable for a given application. In
practice a high demand for frequent key reinitializations means that short data
segments are processed. The relatively costly key setup procedure of ABC v.2
for long optimization windows (e.g w = 8) is compensated by extremely high
keystream generation performance of ABC v.2 with this parameter. If a less
expensive key setup procedure is required, then a lower value of parameter w

can be selected which results in a higher overall performance of the ABC v.2 key
setup, IV setup and keystream generation routine. That is, the effect of a time-
consuming key setup is easily leveled by choosing the appropriate optimization
window size depending on the size of data blocks being processed. Note that
the cipher remains in all the cases the same, the implementation parameters
changing only. Figure 4 presents in what way the choice can be done, showing
the performance of ABC v.2 at packet encryption with per-packet key and IV
setup for various optimization window sizes. The relative cost of key and IV
setup procedures at packet encryption is shown in Fig. 5. The measurements
were performed on an Intel Pentium M processor.

6.3 ABC v.2 for Embedded Security Systems

The variable length of ABC v.2 optimization tables enables implementations
with rather low memory consumption starting from 256 byte. ABC is the only
cipher in the eSTREAM project providing a working 8-bit implementation [1].

The performance of ABC v.2 for a standard i8051 controller (Philips 80/
87C51 microcontroller belonging to the MCS-51 family) can be found in Table 2
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Fig. 5. Relative cost of ABC v.2 setup procedures at packet encryption

Table 2. Comparison of 8-bit ABC v.2, AES and RC6 implementations

Implementation Code Size Const Ram Size Clock cycles Key setup,
byte byte IDATA+XRAM,byte per byte clock cycles

ABC, w=2 [8] 1649 256 79+452 253 52562

ABC, w=4 [8] 1493 512 79+708 174 59854

AES [10] 760 256 65 198

RC6 [10] 596 0 221 900 43200

which compares the implementation3 of ABC v.2 with that for AES [10] and
RC6 [11]. The performance of ABC v.2 was measured by encrypting 16-byte
blocks fitting in the IRAM (internal RAM) of the microcontroller.

Contemporary smart cards possess as a rule several KByte RAM (1-4 KByte
XRAM) which makes the implementation of ABC v.2 with w = 4 rather practi-
cable. So, being primarily a 32-bit oriented cipher, ABC v.2 also performs well on
constraint platforms. This indicates that the scope of application of ABC v.2 is
not restricted by 32-bit platforms. Thus, the architecture of ABC v.2 is universal
with respect to software implementations on numerous platforms.

A further RISC processor which is often applied in embedded systems and
was not included in the eSTREAM benchmarks (as of January 2006) is the ARM
microprocessor. The performance figures of ABC v.2 for ARM7 in comparison
with those for AES and RC6 [11] can be found in Table 3.

3 The implementation and also performance figures for ARM [8] are kindly provided
by S. Kumar, COSY RUB, Germany.
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Table 3. Comparison of ABC v.2, AES and RC6 on ARM

Implementation Cycles
per byte

ABC, w=2 [8] 97

ABC, w=4 [8] 55

ABC, w=8 [8] 35

AES [11] 91

RC6 [11] 49

7 Conclusion

In this paper we have presented ABC v.2 – a tweaked modification of the original
ABC stream cipher. The tweaks increase the period of the ABC stream cipher
in a simple way and also enlarge it’s secret state. They totally eliminate the
attacks described in [9] and [12]. ABC v.2 performance evaluation showed that
the tweaks do not lead to significant overhead and that ABC v.2 is extremely
fast in software often heading the eSTREAM benchmark list [2].

Also another way of thwarting these attacks was studied. It was explained
why we preferred the way of [6]. It was also noted that the results stated in [13]
are erroneous. Our computer experiments indicate that distinguishing ABC v.2
from the random sequence as suggested seems unreasonable as compared to the
exhaustive key search.

The natural scalability of the ABC design was emphasized. It was shown that
a version of ABC with a 256-bit key and a 256-bit IV offering 256-bit security
can be made out of ABC v.2 at a very low performance cost.

Apart from its leading positions concerning software performance ABC v.2
meets a number of industrial software implementation properties such as generic
performance property, flexible storage consumption and flexible cost of IV/key
setup procedures. This makes ABC v.2 applicable not only on standard 32-
bit platforms, but in some embedded security systems with high performance
requirements as well. This was exhibited by the eSTREAM benchmarks: among
eSTREAM candidates of software profile ABC v.2 is uneclipsed at such a real-life
task as the encryption of short packets.
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DECIM
v2 ∗

C. Berbain1, O. Billet1, A. Canteaut2, N. Courtois3, B. Debraize3,4, H. Gilbert1,
L. Goubin4, A. Gouget5, L. Granboulan6, C. Lauradoux2, M. Minier2,

T. Pornin7 and H. Sibert5

Abstract

Decim is a hardware oriented stream cipher with 80-bit key and 64-bit IV which was
submitted to the ECRYPT stream cipher project. The design of Decim is based on
both a nonlinear filter LFSR and an irregular decimation mechanism called the ABSG.
As a consequence, Decim is of low hardware complexity. Recently, Hongjun Wu and
Bart Preneel pointed out two flaws in the stream cipher Decim. The first flaw concerns
the initialization stage and the second one, which is the more serious flaw, concerns the
filter used in the keystream generation algorithm; the ABSG mechanism is not affected
by these two flaws. In this paper, we propose a new version of Decim, called Decimv2,
which does not only appear to be more secure, but also has a lower hardware complexity
than Decim.

1 Introduction

Decim [3] is a hardware oriented stream cipher submitted to the ECRYPT Stream Cipher
Project [1]; we now call it Decimv1. It has been developed around the ABSG mechanism
which provides a method for irregular decimation of pseudorandom sequences. The general
running of Decimv1 (and also Decimv2) consists in generating a binary sequence y in a
regular way from a Linear Feedback Shift Register (LFSR) which is filtered by a Boolean
function. The sequence y is next filtered by the ABSG mechanism.

Recently, Hongjun Wu and Bart Preneel [6] found two flaws in the stream cipher Decimv1.
The first flaw concerns the initialization stage, i.e. the computation of the initial inner state
for starting the keystream generation. In a nutshell, the initialization mechanism of Decimv1

works as follows.
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1. Filling of the LFSR from a 80-bit secret key and a 64-bit public IV.

2. 192 updates of the LFSR. One update consists of the three following steps:

(a) Computation of the feedback value (in a nonlinear way);

(b) Application of one among two permutations over 7 elements of the current LFSR
state; the choice of the permutation is controlled by the output of the ABSG;

(c) Shifting by one position of the LFSR.

The aim of the permutations is to provide high nonlinearity during the initialization stage.
However, the side effect of the permutations is that a large number of elements of the LFSR
(after the initial filling) may never be updated with a high probability during the initialization
process. This flaw allowed Hongjun Wu and Bart Preneel to mount an efficient key recovery
attack on Decimv1. For Decimv2, we propose a simpler and more secure initialization proce-
dure than the one of Decimv1 (in particular, the permutations involved in the initialization
procedure of Decimv1, which imply a significant increase of the hardware cost, are removed
in Decimv2).

The main flaw pointed out by Hongjun Wu and Bart Preneel [6] is in the keystream gen-
eration algorithm which is described in Figure 1. More precisely, the flaw is in the generation

z

...

...

LFSR

Filter

ABSG

y

Figure 1: Decim keystream generation

of the sequence y which is the output of the filter (the sequence y is next decimated by the
ABSG mechanism). In a few words, this flaw is due to the fact that the sequence y is di-
rectly the output of a symmetric Boolean function which is not correlation-immune of order

1. There exists a correlation between the outputs of the function associated to two input
vectors which have one element in common. By using this weakness, Hongjun Wu and Bart
Preneel show a correlation between some bits of the keystream sequence and then they show
that the keystream of Decimv1 is heavily biased. For Decimv2, we propose a simpler and
more secure filter than the one of Decimv1 by choosing a filter which is correlation immune
of order 1.

The outline of the paper is as follows. In Section 2, we give an overview of Decimv2 and
we describe the slight modifications between Decimv1 and Decimv2. In Section 3, we provide
a full description of Decimv2. In Section 4, we explain the design modifications. In Section 5,

2
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we discuss the hardware implementation of Decimv2. In Section 6, we discuss the security
properties of Decimv2. Finally, we conclude in Section 7.

2 Overview of Decimv2

In accordance with the specification given by the Ecrypt stream cipher project, Decimv2

takes as an input a 80-bit length secret key and a 64-bit length public initialization vector.

2.1 Keystream generation

The size of the inner state of Decimv2 is unchanged, i.e. 192 bits. The keystream generation
mechanism is described in Figure 2. The bits of the internal state of the LFSR are numbered
from 0 to 191, and they are denoted by (x0, . . . , x191). The sequence of the linear feedback
values of the LFSR is denoted by s = (st)t≥0.

ciphertext

191 x0x1

ABSG
z z’ c

...

...

y

f

Buffer

M message

x

Figure 2: Decimv2 keystream generation

The Boolean function f is a 13-variable quadratic symmetric function which is balanced.
Let xi1 , . . . , xi14 denote the 14 initial internal state bits of the LFSR that are the inputs of
the filter. The sequence y outputs by the filter is defined by:

yt = f(si1+t, . . . , si13+t)⊕ si14+t

The ABSG takes as an input the sequence y = (yt)t≥0. The sequence output by the ABSG
is denoted by z = (zt)t≥0. The buffer mechanism guarantees a constant throughput for the
keystream; we choose a 32 bit-length buffer and the buffer outputs 1 bit for every 4 shifts by
one position of the LFSR (see [3] for details).

Remark 1 For the keystream generation, the gap between Decimv1 and Decimv2 is the

choice of the filter. In Decimv1, the filter is a vectorial function defined by:

F : F
14

2 −→ F
2

2; xi1 , . . . , xi14 7→ (f(xi1 , . . . , xi7), f(xi8 , . . . , xi14))

where f is a 7-variable symmetric Boolean function which is balanced but which is not corre-

lation immune of order 1.
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2.2 Key/IV setup

The initial filling of the LFSR from the key and the initialization vector is modified in Decimv2

compared to Decimv1 (see Section 3). The Key/IV setup mechanism consists in clocking
4× 192 = 768 times the LFSR using the nonlinear feedback which is described in Figure 3.

f

191 x0x1

...

...x

Figure 3: Key/IV setup mechanism

Remark 2 For the initialization stage, the main differences between Decimv1 and Decimv2

are the filling of the LFSR which is changed, the deletion of the permutations and the choice

of the filter. As a consequence, the number of clocks in the initialization stage increases from

192 up to 768.

3 Specification

In this section, we describe each component of Decimv2 and we describe the changes between
Decimv1 and Decimv2; we refer to [3] when no modification has been done.

3.1 The filtered LFSR

This section describes the filtered LFSR that generates the sequence y (the sequence y is the
input of the ABSG mechanism).

The LFSR (unchanged). The underlying LFSR is a maximum-length LFSR of length 192
over F2. It is defined by the following primitive feedback polynomial:

P (X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 + X131 + X94 + X77 + X46

+X17 + X16 + X5 + 1 .

The filter (changed). The filter function is the 14-variable Boolean function defined by:

F : F
14

2 −→ F2; a1, . . . , a14 7→ f(a1, . . . , a13)⊕ a14

where f is the symmetric quadratic Boolean function defined by:

f(a1, . . . , a13) =
⊕

1≤i<j≤13

aiaj

⊕

1≤i≤13

ai

The tap positions of the filter are:

191− 186 − 178− 172 − 162− 144 − 111− 104 − 65− 54− 45− 28− 13− 1

4
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and the input of the ABSG at the stage t is:

yt = f(st+191, st+186, st+178, st+172, st+162, st+144, st+111, st+104, st+65, st+54, st+45, st+28, st+13)⊕st+1

3.2 Decimation (unchanged)

This part describes how the keystream sequence z is obtained from the sequence y. The
ABSG algorithm is given in Figure 4.

Input: (y0, y1, . . . )
Set: i← 0; j ← 0;
Repeat the following steps:

1. e← yi, zj ← yi+1;
2. i← i + 1;
3. while (yi = e) i← i + 1;
4. i← i + 1;
5. output zj

6. j ← j + 1

Figure 4: ABSG Algorithm

3.3 Buffer mechanism (unchanged)

The rate of the ABSG mechanism is irregular and therefore we use a buffer in order to
guarantee a constant throughput. We choose a buffer of length 32 and for every 4 bits that
are input into the ABSG, the buffer is supposed to output one bit exactly. With these
parameters, the probability that the buffer is empty while it has to output one bit is less than
2−89.

If the ABSG outputs one bit when the buffer is full, then the newly computed bit is not
added into the queue, i.e. it is dropped. Assuming that the initial inner state is computed
(it is denoted by z0, . . . , z191), the ABSG mechanism starts at the beginning loop and the
buffer is empty. The keystream generation process starts when the buffer is full.

3.4 Key/IV Setup

This subsection describes the computation of the initial inner state for starting the keystream
generation. Notice that the ABSG mechanism is not used anymore during the initialization
stage.

3.4.1 Initial filling of the LFSR (changed)

The secret key K is a 80-bit key denoted by K = K0, . . . ,K79 and the initialization vector
IV is a 64-bit IV denoted by IV0, . . . , IV63.
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The initial filling of the LFSR is done as follows.

xi =























Ki 0 ≤ i ≤ 79

Ki−80 ⊕ IVi−80 80 ≤ i ≤ 143

Ki−80 ⊕ IVi−144 ⊕ IVi−128 ⊕ IVi−112 ⊕ IVi−96 144 ≤ i ≤ 159

IVi−160 ⊕ IVi−128 ⊕ 1 160 ≤ i ≤ 191

The number of possible initial values of the LFSR state is 280+64 = 2144.

3.4.2 Update of the LFSR state

The LFSR is clocked 4× 192 = 768 times using a nonlinear feedback relation. Let yt denote
the output of f at time t and let lvt denote the linear feedback value at time t > 0. Then,
the value of x191 at time t is computed using the equation:

x191 = lvt ⊕ yt .

Notice that there is no bit of the LFSR state output during this step.

4 Design rationale

The rationale behind the design of Decimv2 relies on the fact that the main ideas behind
Decimv1, namely, to filter and then decimate the output of an LFSR using the ABSG mecha-
nism was in no way questioned. Thus, the core of Decimv2 is a single Boolean function-based
filtering, followed by an ABSG-based decimation.

4.1 The filter

In Decimv2 (and also in Decimv1) a Boolean function is used to filter the LFSR whereas the
Shrinking Generator or the Self-Shrinking Generator are both directly applied on LFSRs. The
linear complexity of the sequence outputs by an LFSR with a primitive feedback polynomial
is the length of the LFSR. The interest of the filter is to significantly increase the linear
complexity of the sequence which is the input sequence of the ABSG mechanism. That comes
to significantly increase the minimal length of the equivalent LFSR which generates the same
sequence as those outputs by the filtered LFSR.

The choice of the filter is very important since the filter must not introduce some weak-
nesses in the stream cipher (as it is the case for Decimv1). An important property for the
filter is that the output of the filter must be uniformly distributed. In Decimv1, the 7-variable
Boolean function f used in the filter is balanced, i.e., the value of f is uniformly distributed
in {0, 1} when the evaluation of f is done uniformly over {0, 1}7.

Decimv1 is a hardware-oriented stream cipher and the filter must have a low-cost hardware
implementation. In Decimv1, the filter is a symmetric Boolean function f (i.e. the value of
f only depends on the Hamming weight of the input) in order to reduce the hardware cost
and the function f is balanced.

The attack given by Hongjun Wu and Bart Preneel [6] has shown that it is important to
choose a Boolean function f which is correlation-immune of order 1, i.e. a function such that
there is no correlation between the outputs of the function associated to two input vectors
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which have one element in common. Since the Boolean function f must also be balanced,
that means that f must be 1-resilient. In Decimv1, the Boolean function is balanced but it
is not 1-resilient.

The filter of Decimv2 is constructed from a balanced 13-variable symmetric function
(which is not correlation immune of order 1) and the whole filter F is a 1-resilient Boolean
function.

4.2 Tap positions : filter and feedback polynomial

Assuming knowledge of the keystream z, an attacker will have to guess some bits of the
sequence y in order to attack the function f . The knowledge of the bits of y directly yields
equations in the bits of the initial state of the LFSR. Thus, the number of monomials in the
bits of the initial state of the LFSR that are involved in these equations has to be maximized.
Moreover, this number has to grow quickly during the first clocks of the LFSR. This implies
the following two conditions:

1. each difference between two positions of bits that are input to f should appear only
once;

2. some inputs of f should be taken at positions near the one of the feedback bit (which
means that some inputs should be leftmost on Figure 2).

Finally, the tap positions of the inputs of the Boolean function f and the inputs of the
feedback relation should be independent.

4.3 Key/IV Setup

The components of the keystream generation are re-used for the key/IV setup; we do not
introduce new components.

By using a 80-bit key and a 64-bit IV, the number of possible initial states is at most 2144

which is the case in Decimv2 whereas the number of possible initial states is 2136 in Decimv1.
The first attack given in [6] exploits the effects of the permutations π1 and π2 used in

the initialization process. Indeed, some bits of the LFSR are improperly updated. Then,
the attack consists in tracing some bits during the initialization process. In Decimv2, the
permutations are removed and the number of clocks of the register is increased in order to
ensure that the nonlinearity of the initialization stage is sufficient.

5 Hardware implementation

The number of gates involved in an hardware implementation can be estimated as follows,
based on the estimation for elementary components given in [2], i.e., 12 gates for a flip-flop,
2.5 gates for an XOR, 1.5 gates for an AND and 5 gates for a MUX.

Here, we have the following values for each component in the circuit:

• LFSR: 2339 gates corresponding to 192 flip-flops and 14 XORs (instead of 3334 gates
for Decimv1).

• Filtering function: 86.5 gates corresponding to 6 Full Adders and 7 XORs (instead of
74 gates for Decimv1; details on the hardware implementation of quadratic symmetric
functions are given in [3]).
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• 1-input ABSG, as described in Figure 5: 67 gates corresponding to 2 MUX, 3 XORs, 1
AND, and 4 flip-flops.

m
ux

m
uxdata

Pattern seeker

pattern

command_pattern

1

next

Figure 5: Hardware implementation of the ABSG

Remark 3 For the proposed hardware implementation, the main differences between Decimv1

and Decimv2 is that the LFSR has now to be clocked 4 times instead of 2 before outputting a

bit, i.e. Decimv2 is twice lower than Decimv1.

Moreover, the throughput of the generator can be doubled at a low implementation cost
by using a simple speed-up mechanism. This can be done with a circuit which computes two
feedback bits for the LFSR, simultaneously, as described in [3, Section 6.1]. This LFSR with
doubled clock rate can be implemented within 192 flip-flops and 28 XORs. One additional
copy of the filtering function is also required, and a 2-input ABSG mechanism must be used
(see [3] for further details).

6 Security properties

The discussion given in [3] on guess-and-determine attacks, distinguishing attacks and also
side channel attacks holds for Decimv2. Clock-controlled linear feedback shift registers, i.e.
LFSRs that are irregularly clocked according to a decimation sequence which defines the
number of symbols to be deleted before the next output symbol is produced, are immune
to fast correlation attacks [5]. In [4], Golic developed a theory of fast correlation attacks on
irregularly clocked LFSRs based on a linear statistical weakness. This attack may be realistic
in special cases but Decimv2 may be immune to such type of attack. Indeed, in order to
increase the linear complexity of the sequence (i.e. the minimal length of the equivalent
LFSR that generates the same sequence) that is shrunked by the ABSG mechanism, we use
an LFSR which is filtered by a Boolean function. Like this, the expected linear complexity
of the sequence outputs by the Boolean function is 17472, i.e. the expected minimal length
of the LFSR that generates the same sequence as those generated by the filtered LFSR of
Decim is 17472.

8
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7 Conclusion

We have proposed a new stream cipher Decimv2. The design is based on the eStream pro-
posal Decimv1 and addresses all weaknesses found in the original construction. A complete
description of Decimv2 was given and the differences from Decimv1 were discussed.

The stream cipher Decimv2 is especially suitable for hardware applications with restricted
resources such as limited storage or gate count. For applications requiring higher throughputs,
speed-up mechanisms can be used to accelerate Decimv2 at the expense of a higher hardware
complexity.

Acknowledgements. The authors wish to thank Frédéric Muller and Matt Robshaw for
helpful comments.
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Abstract

We report on the results of computations concerning the linear complexities of the
NLFSRs deployed in Achterbahn’s keystream generator. We outline a probabilis-
tic algorithm for estimating the linear complexities of binary sequences of period
2N − 1. We define Achterbahn-Version 2 whose keystream generator consists of
ten shift registers. We introduce the new combining function. We discuss recent
cryptanalysis results against Achterbahn-Version 1. The last part of the paper is
concerned with hardware optimization of the feedback functions of the deployed
nonlinear primitive shift registers.

Keywords: Stream cipher, NLFSR, linear complexity, probabilistic algorithm,
keystream generator.

1 Introduction

Achterbahn is a binary additive stream cipher. The keystream generator (KSG) of
Achterbahn-Version 1 consists of eight nonlinear primitive binary feedback shift registers
of lengths N between 22 and 31. The KSG of Achterbahn-Version 2 consists of ten
primitive shift registers of lengths between 19 and 32. We call an N -stage feedback
shift register primitive if it produces a sequence of least period 2N − 1 for every nonzero
initial state s0 ∈ F

N
2 = {0, 1}N . Both versions of Achterbahn were designed for 80-bit

secret key size and support initial values up to 80 bits.
The sequences produced by the eight, respectively ten, nonlinear feedback shift reg-

isters (NLFSRs) are combined by a Boolean combining function R : F
8
2 → F2, respec-

tively S : F
10
2 → F2, to produce the keystream ζ = (zn)∞n=0. In reduced Achterbahn

the sequences to be combined are the standard output sequences of the NLFSRs (corre-
sponding to given initial states of the shift registers). The standard output sequence of
a feedback shift register is obtained by emitting the content of the right-most cell D0 of
the shift register at each clock pulse (assuming that the shifts are performed from left
to right).
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In full Achterbahn each NLFSR is endowed with a configurable linear feedforward
output function controlled by the secret key and the initial value. The produced output
sequence τ = (tn)∞n=0 is a linear combination of the standard output sequence σ =
(sn)∞n=0 and some shifted versions thereof. For instance, let us assume that tn = sn +
sn+1 + sn+4 for n ≥ 0. We then write τ = f(T )σ, where f ∈ F2[x] is called the filter
polynomial and T denotes the shift operator on the F2-vector space F

∞
2 under termwise

operations on sequences. That is, Tσ = (sn+1)
∞
n=0 for all binary sequences σ = (sn)∞n=0.

In the above example, f(x) = 1 + x + x4.
Notice that if all applied filter polynomials are equal to the constant polynomial

f(x) = 1, the keystream produced by full Achterbahn—under this specific configuration
of the output functions—is identical to the keystream produced by reduced Achter-
bahn. In other words, the KSG of reduced Achterbahn is contained in the KSG of full
Achterbahn as a special case. An implementation of full Achterbahn can, therefore, also
be operated in the reduced Achterbahn mode. A millionaire possessing full Achterbahn
can exchange secret information with a pauper who can only afford low cost reduced
Achterbahn.

2 Linear complexity of the keystream

Any two nonzero standard output sequences of a primitive feedback shift register have
the same minimal polynomial and, therefore, the same linear complexity, which we call
the linear complexity of the shift register.

Throughout this report, we use the following abbreviations. The lengths of the shift
registers are denoted by N1, N2, . . . . The linear complexities of the shift registers are
designated by L1, L2, . . . . The least periods of the nonzero output sequences of the shift
registers are denoted by P1, P2, . . . . Thus, Pi = 2Ni − 1 for all i. A nonzero standard
output sequence of the ith shift register is denoted by σi. The filter polynomials defining
the linear feedforward output functions are denoted by f1, f2, . . . . The Boolean com-
bining functions of Achterbahn-Version 1 and Version 2 are designated by R(x1, . . . , x8)
and S(x1, . . . , x10), respectively. The keystream is denoted by ζ = (zn)∞n=0. Thus, for
instance, in the case of reduced Achterbahn-Version 1, we have ζ = R(σ1, . . . , σ8), and
in the case of full Achterbahn-Version 2, ζ = S(f1(T )σ1, . . . , f10(T )σ10).

Suppose we are given t ≥ 1 primitive binary NLFSRs of lengths N1, . . . , Nt and
linear complexities L1, . . . , Lt. Let σ1, . . . , σt be standard output sequences of the t shift
registers corresponding to any nonzero initial states. Let F (x1, . . . , xt) be an arbitrary
Boolean function of t variables. Let ζ = R(σ1, . . . , σt), that is ζ = (zn)∞n=0 with zn =
F (σ1(n), . . . , σt(n)) for n = 0, 1, . . . .

If the lengths N1, . . . , Nt of the t shift registers are pairwise relatively prime, then
the linear complexity L(ζ) of ζ can be expressed as

L(ζ) = F (L1, . . . , Lt) (1)

with the understanding that F is now regarded as a function over the integers. For-
mula (1) is well known for primitive LFSRs under less restrictive assumptions on the
lengths of the shift registers [10]. For primitive NLFSRs of pairwise relatively prime
lengths, the formula is implicitly contained in [10, Corollary 6], [9, Theorem 5], and [2,
Theorem 3].
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If the lengths of the primitive NLFSRs are not pairwise relatively prime, then equa-
tion (1) does not hold. In this case, F (L1, . . . , Lt) provides only an upper bound for
L(ζ). However, in many cases, it is still possible to derive a reasonable lower bound for
the linear complexity of ζ.

Lemma 1. Let σ1, . . . , σt be nonzero output sequences of primitive binary NLFSRs of
lengths N1, . . . , Nt, respectively, and with linear complexities L1, . . . , Lt, respectively. Let
F (x1, . . . , xt) be a Boolean function of algebraic degree d ≥ 1. A lower bound for the
linear complexity of the sequence ζ = F (σ1, . . . , σt) can be given if the following two
conditions are fulfilled:

1. The algebraic normal form (ANF) of F (x1, . . . , xt) contains a monomial
xi1xi2 · · · xid of degree d for which the corresponding shift register lengths
Ni1 , . . . , Nid are pairwise relatively prime.

2. For all other monomials of degree d, which have the form xi1 · · · xij−1
xkxij+1

· · · xid,
we have gcd(Nij , Nk) = 1.

If both assumptions are true, then

Li1Li2 · · ·Lid ≤ L(ζ). (2)

Proof. We only give a sketch of the proof. See [2] for more details. We first recall some
facts of [11, Chap. 4]. Let f, g, . . . , h be binary polynomials of positive degree and with
nonzero constant terms. Then f ∨ g ∨ · · · ∨ h ∈ F2[x] is defined to be the polynomial
whose roots are the distinct products αβ · · · γ, where α is a root of f , β a root of g,
and γ a root of h. The polynomial f ∨ g ∨ · · · ∨ h is irreducible if and only if the
polynomials f, g, . . . , h are all irreducible and of pairwise relatively prime degrees. In
this case, deg(f ∨ g ∨ · · · ∨ h) = deg(f) deg(g) · · · deg(h).

Let the canonical factorization of the minimal polynomial of σk over F2 be given by

mσk
=

ck
∏

jk=1

hjk
for k = 1, . . . , t.

The polynomials hjk
are distinct binary irreducible polynomials with deg(hjk

) > 1 and
deg(hjk

) divides Nk.
Consider d sequences of {σ1, . . . , σt}. For simplicity of notation, say, σ1, . . . , σd. We

associate to the sequences σ1, . . . , σd the polynomial

f12...d =

c1
∏

j1=1

· · ·

cd
∏

jd=1

(hj1 ∨ · · · ∨ hjd
). (3)

If N1, . . . , Nd are pairwise relatively prime, then f12...d is the minimal polynomial of
the product sequence σ1 . . . σd. In fact, (3) represents the canonical factorization of the
minimal polynomial. Using deg(hj1 ∨· · ·∨hjd

) = deg(hj1) · · · deg(hjd
), we obtain for the

linear complexity of σ1 · · · σd:

L(σ1 · · · σd) = deg(f12...d) =

c1
∑

j1=1

· · ·

cd
∑

jd=1

deg(hj1 ∨ · · · ∨ hjd
)

=

d
∏

k=1





ck
∑

jk=1

deg(hjk
)



 =

d
∏

k=1

L(σk) =

d
∏

k=1

Lk.
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This explains why we need the first requirement in the theorem. The second requirement
guarantees that no other products of sequences appearing in ζ = F (σ1, . . . , σt) will cancel
out some irreducible factors of the the polynomial in (3)

In order to assign a numerical value to to lower bound for L(ζ) derived in Lemma 1,
we need to know either the exact numerical values or at least lower bounds for the linear
complexities L1, . . . , Lt of the deployed shift registers.

It should be mentioned that a general nontrivial lower bound for the linear complex-
ity L of a nonzero output sequence of a primitive binary N -stage feedback shift register
is not known. We have, of course, N ≤ L ≤ 2N − 2. The trivial lower bound L = N
is attained if and only if the primitive shift register is linear. For nonlinear primitive
shift registers experimental results show that mostly the upper bound L = 2N − 2 is
attained (in over 50% of our observations). We also observed that occasionally the linear
complexity L drops below the value 2N−1. This happened in 0.00003% of our observa-
tions comprising about 108 primitive NLFSRs. The situation is different compared to
de Bruijn sequences [8], where the linear complexity of the sequence never drops below
the value 2N−1 + N .

Since no nontrivial lower bounds for binary primitive NLFSR-output sequences have
been proved in the literature, we have to roll our sleeves up and determine lower
bounds for the numbers Li by way of computation. We did this in two ways, using
the Berlekamp-Massey algorithm and using a new probabilistic algorithm.

The KSG of Achterbahn-Version 1 consists of eight NLFSRs of lengths N = 22, 23,
25, 26, 27, 28, 29, and 31. For the first three shift registers we found, applying the
Berlekamp-Massey algorithm, L1 = 222 − 13, L2 = 223 − 2, and L3 = 225 − 2. For the
remaining five shift registers we verified that Li ≥ 225.8 for i = 5, . . . , 8, using again
the Berlekamp-Massey algorithm. Using the probabilistic algorithm [5], we found that
with probability > 1− 2−100 all eight NLFSRs have linear complexities L ≥ 2N−1, if N
denotes the length of the shift register.

The KSG of Achterbahn-Version 2 consists of ten primitive NLFSRs of lengths N =
19, 22, 23, 25, 26, 27, 28, 29, 31, and 32. With the Berlekamp-Massey algorithm we
found L1 = 219 −2, L2 = 222 −2, L3 = 223−2, L4 = 225−2, and verified that Li ≥ 225.2

for i = 5, . . . , 10. Using the probabilistic algorithm, we verified for all ten shift registers
that L ≥ 2N−1 with probability of error < 2−100.

We outline the basic ideas of the used probabilistic algorithm. Let us use a primitive
NLFSR of length N = 31 as an example. Let σ = (sn)∞n=0 be any standard output
sequence of the shift register corresponding to a nonzero initial state. We want to verify
that the linear complexity of σ is greater than half the period of σ. The least period of
σ is P = 231 − 1. The polynomial xP − 1 is a characteristic polynomial of σ. We have

x(xP − 1) = x231

− x = x(x − 1)
∏

f irred.
deg(f)=31

f(x),

where the product is extended over all binary irreducible polynomials of degree 31. It
is easily seen that the minimal polynomial mσ of σ does not contain the polynomials
x or x − 1 as factors. Since the minimal polynomial of a periodic sequence divides any
characteristic polynomial of the sequence, we conclude that mσ is the product of distinct
irreducible binary polynomials of degree 31. If mσ contains more than one half of all
irreducible polynomials of degree 31, then we know that the linear complexity of σ must
be greater than half the period of σ.
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Given a certain irreducible polynomial f of degree 31, we can check whether or not
f is a factor of mσ in the following way:

1. Compute the polynomial gf (x) = (xP − 1)/f(x);

2. Check whether gf (T )σ 6= 0.

Again, T denotes the shift operator, and 0 represents the zero sequence. The following
lemma is crucial.

Lemma 2. The polynomial f divides mσ if and only if gf (T )σ 6= 0. Furthermore,
gf (T )σ 6= 0 if and only if the first N = deg(f) terms of the sequence τ = gf (T )σ are
not all zero.

Algorithm:

1. Choose at random a binary irreducible polynomial f of degree N = 31.

2. Check whether gf (T )σ 6= 0.

3. Repeat the first two steps k times.

If in all k experiments gf (T )σ 6= 0, then the statement L(ζ) ≥ 2N−1 is true with
probability ≥ 1 − 2−k.

The Boolean combining function S(x1, . . . , x10) for Achterbahn-Version 2, defined in
equation (9) below, has algebraic degree d = 4. The ANF of S contains the following
22 monomials of degree 4:

x1x3x6x8, x1x3x6x9, x1x4x6x8, x1x4x6x9, x1x5x6x8, x1x5x6x9, x2x3x6x8,

x2x3x6x9, x2x4x6x8, x2x4x6x9, x2x5x6x8, x2x5x6x9, x4x5x8x10, x4x5x9x10,

x4x6x7x8, x4x6x7x9, x4x6x8x10, x4x6x9x10, x5x6x7x8, x5x6x7x9, x5x7x8x10,

x5x7x9x10.

(4)

We use Lemma 1 to lower bound L(ζ). The monomial with highest indices satisfying
condition 1 of Lemma 1 is

x4x6x9x10. (5)

The lengths of the corresponding shift registers, N4 = 25, N6 = 27, N9 = 31, N10 = 32,
are pairwise relatively prime. There are exactly two monomials in (4) that overlap with
the monomial in (5) in three positions, namely the monomials

x4x5x9x10 and x4x6x8x10.

We have gcd(N5, N6) = gcd(26, 27) = 1 and gcd(N8, N9) = gcd(29, 31) = 1. Thus
condition 2 in Lemma 1 is satisfied. Using Li ≥ 2Ni−1 for i = 1, . . . , 10, we conclude
that

L(ζ) ≥ L4L6L9L10 > 224 · 226 · 230 · 231 = 2111.

Those of us who only trust results derived by the application of a deterministic algorithm,
can use Li ≥ 225.2. It then follows that

L(ζ) > 2100.

Otherwise we can use the afore mentioned results derived by the described probabilistic
algorithm.
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Theorem 1. The linear complexity of the keystream of Achterbahn-Version 2 satisfies
L(ζ) > 2100 with certainty and L(ζ) > 2111 with probability > 1 − 2−100.

3 Definition of Achterbahn-Version 2

The Boolean combining function in the initial proposal of Achterbahn [3] is given by

R(x1, . . . , x8) = x1 + x2 + x3 + x4 + x5x7 + x6x7 + x6x8 + x5x6x7 + x6x7x8. (6)

Johansson, Meier and Muller [6] described two attacks against Achterbahn exploiting
certain weaknesses of R. We responded in posting the following “improved combining
functions” at the eSTREAM page [4]

R′(x1, . . . , x8) = R(x1, . . . , x8) + x5x6 + x5x8 + x7x8. (7)

and

R′′ = x1 + x2 + x3 +
∑

4≤i<j≤8

xixj +
∑

4≤i<j<k≤8

xixjxk +
∑

4≤i<j<k<l≤8

xixjxkxl. (8)

Although the functions R′ and R′′ were meant as examples and never declared to be
successor functions for R, in a recent report [7], Johansson, Meier and Muller demon-
strated that Achterbahn with its initial combining function replaced by R′ or R′′ can
also be broken.

Before we discuss the attacks found in [7] in detail, we make some general observa-
tions regarding desired properties of combining functions to be used in NLFSR-based
combining generators, like the KSG of Achterbahn.

3.1 Some general remarks

A joint weakness of the three combining functions R, R′ and R′′ is that they all contain
several variables linearly. This fact was exploited in the first attack in [6] and in the
TMO-attack in [7] as well.

The following argument shows why variables should not appear linearly. Consider
the function R(x1, . . . , x8) in (6) and the polynomial

g(x) = (xP1 − 1)(xP2 − 1)(xP3 − 1)(xP4 − 1),

where Pi = 2Ni − 1 are the periods of the shift register output sequences σ1, . . . , σ4.
The polynomial g(x) is a characteristic polynomial of σ = σ1 + σ2 + σ3 + σ4, that is
g(T )σ = 0. Therefore, if we apply the linear operator g(T ) to the keystream

ζ = σ1 + σ2 + σ3 + σ4 + σ5σ7 + σ6σ7 + σ6σ8 + σ5σ6σ7 + σ6σ7σ8,

we obtain
g(T )ζ = g(T )(σ5σ7 + σ6σ7 + σ6σ8 + σ5σ6σ7 + σ6σ7σ8),

a sequence depending only on the states of the last four shift registers.
Even in the case when a variable does not appear linearly in the ANF of a Boolean

function, but still with low degree, the influence of the corresponding shift register can
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be undone by applying the linear operator g(T ) to the keystream, were g is sparse and
has relatively small degree. For instance, if F (x1, x2, x3, x4) = x1x2 + x2x3 + x1x3x4,
the sequence τ = g(T )ζ is independent of σ2 (and thus, independent of the contents of
the second shift register) for

g(x) = (xP1P2 − 1)(xP2P3 − 1).

Therefore, another requirement for the Boolean function should be that it contains each
variable in a monomial of maximal degree.

Yet another important rule is that for each variable there exists a monomial in the
ANF of the function which has maximum degree and has the property that the shift
register lengths corresponding to the variables in that monomial are pairwise relatively
prime. The last requirement implies that no polynomial of small degree (compared to
the linear complexity of the keystream) exists—dense or sparse—that could cancel out
the influence of one or several shift registers, when applied to the keystream in the above
sense.

3.2 The combining function

While most attacks in [7] could easily be avoided by making sure that the used Boolean
function has maximum nonlinearity (for the given order of resiliency) and contains all
of its variables in a monomial of maximum degree, there is one attack described in [7]
which is quite aggressive. In this attack one guesses the content of one shift register
and uses a linear approximation as a mean to confirm or reject the guess. The authors
use only linear approximations in [7]. However, if we also take into account quadratic
and cubic approximations in combination with the described guessing trick, we see that
Achterbahn-Version 1 can always be successfully attacked no matter what Boolean com-
bining function has been chosen. The reason is that the small number of eight variables
imposes a severe restriction to the order of correlation immunity and nonlinearity of the
function.

In order to avert attacks based on quadratic approximations, we need a combining
function of ten variables. As a consequence, the KSG of Achterbahn-Version 2 will
consist of ten primitive NLFSRs.

The combining function for Achterbahn-Version 2 is given by

S(x1, . . . , x10) = x1 + x2 + x3 + x9 + G(x4, x5, x6, x7, x10)

+ (x8 + x9)(G(x4, x5, x6, x7, x10) + H(x1, x2, x3, x4, x5, x6, x7, x10))
(9)

with
G(x4, x5, x6, x7, x10) = x4(x5 ∨ x10) + x5(x6 ∨ x7) + x6(x4 ∨ x10)

+ x7(x4 ∨ x6) + x10(x5 ∨ x7)

and
H(x1, x2, x3, x4, x5, x6, x7, x10) = x2 + x5 + x7 + x10 + (x3 + x4)x̄6

+ (x1 + x2)(x3x̄6 + x6(x4 + x5)),

where a ∨ b = a + b + ab and ā = a + 1 for a, b ∈ F2.
Function S has resiliency 5 and nonlinearity 448. The ANF of S contains 77 mono-

mials, 22 thereof have degree 4. The function can be implemented in hardware with 63
GE. Each of the ten variables of S appears in a monomial of degree 4.
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Since S has ten variables, we need another two NLFSRs. We choose shift registers
of lengths 19 and 32.

Tweak: The KSG of Achterbahn-Version 2 consists of ten primitive binary NLFSRs
of lengths 19, 22, 23, 25, 26, 27, 28, 29, 31, and 32. The maximum degrees of the
corresponding filter polynomials describing the linear feedforward output functions of
full Achterbahn are 3, 3, 3, 5, 6, 7, 8, 9, 10, 10.

Theorem 2. The keystream ζ produced by the KSG of reduced Achterbahn-Version 2,
as well as all 264 translation distinct keystream sequences produced by full Achterbahn-
Version 2, have least period

Per(ζ) =
1

135

10
∏

i=1

(

2Ni − 1
)

> 2254.

Consider the 22 monomials in (4). Each of the ten variables x1, . . . , x10 appears in
at least one monomial for which the corresponding shift register lengths are pairwise
relatively prime. Due to this property and the verified fact that Li ≥ 2Ni−1 for i =
1, . . . , 10, the following theorem can be proved.

Theorem 3. Let ζ be a keystream produced by reduced or full Achterbahn-Version 2.
For each polynomial g ∈ F2[x] with deg(g) < 280, the sequence τ = g(T )ζ depends on all
ten NLFSRs.

3.3 Cryptanalysis of Achterbahn-Version 1

We now compare the complexities of all attacks described in [7] that were successfully
applied against Achterbahn-Version 1 with combining functions R, R′, or R′′ with the
complexity of the attack against Achterbahn-Version 2 with combining function S.

The attack described in [7, Sec. 4] makes use of the the fact that the function
R(x1, . . . , x8) in (6) becomes linear for x5 = x6 = 0. The lengths of the corresponding
shift registers are 27 and 28, which are the relevant parameters for the complexity of
the attack. The complexity is O(227+28+1) = O(256) for reduced and O(273) for full
Achterbahn-Version 1. The function S(x1, . . . , S10) in (9) becomes only linear if we set
at least five of the variables x4, x5, x6, x7, x8, x9, x10 to constant values. Thus the length
of the shift registers and the maximum degrees of the filter polynomials corresponding
to the five variables that cause S to become linear are relevant for the complexity of this
attack. We obtain the complexities O(2139) and O(2176) for reduced and full Achterbahn-
Version 2, respectively.

The attack described in [7, Sec. 5] is a distinguishing attack, which exploits the fact
that R(x1, . . . , x8) can be approximated by a linear function of eight variables containing
five nonzero terms with probability 3/4. The attack requires the examination of 264

keystream bits. The Boolean function S(x1, . . . , x10) can at best be approximated by a
linear function containing six nonzero terms and with probability 9/16. It follows that
in order to detect the bias, O(2384) keystream bits are necessary. As the keystream ζ of
Achterbahn-Version 2 has least period < 2255, the attack does not make sense.

309



The attack described in [7, Sec. 5.3] and [7, Sec. 7] is the most threatening attack
in [7]. In Section 5.3, the function R(x1, . . . , x8) is attacked. Function R agrees with

L(x1, . . . , x8) = x1 + x2 + x3 + x4 + x6 (10)

with probability p = 3
4 = 1

2(1+ 1
2 ) = 1

2(1+ε). The attacker guesses the first register. This
step has complexity O(222). By guessing the first register, the approximation in (10)
reduces from five to four nonzero terms. Consider the polynomial

g(x) = (xP2 − 1)(xP3 − 1)(xP4 − 1)(xP6 − 1).

The sequence τ = g(T )ζ is the sum if 16 shifted versions of ζ. The bias for the sequence
τ therefore is

ε16 =

(

1

2

)16

= 2−16.

To take advantage of the bias one has to examine 232 keystream bits. Altogether, the
complexity of the attack is 222 · 232 = 254 for reduced and 260 for full Achterbahn-
Version 1.

The same method is used to attack R′′ in [7, Sec. 7]. The time complexities of the
attack against Achterbahn-Version 1 with R′′ are O(270) for the reduced, and O(276) for
the full version.

If we apply the attack to Achterbahn-Version 2, we observe that the best linear
approximation to S has six nonzero terms and agrees with S with probability 9/16.
This yields the complexity O(2211), respectively O(2214) if the attacker guesses the first
register. A better strategy is to guess the contents of the first two registers. This attack
has complexity O(2137) for reduced and O(2143) for full Achterbahn-Version 2. The best
strategy consists in guessing the first three registers, which yields complexities O(2112)
and O(2121).

The attack described in [7, Sec. 6.1] against R′ takes advantage of the fact that R′

contains the first four variables only linearly. The other four variables appear in the
nonlinear part of R′. These four variables correspond to the last four shift registers
which together can store 115 bits. A TMO-attack is described with time complexity
257.5 requiring 257.5 keystream bits.

The Boolean combining function S in Achterbahn-Version-2 does not depend linearly
of any of its ten variables. Thus the nonlinear part of S coincides with the entire internal
state of the KSG which has 262 bits. The complexity of the above attack is comparable
with the complexity of a classical TM0-attack which here has time and data complexity
2131.

The attack described in [7, Sec. 6.2] against full Achterbahn-Version 1 makes use of
the fact that the function R′ reduces to the affine function L = x1 +x2 +x3 +x4 +x7 +1
if the variables x5 and x6 are both set to 1. The attack requires some more keystream
bits (approximately 245) than the attack described in [7, Sec. 4]. Otherwise the attacks
are identical. The time complexity of the attack is O(273), since the lengths of the
shift registers corresponding to variables x5 and x6 are 27 and 28. The maximum
degrees of the corresponding filter polynomials are 8 and 9, respectively. This yields
27 + 28 + 8 + 9 + 1 = 73, the exponent in the complexity estimation. The same attack
applied to Achterbahn-Version 2 has time complexity O(2176).
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3.4 Quadratic approximations

Quadratic approximation attacks seem to be more threatening to our stream cipher than
correlation attacks based on linear approximations. To estimate the threat, we have
to consider all quadratic functions of ten variables which have a nonzero correlation
coefficient with S(x1, . . . , x10). The most threatening approximation is given by the
quadratic function

Q(x1, . . . , x10) = x1 + x2 + x3x4 + x6x10, (11)

which agrees with S with probability

33

64
=

1

2

(

1 +
1

32

)

=
1

2
(1 + ε).

If we guess the first two registers of lengths N1 = 19 and N2 = 22, we have only two
summands left in (11). The bias of the appropriately filtered keystream sequence is
ε4 = 2−20, so that 240 keystream bits must be processed in order to confirm the guess.
The overall complexity of the attack is 219 · 222 · 240 = 281, still above the complexity of
exhaustive key search.

3.5 Cubic approximations

The most threatening cubic approximation is given by

C(x1, . . . , x10) = x4 + x6x9 + x1x2x3, (12)

which agrees with S with probability

63

128
=

1

2

(

1 −
1

64

)

=
1

2
(1 + ε).

We guess the the content of the fourth shift register, whose length is N4 = 25. The
terms of the sequence τ = g(T )ζ, where

g(x) = (xP6P9 − 1)(xP1P2P3 − 1),

are biased with ε4 = 2−24. Thus the time complexity to determine the contents of
fourth shift register is O(273) and below the complexity of exhaustive key search. The
degree of the polynomial g in (12) is greater than 263. The attacker needs more than
263 keystream bits in order to run the attack. We counter such an attack by restricting
the maximum frame length for our stream cipher to 263 bits.

Tweak: The maximum length of a frame that can be used in the encryption process
for Achterbahn-Version 2 is 263 bits.

4 Hardware tweaks

In this section we show how the feedback logics of the driving NLFSRs can be improved
with regard to their hardware efficiencies. The goals are:

— to reduce the gate count;
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— to increase the frequency at which Achterbahn can be operated.

Both goals can be achieved without sacrificing security.
In the following, the design size is given in gate equivalents. One gate equivalent (GE)

is the design size of a 2-input NAND gate. The reported figures have been derived from
a synthesis of Achterbahn using high level description language VHDL and mapping the
design on 130 nm CMOS standard cell library.

The design size of the KSG can be divided into the following four parts (compare 2):

1. The memory cells including one multiplexor per memory cell for the parallel key-
loading.

2. The feedback logics of the ten NLFSRs.

3. The logic that implements the Boolean combining function.

4. The control logic.

How can we save hardware? We cannot shorten the lengths of the shift registers
or use a sparser Boolean combining function without lowering the security level, nor
can we reduce the control logic. However, there is room for savings in the circuits that
implement the feedback functions of the shift registers.

4.1 Reducing the implementation costs of the feedback functions

In this section we describe a way how the implementation costs of the feedback functions
can be reduced and at the same time the clock rates for the shift registers increased.
The average design size of the feedback functions of the eight driving NLFSRs in the
initial proposal of Achterbahn was 42.75 GE. This average value can be reduced to 24.7
GE per shift register in Achterbahn-Version 2.

The objective is to reduce the implementation costs of the feedback functions with-
out thinning out their algebraic normal forms. This is important because a very sparse
algebraic normal form would increase the required number of warm-up shifts in the last
step of the key-loading algorithm and, thereby, extend resynchronization times. Con-
sidering that in many applications the resynchronization intervals are relatively short,
this would not be acceptable. Besides, a very sparse feedback function provides less
resistance against algebraic attacks [1] than a function of moderate sparsity does.

The objective is achieved by choosing primitive NLFSRs whose feedback functions
can be implemented using less expensive gates. Also, 3-input gates are more efficient
than 2-input gates. Table 1 lists the hardware costs for the implementation of various
logical operations.

HW-Tweak: The initial feedback functions of the NLFSRs are replaced by more effi-
cient feedback functions. The new feedback functions can be implemented at approx-
imately half the hardware costs of the old ones and each function has logical depth
three.

For the sake of illustration, let us consider the new NLFSR A. Its feedback function
is given by

A(x0, x1, . . . , x18) = XOR(XOR(x0, x3,MUX(x5, x1;x6)),XOR(x8, x12,NAND(x4, x7)),

MUX(NAND(x9, x11),MUX(x6, x10;x4);MUX(x2, x10;x9))).
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Logical operation Binary function Hardware cost

NAND(a, b) ab + 1 1.00 GE

NOR(a, b) 1 + a + b + ab 1.00 GE

AND(a, b) ab 1.25 GE

OR(a, b) a + b + ab 1.25 GE

XOR(a, b) a + b 2.25 GE

NAND(a, b, c) abc + 1 1.25 GE

NOR(a, b, c) 1 + a + b + c + ab + ac + bc + abc 1.50 GE

AND(a, b, c) abc 1.50 GE

OR(a, b, c) a + b + c + ab + ac + bc + abc 1.75 GE

XOR(a, b, c) a + b + c 4.00 GE

MAJ(a, b, c) ab + ac + bc 2.25 GE

MUX(a, b; c) a + ac + bc 2.50 GE

Table 1: Hardware costs of logical operations

The algebraic normal form of the feedback function is

A(x0, x1, . . . , x18) = x0 + x2 + x3 + x5 + x8 + x12 + x1x6 + x2x6 + x2x9

+ x4x7 + x5x6 + x9x10 + x9x11 + x2x4x6 + x2x4x10

+ x2x6x9 + x4x9x10 + x6x9x10 + x9x10x11

+ x2x4x6x9 + x2x4x9x10 + x4x6x9x10.

The implementation costs for the feedback function A(x0, x1, . . . , x18) are 24 GE. A
switching circuit for shift register A is shown in Figure 1. Shift register A has linear
complexity 219 − 2.
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Figure 1: Switching circuit for the new NLFSR A
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Version 1 Version 2 Version 2

with DPA with DPA without DPA

protection protection protection

Memory 1002 GE 1245 GE 1245 GE

DPA counter measure 528 GE 655 GE —

Feedback functions 342 GE 247 GE 247 GE

Combining function 13 GE 63 GE 63 GE

Control logic 288 GE 298 GE 323 GE

Total 2173 GE 2508 GE 1878 GE

Table 2: Design sizes of reduced Achterbahn: Version 1 and Version 2

4.2 Design sizes of parallel implementations of Achterbahn-Version 2

Like the initial NLFSRs of Achterbahn, the new shift registers were chosen in order to fa-
cilitate parallel implementations of the KSG. While in a straightforward implementation
of the KSG, one bit of keystream is produced per clock cycle, in the parallel implementa-
tions two, four, or eight keystream bits are generated per clock cycle. We list the design
sizes of the parallel implementations of the KSG for reduced Achterbahn in Table 3.
For the sake of comparison, we also list the design sizes of Achterbahn-Version 1. The
table contains also the hardware efficiencies of the various implementations. This is the
number of keystream bits produced per clock cycle divided by the design size in units
of 1000 GE.

Besides the implementations in which countermeasures against the leakage of side
channel information are taken (in Table 3 referred to as “Achterbahn with DPA pro-
tection”), we also include the design sizes of implementations in which no such counter
measures are implemented (in the table referred to as “Achterbahn without DPA pro-
tection”).

Recall the first part of Achterbahn’s key-loading algorithm. In this part all memory
cells of the KSG are loaded simultaneously with key bits. The first register, for instance,
receives the 19 key bits k0, k1, . . . , k18, and the last register, of length 32, the key bits
k0, k1, . . . , k31. In the next step, the remaining key bits and IV bits are fed serially into
the shift registers via an XOR gate in the feedback loop of each shift register. In the
third step, the content of one cell of each shift register is overwritten with the bit 1
so that no shift register can be in the all-zero state thereafter. In the last step of the
key-loading algorithm, each shift register performs a certain number of warm-up shifts
for diffusion purposes.

The intent of the parallel key-loading in step 1 is to avoid the leakage of side channel
information in the initialization phase and during resynchronization. Unfortunately, one
has to pay a relatively high price in hardware for this feature, to be precise: 655 GE for
262 multiplexors.

In some applications, protection against side channel attacks is not required. For
such applications, we can implement the KSG using flip-flops (without reset-capability)
which cost 4.75 GE rather than the more expensive scan flip-flops (7.25 GE). The task
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of the first step of the key-loading algorithm is now accomplished by inserting the key
bits serially into each shift register. Contrary to step 2, in this step no feedback values
are added to the introduced key bits. The possibility to disable the feedback logic costs
one extra multiplexor per shift register resulting in an increase of the control logic by
25 GE. Thus the total saving amounts to 630 GE. See Table 2.

Achterbahn- Achterbahn- Achterbahn-

Version 1 with Version 2 with Version 2 without

DPA protection DPA protection DPA protection

Design Hardware Design Hardware Design Hardware

size efficiency size efficiency size efficiency

1-bit impl. 2173 GE 0.46 2508 GE 0.40 1878 GE 0.53

2-bit impl. 2412 GE 0.83 2820 GE 0.71 2188 GE 0.91

4-bit impl. 3113 GE 1.28 3852 GE 1.04 3274 GE 1.22

8-bit impl. 4778 GE 1.67 4888 GE 1.64 4386 GE 1.82

Table 3: Design size and hardware efficiency of parallel implementations of reduced
Achterbahn

5 Conclusion

We reported on the results of our computations concerning the linear complexities of the
initial and the new NLFSRs constituting the core of Achterbahn’s KSG. We outlined
a new probabilistic algorithm for estimating the linear complexities of primitive binary
NLFSRs. We described tweaks on Achterbahn-Version 1 as specified in [3] that led
to Achterbahn-Version 2. The reported cryptanalytic attacks of Johansson, Meier and
Muller [7] were discussed and it was shown that the four attacks described in [7] are either
not feasible against Achterbahn-Version 2 or have complexities above the complexity of
exhaustive key search. We introduced new feedback functions of the shift registers
that are more efficient in hardware. All feedback functions now have logical depth
three. Properties of the Boolean combining function S for Achterbahn-Version 2 were
discussed. The design sizes and hardware efficiencies for the parallel implementations
of reduced Achterbahn were updated.

Acknowledgment: We wish to thank Thomas Johansson for sending us a copy of
the preprint [7], which drew our attention to the potential threats arising from the
combination of divide and conquer attacks with correlation attacks.
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