About
26
Publications
18,245
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
729
Citations
Introduction
Current institution
Additional affiliations
December 2018 - June 2022
Publications
Publications (26)
This paper develops a wave-to-wire model of a vibro-impact wave energy converter array for stand-alone offshore applications. Nonlinear model predictive control is proposed for maximising the wave power capture of the array, and implemented by AC/DC converters and the space vector pulse width modulation technique. A hybrid energy storage system, co...
This paper aims at carefully studying the performance of a novel two-body hinged wave energy converter (WEC). Two different types of WEC are investigated: a counterpart using the generic two-body hinged-type WEC composed of two cubic floating bodies and a designed novel two-body hinged WEC composed of floating bodies with wave channels. The wave ch...
Governments worldwide are setting ambitious targets for renewable energy sources as a response to the ongoing climate crisis, leading to increased investment in offshore wind. While fixed wind structures have restrictive water depth limitations, floating devices are being developed to harness the resource in deeper waters. As part of this developme...
Model identification for a hinged-raft wave energy converter (WEC) is investigated in this paper, based on wave tank experiments and deep operator learning. Different from previous works which all formulated this issue as a function approximation task, this work, for the first time, formulates it as an operator approximation task (which learns the...
The present study aims at providing more data and insights for the hinged type WEC, especially focusing on the two-body hinged raft WECs. Two WECs are considered: a well-studied generic hinged raft WEC (G-HRWEC) and a 1:25 scale designed hinged raft WEC (D-HRWEC). The open-source tool WEC-Sim is employed in numerical studies. Referring to the publi...
In offshore renewable energy design procedures, accurate predictions of extreme responses are required in order to design for survivability whilst minimising associated costs. At present, the established method for predicting extreme responses is to conduct a large number of long-duration simulations, which is practical only in cases where the stru...
For the physical model testing of wave energy converters (WECs) in the wave basin, it is necessary to test the models in a small number of sea states. Previously, the H – T binning method was widely used to determine the sea states that are representative of an ocean area. However, it omitted much useful information such as the wave directionality....
There are more than thousands of concepts for harvesting wave energy, and wave energy converters (WECs) are diverse in operating principles, design geometries and deployment manners, leading to misconvergence in WEC technologies. Among numerous WEC devices, the point absorber wave energy converter (PAWEC) concept is one of the simplest, most broad-...
Physical experiments investigating the extreme responses of a semi-submersible floating
offshore wind turbine were conducted to allow a comparison of design wave methods. A 1:70 scale model of
the IEA 15MW reference turbine and VolturnUS-S platform was studied focusing on the hydrodynamics under
parked turbine conditions. A comparison of characteri...
Phase-resolved wave prediction is of vital importance for the real-time control of wave energy converters. In this paper, a novel wave prediction method is proposed, which, to the authors’ knowledge, achieves the real-time nonlinear wave prediction with quantified uncertainty (including both aleatory and model uncertainties) for the first time. Mor...
This paper sets out the role of offshore renewable energy (ORE) in UK targets for Net Zero greenhouse gas emissions by 2050 and provides a review of the research challenges that face the sector as it grows to meet these targets. The research challenges are set out in a Research Landscape that was established by the ORE Supergen Hub following extens...
Wave tank model testing has been widely used to assess the performance of Wave Energy Converters (WEC) in different technology readiness levels (TRL). At early stage the use of simple wave conditions such as regular waves and parametric wave spectrum JONSWAP or Pierson-Moskowitz spectrum is acceptable. However at later stages there is a need to use...
To achieve cost parity with other renewables, the wave energy sector requires significant cost reduction. Increasing the wind turbine scale is one successful route to cost reduction in the wind industry. This paper aims at investigating the scalability of wave energy converters (WECs) and providing a thorough review and analysis of published data....
We review wave energy conversion technologies for niche applications, i.e., kilowatt-scale systems that allow for more agile design, faster deployment and easier operation than utility scale systems. The wave energy converters for niche markets analysed in this paper are classified into breakwater-integrated, hybrid, devices for special application...
Wave tank model testing has been widely used to assess the performance of Wave Energy Converters (WEC) in different technology readiness levels (TRL). At early stage the use of simple wave conditions such as regular waves and parametric wave spectrum JONSWAP or Pierson-Moskowitz spectrum is acceptable. However at later stages there is a need to use...
This review aims at giving a picture of the progress of the UK wave energy and suggesting key steps needing to be taken for its contribution to the Net Zero greenhouse gas emissions target by 2050. It follows consultation through scoping wave energy workshops held by the Engineering and Physical Sciences Research Council (EPSRC) in August 2019 and...
In this work a three dimensional computational fluid dynamic (CFD) model has been constructed based on a 1/50 scale heaving point absorber wave energy converter (PAWEC). The CFD model is validated first via wave tank tests and then is applied in this study to investigate the joint effects of device geometry and power take-off (PTO) damping on wave...
To achieve optimal power in a wave energy conversion (WEC) system it is necessary to understand the device hydrodynamics. To maximize conversion efficiency the goal is to tune the WEC performance into resonance. The main challenge then to be overcome is the degree to which non-linearity in WEC hydrodynamics should be represented. Although many stud...
Past or/and future information of the excitation force is useful for real-time power maximisation control of Wave Energy Converter (WEC) systems. Current WEC modelling approaches assume that the wave excitation force is accessible and known. However, it is not directly measurable for oscillating bodies. This study aims to provide accurate approxima...
Current modelling approaches of Wave Energy Convertors (WECs) assume that the wave excitation force is known and its past/future information is required for some WEC power maximisation control. However, the wave excitation force is not directly measurable for oscillating WECs. This study aims to estimate the wave excitation force from wave elevatio...
Three different geometric forms of point absorber wave energy converter (PAWEC) devices have been studied in this work. This paper focuses on suggesting an optimal geometry for improving the efficiency of the wave-PAWEC interaction. Previously, a 1/50 scale cylindrical PAWEC with bluff bottom has been investigated in University of Hull (UoH) via ph...
Although the heaving Point Absorber (PA) concept is well known in wave energy conversion research, few studies focus on appropriate modelling of non-linear fluid viscous and mechanical friction dynamics. Even though these concepts are known to have non-linear effects on the hydrodynamic system, most research studies consider linearity as a starting...
This paper describes three numerical methods to study the hydrodynamics of a point absorber wave energy converter (PAWEC), including (i) linear mathematical model based on the boundary element method (BEM), (ii) non-linear finite element method (FEM) simulation and (iii) non-linear state space model considering viscous force. A 1/50 scale prototype...