About
14
Publications
403
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9
Citations
Introduction
Causal inference researcher, PhD candidate at EPFL.
Current institution
Publications
Publications (14)
We study the problem of closeness testing for continuous distributions and its implications for causal discovery. Specifically, we analyze the sample complexity of distinguishing whether two multidimensional continuous distributions are identical or differ by at least $\epsilon$ in terms of Kullback-Leibler (KL) divergence under non-parametric assu...
The triple difference causal inference framework is an extension of the well-known difference-in-differences framework. It relaxes the parallel trends assumption of the difference-in-differences framework through leveraging data from an auxiliary domain. Despite being commonly applied in empirical research, the triple difference framework has recei...
Artificial Neural Networks (ANNs), including fully-connected networks and transformers, are highly flexible and powerful function approximators, widely applied in fields like computer vision and natural language processing. However, their inability to inherently respect causal structures can limit their robustness, making them vulnerable to covaria...
The renowned difference-indifferences (DiD) estimator relies on the assumption of 'parallel trends,' which may not hold in many practical applications. To address this issue, economists are increasingly considering the triple difference estimator as a more credible alternative. Both DiD and triple difference are limited to assessing average effects...
Identifying causal effects is a key problem of interest across many disciplines. The two long-standing approaches to estimate causal effects are observational and experimental (randomized) studies. Observational studies can suffer from unmeasured confounding, which may render the causal effects unidentifiable. On the other hand, direct experiments...
Drawbacks of ignoring the causal mechanisms when performing imitation learning have recently been acknowledged. Several approaches both to assess the feasibility of imitation and to circumvent causal confounding and causal misspecifications have been proposed in the literature. However, the potential benefits of the incorporation of additional info...
We study the problem of causal structure learning from data using optimal transport (OT). Specifically, we first provide a constraint-based method which builds upon lower-triangular monotone parametric transport maps to design conditional independence tests which are agnostic to the noise distribution. We provide an algorithm for causal discovery u...
Causal identification is at the core of the causal inference literature, where complete algorithms have been proposed to identify causal queries of interest. The validity of these algorithms hinges on the restrictive assumption of having access to a correctly specified causal structure. In this work, we study the setting where a probabilistic model...
We study the problem of learning a Bayesian network (BN) of a set of variables when structural side information about the system is available. It is well known that learning the structure of a general BN is both computationally and statistically challenging. However, often in many applications, side information about the underlying structure can po...
Pearl's do calculus is a complete axiomatic approach to learn the identifiable causal effects from observational data. When such an effect is not identifiable, it is necessary to perform a collection of often costly interventions in the system to learn the causal effect. In this work, we consider the problem of designing the collection of intervent...
Parameter estimation in the empirical fields is usually undertaken using parametric models, and such models are convenient because they readily facilitate statistical inference. Unfortunately, they are unlikely to have a sufficiently flexible functional form to be able to adequately model real-world phenomena, and their usage may therefore result i...
We study the problem of learning a Bayesian network (BN) of a set of variables when structural side information about the system is available. It is well known that learning the structure of a general BN is both computationally and statistically challenging. However, often in many applications, side information about the underlying structure can po...
We consider the problem of learning the causal MAG of a system from observational data in the presence of latent variables and selection bias. Constraint-based methods are one of the main approaches for solving this problem, but the existing methods are either computationally impractical when dealing with large graphs or lacking completeness guaran...
One of the main approaches for causal structure learning is constraint-based methods. These methods are particularly valued as they are guaranteed to asymptotically find a structure which is statistically equivalent to the ground truth. However, they may require exponentially large number of conditional independence (CI) tests in the number of vari...