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Traditional queuing theory assumes that customer types are known or perfectly observed, and each customer

is placed in its type-specific priority queue; we call this type-driven priority queueing. We study feature-

driven priority queuing where types are not perfectly observed but are inferred from observed features using

a classifier. A practically appealing approach first takes an off-the-shelf classifier that predicts the type

posterior and then optimizes priority queueing based on the classification probabilities. We propose instead

a direct approach that optimizes the classifier to directly predict the priority queue from features.

The explicit modeling of the classifier in the queueing-system design is the novel contribution of this paper.

We present an analytic model to study the optimal queue classification that minimizes queuing delay costs.

We study how the optimal number of priority queues and the assignment of features to queues changes with

the classifier’s accuracy. In a numerical study on a data set of medical images used in digital radiology triage,

optimal feature-driven priority queuing improves delay costs by up to 30-60% relative to type classification

and queue optimization using state-of-the-art image classifiers, under high system utilization.
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1. Introduction

Priority queues are used in resource-constrained settings to stratify waiting time (and possibly

service speed) by job priority. To ensure that critical medical images experience minimal waiting

time, hospitals, imaging centers, and teleradiology companies assign each incoming medical image

a priority level (e.g., routine, important, urgent, or critical) and sequence it accordingly into the

work queue of the radiologist. Similarly, ecommerce websites assign priorities to customers for

live (human) chat agent assignment to minimize lost sales from high-value customers with limited

patience.

We consider the problem of assigning a priority level to each job (e.g., patients, customers, or

X-ray images) that arrives at a service facility. Each job is of a certain type and may have to wait

in a type-specific queue if the service facility is busy at its time of arrival; customers are served in

order of their priority in a non-preemptive manner. A job of type-i has a type-specific service time

distribution (e.g., exponential with rate µi) and a penalty ci per unit of time spent waiting in queue
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for service. Traditional queuing theory assumes that types are perfectly observed and prescribes

some version of the celebrated cµ rule to minimize delay costs (Cox and Smith 1961). The cµ rule

assigns priority to customers in decreasing order of ciµi. We call this type-driven priority queueing.

In practice, the type of a job may not be perfectly observed on arrival but instead must be inferred

from observed “features.” E.g., round, white shadows on a chest X-ray indicate the presence of

lung nodule, which is the type. To minimize waiting costs, one must specify the number of priority

queues N and a mapping from features to queues. The probability Pij that a type-i customer is

placed in priority queue j depends on this mapping. These probabilities are collected in a T ×N

queue-classification matrix P where T is the number of types.

A practically appealing “type-first” approach towards building this mapping first takes an off-

the-shelf type classifier that predicts the type-probabilities and then optimizes the prioritization

of jobs based on the classification probabilities. This is common practice in the setting of X-ray

triage that we consider in our numerical study. We propose a “direct approach” to feature-driven

priority queuing, that optimizes the classifier to directly predict the priority queue from features.

In this direct approach, the matrix P , including the number of priority queues N , is endogenous to

the queuing-system design. The queues and the classifier are optimized simultaneously to minimize

the average waiting cost.

To partially characterize the impact of feature distributions on the priority queueing design, we

construct a lower bound on average waiting cost in terms of the statistical distance between the

feature distributions for the two types, and the relative values of their delay costs, service times,

and arrival rates. If the statistical distance between feature distributions is small, then the value

of a feature-driven classifier for prioritization is limited. We also find the lower bound when the

classifier is required to be unbiased. The difference in the two lower bounds captures the loss from

using a plug and apply approach with an unbiased type classifier.

We prove that the Bayes type-posterior for a feature vector is statistically sufficient. Hence, any

prioritization decision based on features can be equivalently made using their type posteriors. In

practice classifiers are imperfect: they do not perfectly predict the Bayes posterior, so that basing

the prioritization decision solely on the classifier output (and not features) can be sub-optimal.

We demonstrate how the type-first approach may be sub-optimal even when the type classifier

is unbiased with expected error equal to zero. In contrast, the direct approach can recover the

optimal solution, even with a noisy mis-specified model, by optimizing over the weights of the

feature inputs. We demonstrate the analytical tractability of the direct approach for 2 types by

showing that the optimization of a direct queue classifier for waiting cost can be formulated as a

linear programming problem.
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For T = 3 types, (1) we investigate the structure of an idealized classifier that can achieve any

value satisfying constraints imposed by the statistical distances between the feature distributions,

and (2) we compare the waiting costs under three stylized classifiers for 3 and 2 queues to uncover

conditions when fewer queues can be better, and when is it better to assign a high (or low) priority

to types with medium cost reduction per unit time (cµ). Both the study designs for T = 3 types

analytically demonstrate the mechanisms by which a classifier is optimized for priority queuing:

1) Statistical pooling: if there is high overlap in feature distributions, it is difficult to distinguish

between types from features, the optimal classifier may utilize two queues instead of three; 2) Over

and under prioritization of the medium type: when there are two queues, the optimal classifier

chooses between grouping more of the medium type-2 with type-1 or with type-3, depending on

the relative costs of the three types; 3) Sensitivity over specificity: The optimal classifier chooses

to have high sensitivity (the probability that type 1 is classified as queue 1) even if the specificity

(the probability that type 3 is classified as queue 2) is low.

To quantify the gains from feature-driven queueing and to understand the mechanisms underlying

these gains, we present a combination of theoretical results, numerical examples, and computational

experiments with real data. Our simulation experiments are based on 100,000 anonymized 2D chest

X-ray images labeled with fourteen disease findings and made available by the National Institutes

of Health (Wang et al. 2017). We collaborated with a radiologist at a large university hospital to

rank different disease findings on chest X-rays and their delay costs, and used state-of-the-art deep

learning-based image classifiers (Garyfallos (2019)).

We find that, relative to the type-first approach, the direct approach can reduce delay costs by

30%− 60% using state-of-the-art image classifiers under high system utilization. We observe that

these gains result from the mechanisms identified by our theoretical analysis. The direct approach

utilizes three queues instead of the four queues available. The direct approach chooses more over-

triage of the medium delay cost type than the type-first approach. The direct approach chooses

sensitivity over specificity — it correctly classifies 83% of the highest delay cost type as queue

1. However, the accuracy of correctly classifying the lowest delay cost type as the last queue is

only 53%. In contrast, the type-first approach has approximately the same accuracy of correctly

classifying the higest delay cost type (69%) as queue 1 and the lowest delay cost type as the last

queue (71%).

Our work advocates for a change of practice for managers and clinicians: using plug-and-play

AI/ML based classifiers and designing prioritization policies based only on the distribution of their

output can be significantly sub-optimal. Instead, the optimization of these classifiers should be

“in-house” and calibrated to a service metric like the average waiting cost. Importantly, our study

of X-ray triage shows that this is a feasible undertaking even in more complex settings: significant

waiting gains are possible with minimal adaptation to off-the-shelf classifiers.
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2. Literature Review

Priority queues have been studied extensively since the work of Cobham (1954). Motivated by

AI/ML-assisted triage in digital radiology, we focus here on prioritization when types are imper-

fectly observed.

Zee and Theil (1961) investigate the priority assignment of two customer types–high and low–

when the type is not observable for a fraction of customers. For these customers a classifier outputs

a probability that the arriving customer is of the high type. They show that it is optimal to have

three priority levels (high, medium, and low) and and assign the medium priority level when the

classifier probability is in a certain interval.

Beja and Sid (1975) investigate the priority assignment problem when the delay cost c and service

rate µ of an arriving customer are random and drawn from a known continuous distribution. They

explore how to partition the space of delay-cost and service rate into N queues to minimize the

average waiting cost. When full types (both c and µ) are observed, a customer is assigned high

priority if and only if the product cµ lies in a given interval. If only µ is observed but not c, then the

optimal assignment is based on the product of expected cost and service rate. An analogous result

holds when only cost is observed. In our model, both the delay cost and service time (the type)

are unobserved but inferred through a feature-driven classifier that is endogenous to the queuing

system.

Bren and Saghafian (2019) consider priority assignment in a queuing system where the type of

an arriving customer is known but the service rate for each type is not. They propose a data-driven

percentile optimization approach that dynamically utilizes incoming data to learn the service rate.

The priority of a class might change as more data is collected about its own service rate and that

of others. In our study, the cost and service rates of each type (class) are known yet the type itself

is not observed, but predicted from features.

Argon and Ziya (2009) explicitly model the use of customer information (or features) for the

priority assignment. Each arriving customer has a label/signal that corresponds to the probability

that it is a high-type customer. With linear delay costs, the optimal prioritization policy is highest

signal first. If the number of priority queues is restricted to two, then it is optimal to assign

high priority to customers with signals above a threshold and assign low priority to all others.

The optimal threshold decreases as the system load increases (placing more customers in the high

priority queue) and converges to zero as the utilization approaches 100%. The properties of the

signal (in our case this would be the output of the classifier) matter: signals that are larger in

convex ordering, and thus have higher variance, result in lower waiting costs. Our novelty over

their work lies in characterizing the waiting cost based on the statistical distance between the

feature distributions of the two types and quantifying the impact of restricting the queue classifier
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to be unbiased. We compare our direct approach with prioritization based on the distribution of

the classifier signal (Section 5, Argon and Ziya (2009)), and prove that the two approaches are

identical when the classifier outputs the Bayes posterior that a feature is of type-1. However, when

the classifier predicts the Bayes posterior with an error, basing the prioritization threshold on the

distribution of the classifier output is sub-optimal.

Sun et al. (2019) study the dynamic state-dependent decision to triage customers or not, to

optimize the information-delay trade-off when triage times and triage errors are non-negligible.

They consider two types of customers and exogenous triage errors.

The contribution of our study is to endogenize the classifier and jointly optimize the classifier

and the design of the priority queue. Earlier work considers the design of the priority queues for a

given classifier that outputs a signal such as the probability of the job being of a high type. The

queue design then corresponds to choosing a signal threshold above which the job is placed in the

high priority queue. We propose direct queue prediction where not only the design of the queue

depends on the classifier properties but also the classifier depends on the queues; it is the joint

design that promises best priority prediction.

In being explicit about the classifier and its properties, our work speaks also to the growing

literature on data-driven operations where historical data is used to predict the distribution of

random variables central to the decision model. Much of this literature focuses on inventory man-

agement where the random variable is the demand for the product. Kleywegt et al. (2001) take a

non-parameteric approach to the newsvendor problem and minimize the sample average approxi-

mation (SAA) of the cost of inventory, where the average is computed over an empirical distribution

realized by a sample of past demand realizations. In similar spirit to our direct approach, Oper-

ational Statistics (Liyanage and Shanthikumar 2005) takes a parametric approach that integrates

parameter estimation and optimization of the order quantity.

Features that are correlated with demand can be used for prediction. See and Sim (2010) in-

corporate various features such as market outlook, oil prices, trend, seasonality, cyclic variation

for a multi-period inventory management problem and propose a robust optimization approach.

Ban and Rudin (2019) propose distribution-free, machine-learning algorithms for predicting the

optimal order quantity from demand features and show that these algorithms fare better than se-

quential algorithms that first estimate a feature-dependent demand distribution and then optimize

the order quantity.

The data-driven management of queuing systems (Chan et al. 2021), as the one we study here,

expands the intellectual landscape of data-driven operations. In our study, we predict the optimal

priority from features, given a training dataset of features (e.g., chest X-rays) and corresponding

true types (e.g., disease labels). We optimize the classifier to minimize the empirical cost of waiting
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(the ‘queuing loss’). Classification to priority queues is conceptually related to the use of ranking

loss functions (Cortes and Mohri (2003)) for classifier ranking tasks. But, importantly, queuing loss

is a non-linear function of misrankings (misclassifications): the average wait time in a queue in a

multi-class queuing system is a non-linear function of the total arrival rate into that queue (the

linear sum-product of the arrival rates of all classes and the (mis)classification probabilities of the

classes into that queue), and the arrival rates into the higher priority queues.

Our proposed feature-driven queueing approach drops disease prediction as an intermediary and

directly “prescribes” the decisions: queue placement based on features. Direct optimization of deci-

sions is obviously superior to separate (or silo-ed) two step optimization. While this general idea is

well understood, the mechanisms through which it improves performance relative to the sequential

optimization is context dependent; see Bertsimas and Kallus (2020) and (Elmachtoub and Grigas

2021) for general (context independent) frameworks for joint prediction and optimization.

In a queuing context, the joint problem has two important characteristics. The first is the afore-

mentioned non-linearity of the waiting cost in the unknown parameters. The second is that queuing

externalities prohibit local optimization for a feature and its “neighborhood”: the prioritization of

a job with a feature vector X can impact the wait times of all the jobs in the system - including

those with feature vectors far away from the neighborhood of X. At the same time, two types with

very different feature presentations may join the same priority queue. Priority queues is an unex-

plored context for the study of joint prediction and optimization. The non-linear externalities—the

priority assignment of one job impacts the waiting times of other jobs—give rise to new questions

about the interaction between classification/prediction and workflow design that warrant a detailed

study.

3. A Model of T Noisily Observed Types put into N Priority Queues

We consider the problem of assigning a priority level for service to each job (e.g., patients, cus-

tomers, or X-ray images) that arrives over time at a service facility. Each job is of a certain type1

and may have to wait in a queue if the service facility is busy at the time of arrival. We thus

consider non-preemptive service of priority queues. We assume the simple setting where type-

i ∈ T = {1,2,3, . . . , T} jobs arrive according to a Poisson process with rate λi for processing by a

single server2 whose processing time for type-i requests is exponentially distributed with rate µi.

1 For example, if a chest X-ray shows pneumothorax (a collapsed lung), then pneumothorax is the type of chest X-ray.

Similarly, a chest X-ray may be of type pneumonia, effusion, or any other disease diagnosis. If more than one disease

is present then the type can be defined as the most serious disease present.

2 In large medical centers, it is common to have a single worklist (sequence) of chest X-Rays and a dedicated radiologist

to review them in that order manually. Also, in the context of radiology (especially teleradiology), it is common for

images from a distributed network of hospitals or urgent care centers to be reviewed at a centralized location. A

single server non-preemptive priority queuing model with independent Poisson arrivals fits rather well.



Feature-Driven Priority Queuing 7

We impose natural independence assumptions between the arrival processes and service times of

different types. Denoting the type-i load by ρi = λi/µi, the server utilization is ρ =
∑

i∈T ρi. We

assume ρ< 1 to guarantee stability. A type-i job incurs a delay cost ci per unit of time waiting for

service. The relative values of the delay costs serve as a proxy for relative urgency. We label types,

without loss of generality, so that

c1µ1 ≥ c2µ2 ≥ c3µ3 ≥ ...≥ cTµT .

Let N be the number of priority queues and let queue 1 have the highest priority and queue N

have the lowest priority. The assignment of jobs to priority queues is evaluated on its success in

stratifying speed by priority and reducing the waiting time for service for the truly urgent jobs.

In this study the objective of priority assignment is minimizing the long-run waiting cost averaged

over all jobs.

3.1. Noisy Type Observations and the Classification Matrix P

The premise of our paper is that the type of a job is not perfectly observable but must be inferred

from imperfect signals of the type. Each arriving job is characterized by a set of observable features

(for e.g., in radiology, each arriving image can be characterized by its geometric and textural

features). We use X to denote a job’s observed feature vector, and X to denote the feature space;

for most of our analysis we take X =Rp. The features for type-i jobs are drawn from a distribution

Fi with density fi, i.e., X ∼ Fi(·) for type-i ∈ T . In feature-driven prioritization, each observed

feature X ∈X is deterministically mapped to a priority queue Q(X)∈N = {1,2,3 . . . ,N}.

To evaluate waiting costs, we must know the delay cost rate (which is type dependent) and the

waiting time, which is queue specific. Therefore, the waiting cost depends on how the types are

classified into priority queues. This depends on the mapping Q(·) from features X to queues and

on the feature density fi(·) for each type-i. The total effect of classification on the arrival rate of

jobs to the different queues is captured by the T ×N classification matrix P , where Pij denotes

the probability that a type-i job is placed in queue j: ∀i∈ T , j ∈N :

Pij = P(type-i job joins queue j) =

∫
X∈Rp

fi(X)1{Q(X) = j}dX.3 (1)

This is a stochastic matrix:
∑

j∈N Pij = 1,∀i∈ T .

The arrivals into priority queue j ∈ N follow a Poisson process with total rate λj(P ) =∑
i∈T λiPij. If si = 1/µi denotes the mean service time of type-i, then the service time of jobs

in queue j is hyper-exponentially distributed with mean
∑

i∈T λiPijsi/λj(P ). The jobs wait in a

3 We henceforth use dX to denote dX1 . . . dXp, and use 1(J ) to denote a binary variable that takes values 1 and 0

when condition J is true or false, respectively.
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N−class M/G/1 queue. The stationary waiting time, Wj(P ), in queue j under classification matrix

P has expectation:

E[Wj(P )] =
E[S]

(1−
∑

i<j ρ(i,P ))(1−
∑

i≤j ρ(i,P ))
(2)

where E[S] =
∑

i∈T λi/µ
2
i is the expected residual service time and

ρj(P ) =
∑
i∈T

ρiPij =
∑
i∈T

λiPij/µi

is the net traffic intensity (server utilization) of priority level j ∈N ; see e.g. Ross (1996, Chapter

5). The mean stationary delay cost (the average waiting cost) depends on the classification matrix

P through

C(P ) =
∑
i∈T

λici
∑
j∈N

PijE[Wj(P )] (3)

The average waiting cost C(P ) is the average urgency (delay cost) weighted waiting time and

captures the speed stratification by priority.

3.2. Queueing Externalities

The average waiting cost C(P ) reflects the externalities present in queueing systems:

1. The misclassification of a single job impacts the waiting time of all the jobs present (and

arriving later) in its and lower priority queues in that busy period.

2. The waiting time for a misclassified job not only depends on that job but also on the charac-

teristics of other jobs that are already ahead or may get ahead of that job in queue.

Example 1 (Higher Accuracy does not imply Lower Waiting Cost) Consider three types

such that c1 = 25, c2 = 2, c3 = 1, λ1 = λ2 = λ3 = 1, µ1 = µ2 = µ3 = 3.2. Suppose there are three priority

queues (N = 3), and two classifiers with classification matrices:

P1 =

0.6 0.2 0.2

0 1 0

0 0 1

 and P2 =

 0.6 0.2 0.2

0.25 0.50 0.25

0 0 1

 .
While P1 predicts types better, P1 has an average waiting cost of 75.46, exceeding the average

waiting cost of 69.91 with P2.

Under P1, the average lengths of queues 1,2, and 3 are 0.22, 0.99, and 12.86, respectively. Whereas,

under P2, the average lengths of queues 1,2, and 3 are 0.34, 0.54, and 13.86, respectively. The 20%

of the very costly type 1 images that end up in queue 3 have fewer images ahead of them (in queues

1 and 2) under P2 (0.88) as compared to P1 (1.21).

Problem Statement: To find the optimal number of queues N∗ and the optimal classification
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matrix P ∗ that together minimize the average waiting cost C(P ). We consider two approaches

to priority queue classification—direct queue classification (“direct”), where the classifier predicts

the priority queue directly from features and is optimized to minimize the waiting cost, and type

classification and queue optimization (“type-first”) where the classifier is optimized to predict type

probabilities and the allocation of predicted type probabilities to queues is optimized to minimize

the waiting cost. In the remainder of the paper, we

• Provide performance bounds on the average waiting cost for two types by using the total

variation distance between the feature distributions. We demonstrate that well-separable feature

distributions across types result in lower waiting costs.

• Show that the unbiasedness of a queue classifier is sub-optimal. Thus, employing off-the-shelf

type classifiers directly for priority queueing may not be the most effective strategy.

• Demonstrate that the direct and type-first approaches are equivalent when the type classifier

is “perfect,” i.e., when it outputs the Bayes’ probability of a type given a feature. However, if the

classifier is imperfect, the direct approach outperforms the type-first approach.

• Show the analytical tractability of the direct approach by formulating the optimization of a

linear classifier for minimizing average waiting cost for two types as a linear programming problem.

• Analytically optimize the classification matrix in a three-type setting by considering the total

variation distances between the feature distributions.

• Analyze the performance of the direct and type-first approaches using a real-life Chest X-ray

2D image dataset.

4. Analysis, Results, and Bounds

When types are perfectly observed, priority queues are assigned based on observed types rather

than features and the classification (assignment) matrix is binary. We denote the binary assignment

matrix by IT×N :

IT×N(i, j) = 1{perfectly observed type-i is assigned to priority queue j}, (4)

and the corresponding cost under perfect type information by C(IT×N).

With perfectly observed types, the cµ rule guarantees that it is never optimal to have N > T .

For any given number of queues N ≤ T , denote an optimal perfect-information classification matrix

that yields minimal cost by I∗T×N :

I∗T×N = arg min
IT×N

C(IT×N) (5)

Proposition 1 (Perfect Type Information) Given T types such that c1µ1 > c2µ2 > . . . > cTµT ,

and N ≤ T priority queues, then
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(a) There exist N +1 indices 0 = i0 < i1 < i2 < . . .≤ iN−1 < iN = T such that

I∗T×N(i, j) = 1 iff ij−1 < i≤ ij.

(b) C(I∗T×N) is a decreasing function of N , so that it is optimal to have N = T queues with the

trivial identity classification matrix, I∗T×T (i, i) = i,∀i∈ T ).

Beja and Sid (1975) study the partition of continuous types. The proof for discrete types is

simple and appears in the Appendix. With perfect observation, and in the absence of a practical

restriction on the number N of queues, it is optimal then to have as many priority levels as types.

The first item implies that it is never optimal to assign a lower priority to a type that ranks higher

on cµ.

When job types are not perfectly observed, the jobs are assigned to priority queues using a

classifier. A classifier (e.g., a decision tree, a support vector machine) separates jobs into several

categories (prediction classes) based on their observed features.

Proposition 2 (Classification errors) Given a deterministic classifier that maps features X ∈

X of T types into K prediction classes that are grouped into N ≤K priority queues, then

(a) The optimal number of priority queues N∗ equals K. Equivalently, it is optimal to consider

each prediction class as a priority queue.

(b) Let P denote the classification matrix induced my the classification of features of T types to N

queues. It is optimal to prioritize queue m over queue n (m,n∈ {1, . . . ,N}) if and only if∑
i∈T Pimλici∑
i∈T Pimρi

≥
∑

i∈T Pinλici∑
i∈T Pinρi

.

Part (a) of the above proposition states that post deterministic classification, it cannot be optimal

to further group classes into coarser priority queues. It does not comment on the optimal number

of classes but only on the optimal number of priority queues ex-post classification.

When classifying T types into N queues, the waiting cost (3) can be written equivalently as

the waiting cost of a multi-class system with N -priority queues where queue m∈ {1,2, · · · ,N} has

arrival rate λm(P ), service rate µm(P ), and delay cost rate cm(P ):

λm(P ) =
∑
k∈T

λkPkm,
1

µm(P )
=
∑
i∈T

1

µi

λiPim

λm(P )
=

∑
i∈T ρiPim

λm(P )
and cm(P ) =

∑
i∈T ciλiPim

λm(P )
.

If N = T , then the classification matrix P that minimizes the waiting cost is the identity matrix,

corresponding to perfect type observation giving an upper bound on performance.
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4.1. Feature-Driven Priority Queueing: Performance Bound (T =N = 2)

In this section, we construct lower bounds on the waiting costs achievable through feature-driven

classification. The lower bounds are tight and lead to interesting revelations. First, they confirm

the intuition that feature distributions that are well separable across types result in lower waiting

costs. Second, they show that the unbiasedness of a queue classifier is sub-optimal. This second

result is counterintuitive since most type classification algorithms are optimized to reduce bias.

For T =N = 2, the average waiting cost for a classification matrix P equals

C(P ) = C(P FIFO)− (c1µ1 − c2µ2)ρ1ρ2E[S]
1− ρ

· P11 −P21

1− ρ1P11 − ρ2P21

, where P =

[
P11, 1−P11

P21, 1−P21

]
. (6)

C(P FIFO) is the average waiting cost under a single queue first in first out (FIFO) regime:

P FIFO =

[
1, 0

1, 0

]
, C(P FIFO) =

(c1µ1ρ1 + c2µ2ρ2)E[S]
1− ρ

.

The average waiting cost C(P ) depends on the classification probabilities of types 1 and 2 into

priority queue 1, which depend on the feature distributions for the two types. For a classifier Q(·),

let A= {X :Q(X) = 1, X ∈Rp} be the set of features that are mapped to priority queue 1. From

(1), the classification probabilities induced by the classifier Q(·) satisfy

P11 =

∫
X∈A

f1(X)dX, P21 =

∫
X∈A

f2(X)dX, A⊆Rp. (7)

If the feature distributions (F1(·) and F2(·)) of the types are identical, then for all possible classifiers

Q(·), P11 = P21, and C(P ) = C(P FIFO). In contrast, if the feature distributions are well separated, a

greater wait time stratification may be possible. Below, we formalize this intuition. At the minimum,

P11 and P21 satisfy the below constraints:

|P11 −P21| ≤ sup
A

∫
X∈A

(f1(X)− f2(X))dX =

∫
X∈Rp |f1(X)− f2(X)|dX

2
= TV (F1,F2)≤ 1 (8)

TV (F1,F2) is the total variation distance (Bhattacharyya et al. (2023)) between F1(·) and F2(·).

Therefore, the below minimization problem provides a lower bound on C(P ):

min
P11,P21

(c1µ1ρ1 + c2µ2ρ2)E[S]
1− ρ

− (c1µ1 − c2µ2)E[S]ρ1ρ2
1− ρ

· P11 −P21

1− ρ1P11 − ρ2P21

subject to:

|P11 −P21| ≤ TV (F1,F2)

0≤ P11 ≤ 1

0≤ P21 ≤ 1
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The optimal solution to the above minimization problem is P ∗
11 = 1, P ∗

21 = 1−TV (F1,F2). Restrict-

ing P to be unbiased imposes an additional constraint p1P11 + p2P21 = p1, leading to the optimal

solution P ∗
11 = p1 + p2TV (F1,F2), P

∗
21 = p1(1−TV (F1,F2)).

Proposition 3 (Lower Bound)

1. For any classification matrix P induced by a classifier that maps features to queues,

C(P )≥ (c1µ1ρ1 + c2µ2ρ2)E[S]
1− ρ

− (c1µ1 − c2µ2)E[S]ρ1ρ2
1− ρ

TV (F1,F2)

1− ρ+ ρ2TV (F1,F2)

2. For an unbiased classification matrix P that satisfies p1P11 + p2P21 = p1,

C(P )≥ (c1µ1ρ1 + c2µ2ρ2)E[S]
1− ρ

− (c1µ1 − c2µ2)E[S]ρ1ρ2
1− ρ

TV (F1,F2)

1− ρp1 +(ρ2p1 − ρ1p2)TV (F1,F2)

Since d
dx
( x
1−ρ+ρ2x

) = 1−ρ
(1−ρ+ρ2x)2

> 0, the lower bound in Proposition 3 decreases as TV (F1,F2)

increases i.e., the types are more distinguishable from features. Further, the bound is tight: it holds

with equality for TV (F1,F2) = 0 (the feature distributions are identical and hence no classifier can

do better than FIFO) as well as for TV (F1,F2) = 1 (feature distributions are completely separable

and P ∗ = I2×2).

The difference between the lower bounds in (1) and (2) is

−(c1µ1 − c2µ2)E[S]ρ1ρ2ρp2
1− ρ

TV (F1,F2)(1−TV (F1,F2))

(1− ρ+ ρ2TV (F1,F2))(1− ρp1 +(ρ2p1 − ρ1p2)TV (F1,F2))
≤ 0.

While the difference is negative for 0 < TV (F1,F2) < 1, it is zero for TV (F1,F2) = 0 and

TV (F1,F2) = 1. When TV (F1,F2) = 1, the feature distributions are perfectly separable, and P ∗ =

I2×2 (which is unbiased). When TV (F1,F2) = 0, both the lower bounds are equal to the average

waiting cost under FIFO.

The reason why the unbiased classifier fares worse (has a higher lower bound on the average

waiting cost) is because it does not allow for very high values of P11. For example, because of

unbiasedness, the solution P11 = 1 implies P21 = 0 which violates the constraint (8) when there is

an overlap in feature distributions i.e., TV (F1,F2)< 1.

4.2. Direct vs Type-First

We compare two approaches to priority queue classification:

1. Direct Queue Classification (“direct”), where the classifier predicts the priority queue directly

from features and is optimized to minimize the waiting cost.

2. Type Classification and Queue Optimization (“type-first”) where the classifier is optimized

to predict type probabilities and the allocation of predicted type probabilities to queues is

optimized to minimize the waiting cost.
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We show that both the approaches (direct and type-first) are equivalent if the classifier is “per-

fect”(meaning it outputs the Bayes’ probability of a type given a feature), but if the classifier

is imperfect and outputs the Bayes’ probability with some error, then the type-first approach is

sub-optimal, even when the classifier is unbiased with expected error equal to zero. In Section 4.1,

we showed that an unbiased but imperfect type classifier may lead to under-triage where less than

optimal number of type-1 and type-2 jobs are classified into queue 1. Here, we demonstrate the

same phenomenon in a different setting.

For any feature X, let PT (X) be a T -dimensional vector with ith entry P(i|X), the posterior

probability that the true type is i; where,

P(i|X) =
pifi(X)∑
i∈T pifi(X)

, i∈ T (9)

Lemma 1 For observed feature X ∈ X , the Bayes type posterior PT (X) is statistically sufficient

for the set of probability measures on (X , S) corresponding to the feature densities {fi(X); i∈ T }.

In other words, the feature X does not provide more information about the underling type than

the Bayes type posterior PT (X).

Lemma 2 Consider a feature-driven priority mapping such that observed feature X is mapped to

queue j with probability qj(X), j ∈N . Then, there exists an equivalent type-posterior based priority

mapping such that type posterior PT (X) is mapped to queue j with probability qtj(PT (X)):

qtj(PT (X)) =E[qj(X)|PT (X)] ∀j ∈N

Pij =E[qtj(PT (X))|X ∼ Fi] =E[qj(X)|X ∼ Fi] ∀i∈ T , j ∈N

where Pij is the probability that type-i is mapped to queue j ∀i∈ T , j ∈N .

Lemma 2 states that any classification matrix, and the corresponding average waiting cost, realized

by a mapping of features to priority queues can be equivalently realized by a probabilistic mapping

of the Bayes type posterior to priority queues.

Next we investigate the scenario where the the type classifier makes errors in predicting the

Bayes type posterior. Consider T = N = 2, suppose a classifier predicts the type 1 posterior for

feature X as Z(X). Let the distribution of the classifier signal be such that it has density b(z) at

Z(X) = z, and the classifier be unbiased i.e.,
∫ 1

0
zb(z)dz = p1. Argon and Ziya (2009) show that the

optimal deterministic prioritization policy that minimizes the expected waiting cost conditioned

on b(·) is a threshold policy such that all values of Z(X)∈ [t,1] are assigned to queue 1 and values

in [0, t) are assigned to queue 2. For a threshold t, the classification probabilities are estimated as:

P̂11(t) = p−1
1

∫ 1

t

zb(z)dz; P̂21(t) = p−1
2

∫ 1

t

(1− z)b(z)dz. (10)
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From (6), the threshold t̄ that minimizes C(P̂ (t)) satisfies

t̄= argmin
t

C(P̂ (t)) = argmaxt

P̂11(t)− P̂21(t)

1− ρ1P̂11(t)− ρ2P̂21(t)
= argmaxt

1− 1−ρP̂11(t)

1−ρP̂21(t)

ρ2 + ρ1
1−ρP̂11(t)

1−ρP̂21(t)

= argmin
t

1− ρP̂11(t)

1− ρP̂21(t)

(11)

(∵ d
du
( 1−u
ρ2+ρ1u

) =− ρ1+ρ2
(ρ1+ρ2u)2

< 0 and 1−u
ρ2+ρ1u

is decreasing in u). Further, we can show that t̄ satisfies

dP̂11(t)

dt

dP̂21(t)

dt

=
1− ρP̂11(t)

1− ρP̂21(t)
=⇒

t̄

1− t̄
=

p1
p2

1− ρP̂11(t̄)

1− ρP̂21(t̄)
=

p1 − ρ
∫ 1

t̄
zb(z)dz

p2 − ρ
∫ 1

t̄
(1− z)b(z)

. (12)

Let P(1|Z(X) = z) be the probability that the job is of type-1 conditioned on classifier signal

Z(X) = z, and P11(t) and P22(t) be the classification probabilities realized for threshold t:

P11(t) = P(z ∈ [t,1]|X ∼ F1) =
∫ 1

t

P(1|Z(X)=z)b(z)

P(X∼F1)
dz = p−1

1

∫ 1

t
P(1|Z(X) = z)b(z)dz (13)

P21(t) = P(z ∈ [t,1]|X ∼ F2) =
∫ 1

t

P(X∼F2|z)b(z)
P(X∼F2)

dz = p−1
2

∫ 1

t
(1−P(1|Z(X) = z))b(z)dz

The optimal threshold t∗ that minimizes the true waiting cost, i.e., t∗ = argmint C(P (t∗)), satisfies:

t∗ = argmin
t

1− ρP11(t)

1− ρP21(t)
.

Further, t∗ satisfies
dP11(t)

dt
dP21(t)

dt

=
1− ρP11(t)

1− ρP21(t)
=⇒

P(1|Z(X) = t∗)

1−P(1|Z(X) = t∗)
=

p1
p2

1− ρP11(t
∗)

1− ρP21(t∗)
=

p1 − ρ
∫ 1

t∗ P(1|Z(X) = z)b(z)dz

p2 − ρ
∫ 1

t∗(1−P(1|Z(X) = z))b(z)dz
. (14)

1. When Z(X) = P(1|X) (the Bayes probability), then P(1|Z(X) = z) = z, and the estimated

classification probabilities (10) are equal to the realized classification probabilities (13), i.e.,

P11(t) = P̂11(t), P21(t) = P̂21(t). The threshold obtained by (12) is equal to t∗, and gives the

lowest possible waiting cost:

C(P (t= t∗)) =
(c1µ1ρ1 + c2µ2ρ2)

1− ρ
− (c1µ1 − c2µ2)ρ1ρ2

1− ρ

(p1 − t∗)

ρ2p1 +(ρp2 − ρ2)t∗

2. When Z(X) ̸= P(1|X), then P(1|Z(X) = z) ̸= z, and the estimated and realized classification

probabilities are not identical (P̂11(t) ̸= P11(t), P̂21(t) ̸= P21(t)), and (12) does not give the

optimal solution t∗. Therefore,

C(P (t̄))≥C(P (t∗))
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Next, we characterize a scenario where a classifier that under-estimates small values of the Bayes

posterior and over-estimates large values of the Bayes posterior leads to under-triage such that

fewer than the optimal number of type-1 and type-2 jobs are classified into queue 1.

Lemma 3 Let the classifier signal for feature X be Z(X) = P(1|X) + ζ(X), where P(1|X) is the

Bayes probability of type-1 for feature X, and ζ(X) is the error in estimating P(1|X). Let ζ(X) be

such that there exists a mapping ϵ(·) such that ζ(X) = ϵ(Z(X)), i.e.,

P(1|Z(X) = z) = z− ϵ(z)

Let b(z) be the probability density of Z(X) at Z(X) = z ∈ [0,1] such that ϵ(z) is unbiased i.e.,∫ 1

0
ϵ(z)b(z)dz = 0, and higher values of the classifier signal correspond to higher values of the Bayes

posterior, i.e., z− ϵ(z) is increasing in z. If there exists a threshold tu ≤ t̄ (defined in 12) such that

0≤ ϵ(z)≤ z for all z ≤ tu and z− 1≤ ϵ(z)< 0 for all z > tu, then prioritization based on z leads to

under-triage.

From (14), the optimal threshold (t∗) that minimizes the realized waiting cost satisfies

t∗ − ϵ(t∗)

1− (t∗ − ϵ(t∗))
=

(p1 − ρ
∫ 1

t∗ (z− ϵ(z))b(z)dz)

(p2 − ρ
∫ 1

t∗ (1− z+ ϵ(z))b(z)dz)
≤

(p1 − ρ
∫ 1

t̄
(z− ϵ(z))b(z)dz)

(p2 − ρ
∫ 1

t̄
(1− z+ ϵ(z))b(z)dz)

(15)

(∵ t∗ = argmint
1−ρP11(t)

1−ρP11(t)
). Under the assumptions of Lemma 3,

∫ 1

t
ϵ(z)b(z)dz ≤ 0 for t > 0, ϵ(t̄)≤ 0,

and

(p1 − ρ
∫ 1

t̄
zb(z)dz+ ρ

∫ 1

t̄
ϵ(z)b(z)dz)

(p2 − ρ
∫ 1

t̄
(1− z)b(z)dz− ρ

∫ 1

t̄
ϵ(z)b(z)dz)

≤
(p1 − ρ

∫ 1

t̄
zb(z)dz)

(p2 − ρ
∫ 1

t̄
(1− z)b(z)dz)

=
t̄

1− t̄
≤ t̄− ϵ(t̄)

1− t̄+ ϵ(t̄)
(16)

From (15) and (16), we have t∗ − ϵ(t∗) ≤ t̄ − ϵ(t̄). Since, z − ϵ(z) is increasing in z, we

have t∗ ≤ t̄. Therefore, the probabilities that types 1 and 2 get classified into queue 1, i.e.,∫ 1

t̄
(z− ϵ(z))b(z)dz and

∫ 1

t̄
(1− z+ ϵ(z))b(z)dz are smaller than the optimal (

∫ 1

t∗ (z− ϵ(z))b(z)dz

and
∫ 1

t∗ (1− z+ ϵ(z))b(z)dz).

Next, we illustrate a scenario where no threshold-based prioritization of a noisy classifier signal

can recover the minimum cost solution. However, even with the same prediction model, the direct

approach can asymptotically recover the minimum cost solution by optimizing the feature weights.

Example 2 Suppose the feature X is one-dimensional. For type-1, X is uniformly distributed over

[0,2σ] where σ ∈ [ 1
2
,1]. For type-2, X is uniformly over [−1,1]:

f1(X) =
1

2σ
1(X ∈ [0,2σ]), f2(X) =

1

2
1(X ∈ [−1,1]); (see Figure 1).
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Type-1

Type -2

𝑓! 𝑋 =
1
2𝜎
	

𝑓" 𝑋 =
1
2

-1 0 1 22𝜎

Figure 1 Feature distributions for the two types in Example 2

Then: F1(x) =


0 if x< 0;

x
2σ

if 0≤ x≤ 2σ;

1 if x> 2σ

, F2(x) =


0 if x<−1;

(x+1)

2
if − 1≤ x≤ 1;

1 if x> 1

Using an interchange argument, it can be shown that the optimal solution is to assign X ≥K to

queue 1 where K ∈ [0,1]. The optimal K∗ as per (6)) is:

K∗ = argmin
K

[
1− ρP11(K)

1− ρP21(K)
=

1− ρ+ ρF1(K)

1− ρ+ ρF2(K)

]
= 0.

The Bayes probability that feature X is of type 1 is

P(1|X) =


0 if X < 0;

p1
2σ

p1
2σ+

p2
2

if 0≤X ≤ 1;

1 if X > 1

Now, suppose p1 ≤ p2, and a classifier noisily predicts the Bayes probability of type-1:

Z(X) =



0 if X <−1;

−
p1
2σ

p1
2σ+

p2
2
X if − 1≤X ≤ 0;

p1
2σ

p1
2σ+

p2
2
−

p1
2σX

p1
2σ+

p2
2

if 0≤X ≤ 1;

1 if X > 1;

Type Classification and Queue Optimization: Suppose we assign Z(X) ≥ t to queue 1, where t ∈

(0,1). Now,

Z(X)≥ t ⇐⇒


− t

p1
2σ

p1
2σ+

p2
2

,0

∪

0, p1
2σ

p1
2σ+

p2
2

−t

p1
2σ

p1
2σ+

p2
2

 if t≤
p1
2σ

p1
2σ+

p2
2

X > 1 if t >
p1
2σ

p1
2σ+

p2
2
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There does not exist a threshold t such that Z(X)≥ t ⇐⇒ X ≥ 0.

Direct : Maps feature X to queue 1 if z(β0 + β1X)≥ 1− z(β0 + β1X), where the weights β are

optimized to minimize the waiting cost. Let β0 = 1, β1 = M . We show that the direct approach

recovers the optimal policy as M →∞.

z(MX +1)=



0 if MX +1<−1;

−
p1
2σ

p1
2σ+

p2
2
(MX +1) if − 1≤MX +1≤ 0;

p1
2σ

p1
2σ+

p2
2
−

p1
2σ

p1
2σ+

p2
2
(MX +1) if 0≤MX +1≤ 1;

1 if MX +1> 1;

lim
M→∞

P(MX +1> 1;X > 0) = 1 and lim
M→∞

P(MX +1≥−1;X < 0) = 0

4.3. Optimizing a simple Direct Queue Linear-Classifier

Section 4.2 presents the advantages of direct queue classification. Here, we demonstrate the analyt-

ical tractability of optimizing the direct queue classifier. For T =N = 2, we show that optimizing a

linear classifier for minimizing the average waiting cost can be formulated as a linear programming

problem. Let Q(X)∈ {1,2} be the priority queue for feature X. We consider a linear classifier that

predicts the probability that feature X is of priority queue 1.

P(Q(X) = 1) = β′X (17)

The model is trained on historic data of jobs’ observed features X and corresponding type label t

(as classified by a human expert). The training data set S thus consists of s pairs (Xr, tr), r ∈ [s]

where the true type-tr is a binary variable (1 for type 1 and 0 for type 2). 4 The empirical estimate

of the classification matrix is

P̂ (β) =

[ ∑s
r=1 trβ

′Xr∑s
r=1 tr

1−
∑s

r=1 trβ
′Xr∑s

r=1 tr∑s
r=1 (1−tr)β

′Xr∑s
r=1 1−tr

1−
∑s

r=1 (1−tr)β
′Xr∑s

r=1 1−tr

]
(18)

The optimal β = β∗ that minimizes the empirical estimate for the waiting cost satisfies:

β∗ = argmaxβ

P̂11(β)− P̂21(β)

1− ρ1P̂11(β)− ρ2P̂21(β)
= argmaxβ

1− ρP̂21(β)

1− ρP̂11(β)
(see (6), (11)) (19)

For P̂11(β) and P̂21(β) to be valid probabilities, we restrict β to satisfy:

0≤
∑s

r=1 trβ
′Xr∑s

r=1 tr
≤ 1

0≤
∑s

r=1 (1−tr)β
′Xr∑s

r=1 1−tr
≤ 1 (20)

4 We normalize all features so that they have zero mean and unit standard deviation by replacing each Xj
r with

Xj
r−mean({Xj

r ;1≤r≤s})
sd({Xj

r ;1≤r≤s})
, ∀1≤ j ≤ p).
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Lemma 4 The optimization problem (19) subject to (20) can be reformulated as the below linear

programming problem:

maximizew0,w[w0 − ρw′u]

subject to :

Aw≤ bw0

w0 − ρw′v= 1

w0 ≥ 0

where u=
∑s

r=1 (1−tr)Xr∑s
r=1 1−tr

, v=
∑s

r=1 trXr∑s
r=1 tr

, A= [u, v,−u,−v]
′
, b= [1,1,0,0]′

5. Analytic Example with 3 Types

For T = 3 types, we investigate the structure of an idealized classifier P that can achieve any

value satisfying constraints imposed by the statistical distances between the feature distributions.

We also compare the waiting costs under three stylized classifiers for 3 and 2 queues to uncover

conditions when fewer queues can be better, and when is it better to assign a high (or low) priority

to types with medium cost reduction per unit time (cµ).

Regardless of design (direct or type-first), the total waiting cost is determined by the classification

matrix P . Each classification matrix P is defined by the number of queues N and the probabilities

of types getting classified into the N queues.

The choice of the number of queues N trades-off two competing forces. On one hand, the greater

the number of queues, the smaller the waiting cost; recall that greater stratification up to N = T

is optimal under perfect information. On the other hand, due to overlap in feature distributions,

the classifier learning, and hence the queue assignment accuracy, may drop when the number of

queues equals the number of types. Due to the overlap in feature distributions, it is not possible

to increase one classification probability without increasing the other, and, at the minimum, the

classification probabilities satisfy the below constraints:

Pij −Pmj ≤
1

2

∫
X∈Rp

|fi(X)− fm(X)|dX = TV (Fi,Fm) ∀i,m∈ T , j ∈N (21)

Further, using triangle inequalities, we can show that ∀i, k,m∈ T :

TV (Fi,Fk)+TV (Fk,Fm)≤ TV (Fi,Fm) and |TV (Fi,Fj)−TV (Fj,Fk)| ≥ TV (Fi,Fk)

We define the parameter vector Φ= {c1, c2, c3, µ1, µ2, µ3, λ1, λ2, λ3}, where types are labeled so that

c1µ1 > c2µ2 > c3µ3. The relative cost reductions per unit time of the types captured by:

Summary Parameter γ :=
c1µ1 − c2µ2

c2µ2 − c3µ3

(22)
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which captures the relative increments in cost reduction per unit time between the types: γ =∞

is the case that types 2 and 3 are indistinguishable while γ = 0 means that types 2 and 1 and are

indistinguishable in terms of their cost reduction per unit time. We introduce the total utilization

ρtot = ρ1 + ρ2 + ρ3

Even for the idealized case, fully characterizing the optimal P is complex and depends on the

relative values of cost reductions per unit time, the utilizations for the three types, and the total

variation distances between the feature distributions of the three types. We partially characterize

the optimal classification matrix for some specific values of the parameters. For N = 3 queues,

we focus on high values of γ, when the cost reduction per unit time of type 1 is so high that

it is optimal to keep types 2 and 3 separate from the type 1 (as much as possible). Even under

sufficiently high γ, we find that the optimal P can take two possible values, depending on the

relative cost reductions per unit time of types 2 and 3, as well as total variation distances between

feature distributions.

Proposition 4 (3 Queues) For T = 3 and N = 3, let TV (F1,F2) < TV (F1,F3), TV (F2,F3) <

TV (F1,F3). Let the optimal P that minimizes C(P ) under the constraints (21) be P ∗. Then, there

exists γ∗
u (that depends on ρ1, ρ2, ρ3, TV (F1,F2), TV (F2,F3), TV (F1,F3)) such that ∀ γ > γ∗

u:

P ∗ =

 1, 0, 0

1−TV (F1,F2), TV (F1,F2), 0

1−TV (F1,F3), TV (F1,F3)−TV (F2,F3), TV (F2,F3)

 if ∆≥ 0

P ∗ =

 1, 0, 0

1−TV (F1,F2), TV (F1,F2)+TV (F2,F3)−TV (F1,F3), TV (F1,F3)−TV (F2,F3)

1−TV (F1,F3), 0, TV (F1,F3)

 if ∆< 0

where,

∆= c2µ2ρ2(TV (F1,F3)−TV (F2,F3))[ρtot(1− ρtot + ρ3TV (F2,F3))− (1− ρtot)TV (F1,F2)(ρ2 + ρ3)]

+ c3µ3ρ2ρ
2
3TV (F1,F3)TV (F2,F3)(TV (F1,F2)+TV (F2,F3)−TV (F1,F3))

− c3µ3ρ2ρ3(1− ρtot)(TV (F1,F3)−TV (F1,F2))(TV (F1,F3)−TV (F2,F3))

The conditions TV (F1,F2)<TV (F1,F3) and TV (F2,F3)<TV (F1,F3) imply that the total varia-

tion distance between the features for types 1 and 3 is the greatest. The quantity ∆ is positive when

the cost reduction per unit time for type 2 (c2µ2) is significantly higher than the cost reduction

per unit time for type 3 (c3µ3) or when the total utilization (ρtot) is very high. In this case, it is
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important to protect type 2 from joining queue 3. When ∆ is negative, it is optimal to keep type

3 in queue 3.

Statistical pooling: If it is difficult to distinguish between types from features, the optimal classi-

fier may utilize fewer queues than types. For ∆≥ 0, the utilization of the third queue, ρ3TV (F2,F3),

approaches 0 as TV (F2,F3) (the total variation distance between types 2 and 3) approaches zero.

For ∆ < 0, the utilization of the second queue approaches to zero as TV (F1,F2) + TV (F2,F3)−

TV (F1,F3) approaches to zero i.e., when the total variation distance between the feature distri-

butions of types 1 and 2 and between types 2 and 3 is small as compared to the total variation

distance between the feature distributions of types 1 and 3. In our case study with chest X-rays,

we find that the optimal queue classifier utilizes only 3 out of 4 possible queues (see matrix P̂ d

(26) in Section 6).

Next, we characterize the optimal classification matrices for T = 3 types and N = 2 queues.

Proposition 5 (2 Queues) For T = 3 and N = 2, let TV (F1,F2) ≤ TV (F1,F3), TV (F2,F3) ≤

TV (F1,F3). Let the optimal P that minimizes C(P ) under the constraints (21) be P ∗:

1. If Summary Parameter γ > ρ3(1−ρtot+ρtotTV (F1,F3))

ρ1(1−ρtot)
, then

P ∗ =

 1, 0

1−TV (F1,F2), TV (F1,F2)

1−TV (F1,F3), TV (F1,F3)


2. If Summary Parameter γ < ρ3

ρ1(1−ρtotTV (F1,F3))
, then

P ∗ =

 1, 0

1−TV (F1,F3)+TV (F2,F3), TV (F1,F3)−TV (F2,F3)

1−TV (F1,F3), TV (F1,F3)


Over and under prioritization of the medium type: For 2 queues, it is always optimal to keep

types 1 and 3 in queues 1 and 2 respectively, to the greatest possible extent under the constraints

(21).

1. When the summary parameter γ is higher than a certain threshold (type 1 has a significantly

higher cost reduction per unit time than type 2), then it is optimal to under-prioritize type

2 and have a greater volume of type 2 in the last queue (as compared to the optimal 3 queue

design). The threshold increases with the total utilization ρtot and the under-prioritization

of the medium type gets sub-optimal under heavy traffic. Further, the threshold value of γ

increases with TV (F1,F3), the total variation distance between the feature distributions of

types 1 and 3 i.e., under-prioritization is worse for high classification accuracy and better for

low classification accuracy.
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2. When the summary parameter γ is smaller than a certain threshold (types 1 and 2 have similar

cost reductions per unit time), then it is optimal to over-prioritize type 2 and have a greater

volume of type 2 in the first queue (as compared to the optimal 3 queue design). The threshold

value of γ increases with the total utilization ρtot and over-prioritization of the medium type

gets optimal under heavy traffic. Further, the threshold increases with TV (F1,F3) i.e., over-

prioritization is better for high classification accuracy and worse for low classification accuracy.

With two queues, Proposition 2 in Argon and Ziya (2009) shows that as the total utilization ρtot

approaches 1, the optimal utilization of the second queue drops to zero. Here, we prove that even

for small values of total utilization ρtot, the utilization of the second queue drops to zero as the

statistical distances between the feature distributions (TV (F1,F2), TV (F1,F3)) approach zero.

Sensitivity more important than specificity: The optimal classifier chooses to have high

sensitivity (the probability that type 1 is classified as queue 1) even if the specificity (the probability

that type 3 is classified as queue 2) is low.

The above results are derived for an idealized classifier that can take all possible values of P

that satisfy the constraints (21) imposed by the statistical distances between feature distributions.

To test the robustness of these results, we compare the waiting costs under the below choice of

classification matrices for 3 and 2 queues to answer two important questions:

1. When does the optimal classifier utilize fewer queues than types?

2. When is it be better to assign a high (or low) priority to the jobs with medium cost reduction

per unit time.

P (3, β3) =

 β3
1−β3

2
1−β3

2
1−β3

2
β3

1−β3
2

1−β3
2

1−β3
2

β3

 , P o(2, β2) =

 β2 1−β2

β2 1−β2

1−β2 β2

 , P u(2, β2) =

 β2 1−β2

1−β2 β2

1−β2 β2

 , (23)

where 1
3
<β3 ≤ 1 and 1

2
<β2 ≤ 1.

The matrix P (3, β3) utilizes N = T = 3 queues such that each type gets mapped to its correct

priority queue with probability β3 and to any other queue with probability (1− β3)/2. The re-

striction β3 > 1/3 guarantees that the classifier does better than random queue assignment. The

matrices P o(2, β2) and P u(2, β2) utilize N = 2 queues such that types 1 and 3 get mapped to the

first and the last queues with probability β2 >
1
2
, respectively. The matrix P o(2, β2) corresponds

to an “over-prioritization” of the medium type where more type 2 join the first queue, whereas

P u(2, β2) corresponds to an “under-prioritization” of the medium type where more type 2 join the

last queue.

Under perfect type information, the average waiting cost decreases with the number of priority

queues, i.e., N∗ = 3; see Proposition 1. This is no longer the case with noisy observations because

a classifier’s accuracy can drop with the number of prediction classes (Cui et al. 2019, Deng
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et al. 2012). In the extreme case when classification is uninformative any prioritization is the

same as FIFO (a single queue) in terms of waiting cost. We prove that for intermediate values of

classification accuracy, we can benefit from statistical pooling, meaning that if prediction accuracy

increases with fewer queues we must classify into, then sufficient improvement in accuracy from

pooling may overcome the loss due to coarse queueing.

Proposition 6 (Statistical pooling) Suppose T = 3 and P (3, β3), P
u(2, β2), P

o(2, β2) are as

specified in eq. (23). Then, there exists a threshold β∗
3(Φ) such that:

1. For all β3 ∈ [0, β∗
3(Φ)), there exists a threshold value of β2 equal to β∗

2(β3,Φ) ∈ (β3,1), such

that

min{C(P u(2, β2)),C(P o(2, β2))}< C(P (3, β3)) ∀β2 ∈ (β∗
2(β3,Φ),1].

The two-queue average waiting cost with classifier accuracy β2 ∈ (β∗
2(β3,Φ),1] is lower than

the three-queue average waiting cost with classifier accuracy β3.

2. For all β3 ∈ [β∗
3(Φ),1],

C(P (3, β3))≤min{C(P u(2, β2)),C(P o(2, β2))}∀β2 ∈ [0,1].

The three-queue average waiting cost with classifier accuracy β3 ∈ [β∗
3(Φ),1] is lower than the

two-queue average waiting cost for all classifier accuracies β2 ∈ [0,1].

As an example, consider the extreme case where classification is purely random, i.e., β3 =
1
3
. In

this case the waiting cost does not vary with prioritization and equals that of FIFO. The waiting

cost is lower with two priority queues (N = 2) as long as β2 >
1
2
. When utilization is substantial,

it is increasingly important to protect the customers with high delay costs from joining the lowest

priority queue. Even a small gain in accuracy may justify coarse priorities (N = 2).

Proposition 7 (Statistical pooling: impact of total utilization) Suppose T = 3 types that

have the same load (ρ1 = ρ2 = ρ3 = ρ). If γ ≤ 1, the classification threshold β∗
3(Φ) is increasing in

ρ (i.e., the range of accuracies β3 for which 3 queues have lower waiting cost than 2 queues with

β2 = 1 shrinks as ρ increases). If γ > 1, the threshold β∗
3(Φ) is non-monotone in ρ: it decreases for

total load 3ρ< γ−1
γ

and increases thereafter.

When types 2 and 1 are closer in their cost reductions per unit time as compared to types 2

and 3, then the higher the utilization, the larger the upper limit of β3 for which three queues

with accuracy β3 are worse than two queues with accuracy 1. When types 2 and 1 differ more in

their cost reductions per unit time than types 2 and 3, then for small utilization, the higher the

utilization, the smaller the upper limit of β3 for which three queues with accuracy β3 are worse
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than two queues with accuracy 1. However, once the utilization is sufficiently high, the upper limit

of β3 increases with utilization.

In Proposition 5, we show that for the idealized classifier, over-prioritization of the medium type

is better than under-prioritization of the medium type for high γ, high classification accuracy (low

feature-overlap among types), and low utilization. In Proposition 8, we demonstrate the robustness

of that result by proving that it also holds for the choice of classifiers in (23).

Proposition 8 (Over and under prioritization with 2 queues) Suppose T = 3 and N = 2

with P u(2, β2), P o(2, β2) as specified in eq. (23). Then, there exists an accuracy threshold:

β∗
2(Φ) =



0 if
γρ1 − (1− ρtot)ρ3
ρtot(γρ1 + ρ3)

< 0

1 if
γρ1 − (1− ρtot)ρ3
ρtot(γρ1 + ρ3)

> 1

γρ1 − (1− ρtot)ρ3
ρtot(γρ1 + ρ3)

otherwise

, (24)

such that it is better to under-prioritize (i.e., C(P u(2, β2))≤C(P o(2, β2)) ) if β2 ≤ β∗
2(Φ) and over-

prioritize (i.e., C(P u(2, β2)) > C(P o(2, β2))) otherwise. For fixed ρ1, ρ2, ρ3, the threshold β∗
2(Φ) is

increasing in γ.

Over-prioritizing type 2 increases the waiting time of type 1 while under-prioritizing type 2 increases

the waiting time of type 2. Which of the two is the “lesser evil” depends on the delay costs c1, c2 and

the relative lengths of the high priority and low priority queues. The low priority queue is (1−ρtot)
−1

times longer than the high priority queue (from eq. (2)). The range γ > ρ3
ρ1(1−ρtot)

corresponds to

β∗
2(Φ)> 1. The values of γ are rather large, and are of the same order as the ratio of the low to

high priority queue lengths (i.e., O(1/(1− ρtot)). In this range c1 is significantly larger than c2 so

that the cost of over-prioritization much exceeds the cost of under-prioritization, regardless of the

accuracy β2. In contrast, if γ < ρ3
ρ1
, then β∗

2(Φ) < 0. In this case, the cost of under-prioritization

exceeds the cost of over-prioritization, regardless of accuracy β2.

Lemma 5 For fixed γ, and ρ1 = ρ2 = ρ3 = ρ, β∗
2(Φ) is decreasing in ρ and approaches γ/(γ+1) as

the total utilization ρtot = 3ρ approaches 1.

If ρ1 = ρ2 = ρ3 = ρ, then β∗
2(Φ) = (γ−1+3ρ)/(3ρ(γ+1)) = ((γ−1)/3ρ(γ+1))+(1/(γ+1)), which

is decreasing function of ρ for γ > 1. As the total utilization 3ρ approaches 1, the threshold accuracy

β∗
2(Φ) approaches γ/(γ +1). Since this limiting cut-off is greater than 0.5 for γ > 1, the question

of under or over prioritization persists even in heavy-traffic: as the total utilization approaches

100%—depending on the classifier’s accuracy—it might be optimal to assign medium cost jobs as

low priority.
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Figure 2 Each inner plot shows the optimal priority queuing design as a function of the classifier accuracy

parameters β2 (vertical axis) and β3 (horizontal axis). The design is shown for 4 values of type 2’s

relative cost γ (increasing from left to right) and three total utilization values given symmetric type-

loads ρ1 = ρ2 = ρ3 = ρ (increasing from bottom to top). There are three priority queuing designs: (1)

N = 3 priority queues is colored green; (2) N = 2 with under-prioritization of type 2 is blue; (3) N = 2

with over-prioritization of type 2 is red.

Summary Classification Total

Parameter γ Accuracy Utilization

High Low High Low High Low

Benefit from statistical pooling Less More Less More More Less

Over-prioritization or Under-prioritization for N = 2 Under Over Over Under Over Under

Table 1 Summary of relative benefits of statistical pooling and over/under prioritization of the medium type

for 3 types under different regimes—different values of γ (ratio of difference in cost reduction per unit time

between types 1 and 2 and difference in cost reduction per unit time between types 2 and 3), classification

accuracy/statistical distance between feature distributions, and total utilization.

Table 1 shows the optimal queue assignment strategy for different parameter regimes. Figure 2

shows the optimal priority queue design for three types, for a special case of ρ1 = ρ2 = ρ3, different
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values of total utilization, summary parameter γ, and classification accuracies under two queues

(β2) and three queues (β3).

Recall that for N = 2, the idealized classifier was 100% accurate in assigning type 1 jobs to queue

1, even though it was less accurate in assigning type 3 jobs to queue 2. We show that the result is

robust by demonstrating it for two stylized asymmetric classification matrices. Let N = 2, and

P u(2, β11, β22) =

 β11 1−β11

1−β22 β22

1−β22 β22

 , P o(2, β11, β22) =

 β11 1−β11

β11 1−β11

1−β22 β22

 (25)

The parameter β11 represents the sensitivity of classification (the accuracy of classifying the high

priority types as such) and β22 represents the specificity (the accuracy of classifying the low priority

types as such) of classification. The next proposition shows that sensitivity has a stronger effect

on waiting cost compared to specificity.

Proposition 9 (Sensitivity is more important than specificity) Under the matrices speci-

fied in eq. (25), suppose

C∗ =min{C(P u(2, β11, β22)),C(P o(2, β11, β22))}

C∗ is decreasing in both β11 and β22. Further, C∗ is more sensitive to β11 than to β22:

∂C∗

∂β11

<
∂C∗

∂β22

< 0.

In our case study with chest X-rays, we find that the optimal queue classifier has much higher

sensitivity than specificity (see matrix P̂ d (26) in Section 6).

6. Quantifying Improvements using a Chest X-ray 2D Image Dataset

In this section we explore feature-driven prioritization using state-of-the-art 2D image classifiers.

The purpose of our experiments is to estimate the potential gains from queue classification (vs.

type classification) for a practical setting with T = 14 types and N = 4 queues, and underscore the

drivers of these gains.

The publicly available “ChestX-ray14” dataset provided by the National Institutes of Health

(NIH) Clinical Center (Wang et al. 2017) consists of 112,120 frontal chest X-ray (CXR) 2D images

with text-mined disease labels from the associated radiological reports for 30,805 unique patients.

Following standard practice, we use an image resolution of 512× 512 pixels with 3 channels for

red, blue, and green (RGB) with 8 bits per channel. Each image is stored as a 512× 512× 3 array

with each entry storing conventional brightness intensities between 0 and 255. The feature space
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X is discrete with the number of possible observed features (numerical representation of images)

equal to 512× 512× 2563.

Types: There are 13 diseases with possible co-occurrences or no-occurrence (no finding). Table

2 shows the rank order of delay costs of different diseases, based on discussions with clinicians.5 In

consultation with a radiologist, we define the type of an image with multiple diseases as the rank

of the highest delay cost disease present on that image. There are 14 types of images (T = 14) with

type 14 corresponding to no disease finding. We consider two families of delay costs:

• Convex delay costs: The delay cost of type-i is ci = ηT−i for i ∈ T . This family has a single

parameter η that we can vary to analyze the impact of cost heterogeneity. We consider η > 1 (to

ensure that the delay cost of type-1 is the highest and that of type-14 is the lowest). For η > 1,

the difference in delay costs of successive types is increasing with the rank order of the types:

c1 − c2 = η12(η− 1)> c2 − c3 = η11(η− 1)> c3 − c4 = η10(η− 1)> . . . > c13 − c14 = (η− 1). We vary

η ∈ {1.8,1.5}: η= 1.8 has more type heterogeneity than η= 1.5.

• Linear delay costs: The delay cost of type-i is ci = δ ∗ (T − i) + 1 for i ∈ T . The difference in

delay costs between any two successive types is δ i.e., c1 − c2 = c2 − c3 = c3 − c4 = . . .= c13 − c14.

We vary δ ∈ {1.8,10}: δ= 1.8 implies smaller differences in delay costs than δ= 10.

We do not have arrival times of the CXRs, and for the purpose of this study we assume that the

arrivals of CXRs of different types to the radiology center follow Poisson processes. We normalize

the total arrival rate to 1 so that the arrival rate of each type equals the fraction of that type in the

full dataset of all the images. For a sample data set Ds consisting of s CXRs and type labels, let

Ds = {(Xr, tr) : r ∈ S} where tr ∈ T is the known true type of the CXR and Xr is an 512× 512× 3

data array that contains red, green, and blue color components for each individual pixel of the

image. Here S = {1,2, · · · , s} is the set of all image indices in the sample. We estimate the arrival

rate of type-i∈ T image as λ̂i =
∑s

r=1 I(tr = i)/s. Table 3 shows the arrival rates of different types

of images.

Focusing on a portion of the day (say peak hours) where arrivals are relatively stationary does

not qualitatively change the results. We assume an equal service time of the radiologist for all

image types: µ= (
∑

t∈T λ̂t)/ρtot∀i∈ T , where ρtot is the total server utilization.

In large radiology centers and hospitals, it is common to have a separate worklist for CXRs. Each

incoming CXR is assigned a priority for the radiologist reading (“triage”). There are typically four

priority queues for radiologist review: Critical (1) ≻ Urgent (2) ≻ Important (3) ≻ Routine (4).

5 We acknowledge that the rank ordering of disease findings on delay costs may be subjective and context dependent

(for example, (1) some findings may become more urgent in case of an outbreak; (2) a second CXR for a patient

showing the same finding from the previous day may no longer be very urgent since it is already diagnosed and

being monitored for treatment; (3) a CXR with no finding may be important for diagnostic clarity), and actual

implementation of direct in a clinical setting would require collaboration with health experts.
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Disease Rank Order of Delay Cost

Pneumothorax 1

Emphysema 2

Pneumonia 3

Edema 4

Consolidation 5

Effusion 6

Infiltration 7

Atelectasis 8

Cardiomegaly 9

Pleural Thickening 10

Fibrosis 11

Mass 12

Nodule 13

No Finding 14

Table 2 Rank order of delay costs for different diseases (from highest to lowest).

Type Arrival Rate (Prevalence)

1 0.05

2 0.02

3 0.01

4 0.02

5 0.04

6 0.09

7 0.12

8 0.04

9 0.01

10 0.01

11 0.01

12 0.02

13 0.02

14 0.54

Total 1.00

Table 3 Type Distribution “ChestX-ray14” dataset

Existing studies (Baltruschat et al. 2019, Wang et al. 2017) and open-source publications (Gary-

fallos 2019) use deep learning methods or image classification on this same dataset. We use the

Mobile Net Architecture in Garyfallos (2019) as a building block for our experiments. Mobile Net

is a Convolutional Neural Network (CNN) designed specifically for image classification and mobile
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vision. It utilizes depth-wise separable convolutions to greatly reduce the number of parameters

while retaining sufficient depth levels. The computational savings make Mobile Net a great choice

for computer vision on devices with less power, such as cellphones and embedded cameras, and

hence a good choice for practical implementation in healthcare settings.

We simulate a single-server priority queuing model of AI/ML (Mobile Net) enabled feature-driven

triage of CXRs at a radiology center, and experiment with a range of delay cost families (convex

and linear), their parameters η and δ, and total utilization ρtot. Our python implementation is

publicly available.

1 Classify Type then Optimize Queuing (t): We use the Mobile Net classifier6 to predict the

probabilities of different diseases, and hence the probabilities of the 14 types on the images (see

Appendix 8.1 for more details). Let zr = z(Xr) = [zi,r] = [zi(Xr)], i ∈ T be the T dimensional

probability vector output of the Mobile Net for the image r ∈ S with feature vector Xr such that

zi(Xr) is the probability that the image r is of type-i. We map the type probability zr to queue

Qt(β1, β2, β3, zr):

Qt(β1, β2, β3, zr) = argmax
j∈{1,2,3,4}

qj(β1, β2, β3, zr) :

q1(β1, β2, β3, zr) =
exp(β1 · zr)

exp(β1 · zr)+ exp(β2 · zr)+ exp(β3 · zr)+ 1

q2(β1, β2, β3, zr) =
exp(β2 · zr)

exp(β1 · zr)+ exp(β2 · zr)+ exp(β3 · zr)+ 1

q3(β1, β2, β3, zr) =
exp(β3 · zr)

exp(β1 · zr)+ exp(β2 · zr)+ exp(β3 · zr)+ 1

q4(β1, β2, β3, zr) =
1

exp(β1 · zr)+ exp(β2 · zr)+ exp(β3 · zr)+ 1

where β1, β2, and β3 are T−dimensional weight vectors.

Now, 0< qj(β1, β2, β3, zr)< 1 ∀j{1,2,3,4}, r ∈ S, and
∑

j∈{1,2,3,4} qj(β1, β2, β3, zr) = 1 ∀r ∈ S.

Therefore, qj(β1, β2, β3, zr) can be interpreted as the probability that image r with predicted

type probabilities zr belongs to queue j, and Qt(β1, β2, β3, zr) is the queue with the greatest

probability qj(β1, β2, β3, zr). We estimate the classification probabilities as: ∀i∈ T , j ∈N

P̂ij(β1, β2, β3) =

∑
r∈S zi,rqj(β1, β2, β3, zr)∑

r∈S zi,r
.

We find the optimal β1, β2, β3 that minimize the estimated average waiting cost:

βt∗
1 , βt∗

2 , βt∗
3 = argmin

(β1,β2,β3)

C(P̂ (β1, β2, β3)).

6 For training the Mobile Net, we create a re-sampled dataset that is well-balanced across types.
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Delay Cost ρtot C(P̂ t) C(P̂ d) C(P full) C(P FIFO)

ci = 1.8(T − i)+ 1 0.9 58 (8) 27 (1) 16 59

ci = 10(T − i)+ 1 0.9 270 (46) 106 (10) 51 290

ci = 1.5(T−i) 0.9 103 (18) 59 (4) 28 166

ci = 1.8(T−i) 0.9 550 (50) 395 (41) 158 1285

ci = 1.8(T−i) 0.6 96 (3) 99 (5) 63 143

Table 4 Estimates of Mean (Standard Deviation) of Average Waiting Costs Using 10 samples of 2000 test

images each. Recall that P̂ t corresponds to type-first, and P̂ d corresponds to direct.

2 Direct (d): We use the same Mobile Net architecture as for type-first that predicts the probabil-

ities for each image, but add an activation layer on top that outputs a 4-dimensional probability

vector

q1(β1, β2, β3, z(Xr)) =
exp(β1 · z(Xr))

exp(β1 · z(Xr))+ exp(β2 · z(Xr))+ exp(β3 · z(Xr))+ 1

q2(β1, β2, β3, z(Xr)) =
exp(β2 · z(Xr))

exp(β1 · z(Xr))+ exp(β2 · z(Xr))+ exp(β3 · z(Xr))+ 1

q3(β1, β2, β3, z(Xr)) =
exp(β3 · z(Xr))

exp(β1 · z(Xr))+ exp(β2 · z(Xr))+ exp(β3 · z(Xr))+ 1

q4(β1, β2, β3, z(Xr)) =
1

exp(β1 · z(Xr))+ exp(β2 · z(Xr))+ exp(β3 · z(Xr))+ 1

where, β1, β2, and β3 are T−dimensional weight vectors. We map feature Xr to queue

Qd(β1, β2, β3,Xr) which corresponds to the queue with the greatest predicted probability

Qd(β1, β2, β3,Xr) = argmax
j∈{1,2,3,4}

qj(β1, β2, β3, z(Xr))

We estimate the classification probabilities as: ∀i∈ T , j ∈N

P̂ij(β1, β2, β3, z) =

∑
r∈S 1(tr = i)qj(β1, β2, β3, z(Xr))∑

r∈S 1(tr = i)
.

We find the optimal Mobile Net z∗ (by optimizing the weights of the Convolutional Neural

Network) as well the weights βd∗
1 , βd∗

2 , βd∗
3 of the queueing activation layer to minimize the average

waiting cost:

(βd∗
1 , βd∗

2 , βd∗
3 , zd∗) = argmin

(β1,β2,β3,z)

C(P̂ (β1, β2, β3, z))

To benchmark these, we estimate the average waiting cost under perfect/full type observation

with classification matrix P full (full information) and under the single queue first-in-first-out ap-

proach with classification matrix P FIFO, where P full = I∗T×N (see eq. (5) in §3.1), P FIFO : P FIFO
ij =

1 ∀i∈ T , j = 1.
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Table 4 reports the performance for the different schemes implemented by taking multiple sam-

ples Ds = {(Xr, tr) : r ∈ S}. For each sample, we estimate the classification matrices P̂1 and P̂2

generated by the type classification approach (t) and the direct approach (d):

P̂ t
ij =

∑
r∈S 1(tr = i)1(Qt(βt∗

1 , βt∗
2 , βt∗

3 , zr) = j)∑
r∈S 1(tr = i)

P̂ d
ij =

∑
r∈S 1(tr = i)1(Qd(βd∗

1 , βd∗
2 , βd∗

3 , zd∗(Xr)) = j)∑
r∈S 1(tr = i)

and estimate the average waiting costs as C(P̂ t) and C(P̂ d), respectively. The results reveal the

following:

P̂ t =



0.69 0.24 0.08 0.0

0.38 0.40 0.22 0.0

0.27 0.46 0.27 0.0

0.17 0.52 0.31 0.0

0.21 0.39 0.40 0.0

0.14 0.40 0.47 0.0

0.67 0.27 0.06 0.0

0.34 0.51 0.16 0.0

0.48 0.48 0.03 0.0

0.42 0.47 0.11 0.0

0.54 0.39 0.07 0.0

0.25 0.47 0.28 0.0

0.23 0.55 0.22 0.0

0.05 0.24 0.71 0.0



, P̂ d =



0.0 0.83 0.14 0.03

0.0 0.77 0.19 0.05

0.0 0.78 0.17 0.05

0.0 0.75 0.21 0.05

0.0 0.63 0.27 0.10

0.0 0.61 0.28 0.10

0.0 0.81 0.15 0.04

0.0 0.62 0.30 0.08

0.0 0.63 0.27 0.10

0.0 0.67 0.25 0.09

0.0 0.71 0.21 0.08

0.0 0.63 0.26 0.11

0.0 0.64 0.27 0.09

0.0 0.16 0.31 0.53



, P̂ full =



1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

0.0 0.0 0.0 1.0



(26)

1. Statistical Pooling at High Utilization: Queues 4 and 1 in P̂ t and P̂ d, respectively, in

(26) have a zero utilization, showing that both the approaches — type-first and direct —

utilize fewer queues than maximum possible. This validates our theoretical result on statistical

pooling (Proposition 6) for a stylized family of classifiers.

2. Over-triage at High Utilization: The direct approach gives much lower average waiting

cost than type-first for ρ = 0.9 (by 30% to 60% in our experiments; see Table 4). It has a

significant over-triage of the medium types. The average classification matrices 7 for delay

costs of types given by ci = 1.8(T−i) (26) show that under the direct approach, 61% of the

medium type 6 join the first queue and 10% join the last queue. In contrast, under type-first,

14% of the medium type 6 join the first queue and 47% join the last queue.

7 The average of the classification matrices for the 10 samples of 2000 images
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3. Sensitivity more important than Specificity: The direct approach correctly classifies 83%

of type 1 as queue 1. However, the accuracy of correctly classifying type 14 as the last queue

is only 53% (26). In contrast, the type-first approach has approximately the same accuracy of

correctly classifying type 1 (69%) as queue 1 and type 14 as last queue (71%).

4. Type-Driven vs Direct: The type-first approach gives a significantly lower average waiting

cost than a single queue with first in first out regime only under convex cost structures. When

the differences in delay costs of successive types are constant and the classifier is unbiased (as

is the type classifier), the optimal queue assignment based on type probabilities balances over-

triage and under-triage of the medium types. Whereas the optimal solution must have more

over-triage of the medium types. In contrast, when the differences in delay costs of successive

types are convex, and the classifier is unbiased, the optimal queue assignment based on type

probabilities chooses more over-triage — even smaller probabilities for high types are assigned

to the higher priority queue.

The direct approach gives significant savings across both linear as well as convex cost

structures. It provides significant cost savings over the type-first approach (30% - 60% in our

experiments) under high utilization (ρtot = 0.9), but performs equally or marginally worse

than the latter approach for low utilization (ρtot = 0.6). Under the direct design (P̂ d), the

average waiting times of all types except type 14 (no finding) are in the 2.1–3.9 range (Table

5), whereas type-14 waits for significantly longer (12.4-time units). The optimized classifier is,

on its own, leveraging an attribute of the underlying data: more than half (54%) of the total

arrival volume is of type 14 (“no finding”) while the prevalence of each of the types 1 to 13

is small. This makes sense as imaging is often prescribed to rule out dangerous conditions.

It is a characteristic of priority queues, that the waiting time of high-priority decreases, the

larger the low-priority arrival rate as a portion of the total arrival rate is. The queue classifier

is smart enough to capture this (whereas the type classifier is not); it effectively creates two

wait time categories: separating scans with a finding from those without a finding.8

We believe that the performance reported in Table 4 is a conservative estimate of the gains of

feature-driven queue prioritization due to the following:

• We did not optimize some design parameters of the Mobile Net neural network—arrangement

of dropout layers, dropout rate, learning rate—as they were tuned for disease prediction in Gary-

fallos (2019), even though we deploy the network for queue prediction. Tuning these parameters

specifically for priority queue prediction could possibly lead to better performance.

8 Even though both the queue and type classifiers are trained on a well-balanced training set with over-sampling of

types with lower arrival rates, the queue classifier can capture the imbalance via the actual values of arrival rates

used for computing the queuing loss.
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Average Waiting Time

Type P̂ t P̂ d P̂ full

1 2.33 2.11 0.87

2 4.44 2.64 0.87

3 5.21 2.63 0.87

4 5.80 2.64 1.09

5 6.95 3.82 1.09

6 7.93 3.95 1.09

7 2.06 2.33 1.68

8 3.67 3.58 1.68

9 1.89 3.86 1.68

10 2.94 3.50 1.68

11 2.31 3.27 1.68

12 5.34 3.94 1.68

13 4.64 3.65 13.40

14 11.27 12.40 13.40

Table 5 Average waiting times of different types for different classification matrices for delay costs of types

given by ci = 1.8(T−i); i{1,2,3, . . . ,14}. One time unit corresponds to a normalized total arrival rate of 1. Recall

that P̂ t corresponds to type classification and queue optimization, P̂ d corresponds to direct queue classification,

and P̂ full corresponds to perfect information when the type of each image is known on arrival.

• Due to GPU memory limitations, we used a batch size (the number of images used for one

gradient update due to optimization) of 32 in training the classifier. We believe that a larger

batch size (for each gradient update) is more beneficial for optimizing waiting cost, as compared to

optimizing a standard loss function like the mean squared error. This is because the former requires

an estimation of T ×N classification matrix. Increasing the batch-size is practically implementable

via multiple-gpu based parallel processing.

This computational study presents evidence that our optimal queue classification design can

lead to substantial improvements over the current type classification design in the practical setting

of triaging chest x-rays. We do acknowledge that our limited dataset forces us to assume that

the priority queue depends only on the features of the image. In reality, both clinical and non-

clinical features may determine the priority queue of an image. Also, previous studies (Ibanez et al.

2017) have shown that radiologists often exercise discretion and deviate from assigned queues.

In this study, we make the simplistic assumption that delay costs aggregate linearly over time.

Exploring non-linear costs could be an interesting and relevant extension, potentially yielding

counter-intuitive results, as demonstrated in the experiments in Section 9 of Argon and Ziya (2009).
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7. Summary, Discussion and Conclusion

Priority queuing is an unexplored context for the study of direct prediction of decisions. The non-

linear queuing externalities—the impact of priority assignment of one job on the waiting times of

other jobs—–give rise to new questions about the interaction between classification/prediction and

priority queues (workflow) design that warrant a detailed study.

In this study, we explicitly link the statistical distances between types’ feature distributions with

the optimal queue design for two and three types. For two types, we construct tight lower bounds on

the waiting costs achievable through feature-based classification, and show that the unbiasedness

of a queue classifier is sub-optimal.

Our theoretical analysis of the three-type setting helps us characterize the mechanisms through

which direct queueing brings improvements under different levels of system utilization and the rela-

tive urgency of the types: 1) choosing between more queues (better waiting time stratification) and

fewer queues (more accurate queue classification) depending on the classifier accuracy for more vs.

fewer queues, which, in turn, depends on the statistical distances between feature distributions; 2)

balancing under and over prioritization; 3) optimizing the classification accuracy for the most im-

portant queue. These results are novel because they open the black box and provide interpretability

to the mathematical interaction between AI/ML (classification) and priority queuing.

We also present evidence that direct queue classification can yield substantial improvements

over type classification and queue optimization in a practical setting of triaging chest x-rays.

Our computational performance study may be the first to apply deep learning-based classification

of medical images to study the impact of classification errors on optimal priority queue design.

We show that feature-driven priority queuing can improve waiting cost significantly under high

utilization.

Our research proposes a priority recommendation system and demonstrates its value in a

stylized setting assuming the user follows the priority recommendation. Accounting for human

deviations from algorithmic recommendations is undoubtedly an exciting problem addressed in

some other contexts (Sun et al. 2021) but beyond the scope of this first study on feature-driven

design of priority queues.
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8. Appendix

8.1. Type-Classification for Triage of Chest X-rays

Figure 3 2D chest X-rays labeled with diseases and Mobile Net predictions. Dx: disease findings extracted from

their radiologist reports. PDx: predicted probabilities by Mobile Net*. Image Source: Garyfallos (2019).

*Mobile Net outputs probabilities for all 14 findings but the figure shows only those for the actual findings.

We use a Mobile Net (multiple binarizers in Garyfallos (2019)) 9 to predict the probability of each

disease (Figure 3 shows two CXRs labeled with the disease findings extracted from their radiologist

reports and the Mobile Net output for the images). The classification is optimized to minimize the

binary cross entropy loss. Figure 4 reports the performance of Mobile Net. For all diseases, the

results (in terms of the area under the curve (AUC) for the receiver operating characteristic curve

(ROC)) are equal or better than those reported in Wang et al. (2017). The probability of a type

is equal to the probability that

9 For training the Mobile Net, we create a re-sampled dataset that is well-balanced across the types.
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Figure 4 ROC curves for classification of different diseases for a sample of 2000 images from the ChestX-ray14

dataset.

8.2. Proofs

Proof of Proposition 1. We use a standard interchange argument. Towards contradiction, sup-

pose that the optimal partition I∗T×N has j, j + 1 ∈ N , i, k ∈ T such that ciµi < ckµk but i has

higher priority, that is I∗T×N(i, j) = I∗T×N(k, j +1) = 1 (in the optimal policy type-i goes to queue

j and type-k goes to queue j+1).
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We will prove that the expected stationary waiting cost is strictly lower under at least one of

the two modifications to I∗T×N : a) shifting type-i to queue j+1 i.e., I1T×N(i, j+1) = 1; b) shifting

type-k to queue j i.e., I1T×N(k, j) = 1. This would then contradict the optimality of I∗T×N .

Define

A := {l : I∗T×N(l, j) = 1, l ̸= i}, cAµA :=

∑
l∈A ρlclµl∑

l∈A ρl
, ρA :=

∑
l∈A

ρl,

and similarly

B := {l : I∗T×N(l, j+1)= 1, l ̸= k}, cBµB :=

∑
l∈B ρlclµl∑

l∈B ρl
, ρB :=

∑
l∈B

ρl,

where cAµA = ρA = 0 and cBµB = ρB = 0 if A= ϕ or B = ϕ, respectively. and, finally,

ρ̄ :=
∑

l:∃q≤j−1 and I∗
T×N

(l,q)=1

ρl,

with ρ̄= 0 if j ≤ 1.

Then,

C(I∗T×N)−C(I1T×N)

=
cAµAρA + ciµiρi

(1− ρ̄)(1− ρ̄− ρA − ρi)
+

ckµkρk + cBµBρB
(1− ρ̄− ρA − ρi)(1− ρ̄− ρA − ρi − ρk − ρB)

− cAµAρA
(1− ρ̄)(1− ρ̄− ρA)

− ciµiρi + ckµkρk + cBµBρB
(1− ρ̄− ρA)(1− ρ̄− ρA − ρi − ρk − ρB)

= ρi

[
cAµAρA + ciµi(1− ρ̄− ρA)

(1− ρ̄)(1− ρ̄− ρA − ρi)(1− ρ̄− ρA)
+

ckµkρk + cBµBρB − ciµi(1− ρ̄− ρA − ρi)

(1− ρ̄− ρA − ρi)(1− ρ̄− ρA)(1− ρ̄− ρA − ρi − ρk − ρB)

]
= ρi

[
∆1

(1− ρ̄)(1− ρ̄− ρA − ρi)(1− ρ̄− ρA)(1− ρ̄− ρA − ρi − ρk − ρB)

]
,

where

∆1 :=cAµAρA(1− ρ̄− ρA − ρi − ρk − ρB)+ (ckµkρk + cBµBρB)(1− ρ̄)

− ciµi(ρA(1− ρ̄− ρA − ρi − ρk − ρB)+ (ρk + ρB)(1− ρ̄)).

Similarly,

C(I∗T×N)−C(I2T×N) = ρk

[
∆2

(1− ρ̄)(1− ρ̄− ρA − ρi)(1− ρ̄− ρA − ρi − ρk)(1− ρ̄− ρA − ρi − ρk − ρB)

]
,

where

∆2 :=− (cAµAρA + ciµiρi)(1− ρ̄− ρA − ρi − ρk − ρB)

− cBµBρB(1− ρ̄)+ ckµk(ρB(1− ρ̄)+ (ρA + ρi)(1− ρ̄− ρA − ρi − ρk − ρB)).

The utilization for each type-l ∈ T satisfies 0≤ ρl < 1 and the total utilization (across arrivals for all

types) is less than 1, therefore 0< 1− ρ̄−ρA−ρi−ρk−ρB ≤ 1− ρ̄−ρA−ρi−ρk < 1− ρ̄−ρA−ρi <



Feature-Driven Priority Queuing 39

1− ρ̄− ρA ≤ 1− ρ̄. The signs (positive or negative) of C(I∗T×N)−C(I1T×N) and C(I∗T×N)−C(I2T×N)

depend only on the signs of ∆1 and ∆2,respectively. Further, recalling that ckµk > ciµi:

∆1 +∆2 = (ckµk − ciµi)
[
(ρk + ρB)(1− ρ̄)+ (ρA + ρi)(1− ρ̄− ρA − ρi − ρk − ρB)

]
> 0.

so we conclude that at either ∆1 > 0 or ∆2 > 0 or both. In turn,

(C(I∗T×N)−C(I1T×N))+ (C(I∗T×N)−C(I1T×N))> 0,

implying that either C(I∗T×N)−C(I1T×N)> 0, or C(I∗T×N)−C(I1T×N)> 0 contradicting the optimality

of I∗T×N . Q.E.D.

Proof of Proposition 2(a). Let us assume that there are N∗ < K queues with prioritization

order and let G be a priority group with cardinality |G|> 1 (i.e., G has more than one class).

Consider an alternative with N∗ +1 queues where one of the prediction classes in G, let us call

it j, is given priority over all classes in G\{j} i.e. 1> 2> 3, .. > G− 1> {j}>G/j >G+1> ..N .

The difference between the costs of the optimal design and this alternative design:

=
T∑

i=1

ciλiE[S]
( PiG

(1−
∑G−1

m=1 ρm(P ))(1−
∑G

m=1 ρm(P ))

)
−

T∑
i=1

ciλiE[S]
( Pij

(1−
∑G−1

m=1 ρm(P ))(1−
∑G−1

m=1 ρm(P )− ρj(P ))
+

PiG −Pij

(1−
∑G−1

m=1 ρm(P )− ρj)(1−
∑G

m=1 ρm(P ))

)
=

T∑
i=1

ciλiE[S]
( PijρG(P )−PiGρj

(1−
∑G−1

m=1 ρm(P ))(1−
∑G

m=1 ρm(P ))(1−
∑G−1

m=1 ρm(P )− ρj)

)
We claim that ∃j such that the above expression is positive. This is because ∃j ∈ G for which

PijρG(P )−PiGρj is positive, which is because
∑

j∈GPijρG(P )−PiGρj = PiGρG(P )−PiGρG(P ) = 0

Q.E.D.

Proof of Proposition 2(b). The difference in average waiting cost per unit time on interchanging

priority queues m and n is equal to∑
i∈T PimλiciE[S]

(1−
∑

q∈[m−1] ρq(P ))(1−
∑

q∈[m−1] ρq(P )− ρ(m,P ))
+

∑
i∈T PinλiciE[S]

(1−
∑

q∈[n−1] ρq(P ))(1−
∑

q∈[n−1] ρq(P )− ρ(n,P ))

−
∑

i∈T PinλiciE[S]
(1−

∑
q∈[m−1] ρq(P ))(1−

∑
q∈[m−1] ρq(P )− ρ(n,P ))

−
∑

i∈T PimλiciE[S]
(1−

∑
q∈[n−1] ρq(P ))(1−

∑
q∈[n−1] ρq(P )− ρ(n,P ))

.

This difference is negative iff ∑
i∈T Pimλici∑
i∈T Pimλi

1

µi

>

∑
i∈T Pinλici∑
i∈T Pinλi

1

µi
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Q.E.D.

Proof of Proposition 3 (a) The minimization problem can be reformulated as follows (see 11):

max
ρP11 − 1

1− ρP21

subject to:

TV (F1,F2)−P11 +P21 ≥ 0

1−P11 ≥ 0

1−P21 ≥ 0

P11 ≥ 0

P21 ≥ 0

(We restrict to cases where P11 ≥ P21). The Lagrangian is equal to

L(P11, P21, u1, u2, u3, u4) =
ρP11 − 1

1− ρP21

+u1(TV (F1,F2)−P11+P21)+u2(1−P11)+u3(1−P21)+u4P11+u5P21

∂L(P11, P21, u1, u2, u3, u4)

P11

= 0 =⇒ ρ

1− ρP21

−u1 −u2 +u4 = 0

∂L(P11, P21, u1, u2, u3, u4)

P21

= 0 =⇒ ρ(ρP11 − 1)

(1− ρP21)2
+u1 −u3 +u5 = 0

The conditions imply that u1 +u2 > 0, and u1 +u5 > 0. If u1 = 0, then u2, u5 > 0, and P11 = 1 and

P21 = 0, violating the constraint TV (F1,F2)−P11 +P21 ≥ 0. Therefore, u1 > 0, and TV (F1,F2)−
P11 +P21 = 0. The objective simplifies to

ρP11 − 1

1− ρP11 + ρTV (F1,F2)

Further,

d

dP11

(
ρP11 − 1

1− ρP11 + ρTV (F1,F2)
) =

ρ(1− ρP11 + ρTV (F1,F2))+ ρ(ρP11 − 1)

(1− ρP11 + ρTV (F1,F2))2
> 0.

The maximum occurs at the greatest possible value of P11 which is 1. Q.E.D.

Proof of Proposition 3 (b) Adding the constraint p1P11 + p2P21 = p1, the problem reduces to

max
ρP11 − 1

p2 − ρp1 + ρp1P11

subject to:

p2TV (F1,F2)−P11 + p1 ≥ 0

1−P11 ≥ 0

P11 ≥ 0
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Now,
d

dP11

ρP11 − 1

p2 − ρp1 + ρp1P11

=
ρ(p2 − ρp1 + ρp1P11)− ρp1(ρP11 − 1)

(p2 − ρp1 + ρp1P11)2
> 0

Hence the maximum occurs at P11 = p1 + p2TV (F1,F2) Q.E.D.

Proof of Lemma 1 From Corollary 6.1 in Bahadur (1954), the necessary and sufficient condi-

tion that the statistic PT (X) is sufficient for the probability measures corresponding to densities

{fi(X); i ∈ T } is that there is a non-negative S-measurable function h on X and a set {gi : i ∈ T }

of S-measurable non-negative functions on the range of PT (·) such that:

fi(x) = h(x)gi(PT (X)) ∀i∈ T

We know that ∀i∈ T

fi(x) = (
T∑

i=1

pifi(x))(
1

pi

pifi(x)∑T

i=1 pifi(x)
) = (

T∑
i=1

pifi(x))(
1

pi
e′iPT (X))

The corresponding values of h(x) and gi(PT (X)) are
∑T

i=1 pifi(x) and 1
pi
e′iPT (X), respectively.

Both are non negative measurable functions. Q.E.D.

Proof of Lemma 2 E[qtj(PT (X)|X ∼ Fi] =E[E[qj(X)|PT (X)]|X ∼ Fi] =E[E[qj(X)|PT (X),X ∼

Fi]|X ∼ Fi]=E[qj(X)|X ∼ Fi] (because PT (X) is a sufficient statistic, E[qj(X)|PT (X)] is indepen-

dent of the underlying type i, hence E[qj(X)|PT (X),X ∼ Fi] =E[qj(X)|PT (X) ∀i∈ T ). Q.E.D.

Proof of Lemma 4. The optimization problem can be reformulated as the linear fractional pro-

gram:

maximizeβ[
1−ρβ′u
1−ρβ′v ] (27)

subject to :

Aβ ≤ b

where u=
∑s

r=1 (1−tr)Xr∑s
r=1 1−tr

, v =
∑s

r=1 trXr∑s
r=1 tr

, A= [u, v,−u,−v]
′
, b= [1,1,0,0]′. By using Charnes-Cooper

linearization (Charnes and Cooper (1962)), and substituting w0 =
1

1−ρβ′v , w = β
1−ρβ′v , the above

optimization problem can be reformulated as:

maximizew0,w[w0 − ρw′u]

subject to :

Aw≤ bw0

w0 − ρw′v= 1

w0 ≥ 0
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Proof of Proposition 4: Consider T =N = 3. The difference in average waiting waiting costs

under classification matrices P FIFO (a single queue with first in first out regime such that P FIFO
ij =

1∀i∈ {1,2,3}, j = 1) and P is

∆C(P ) = C(PFIFO)−C(P) = (c1µ1 − c3µ3)∆W1(P )+ (c2µ2 − c3µ3)∆W2(P ) (28)

where ∆W1(P ) and ∆W2(P ) are the reduction in average waiting times of types 1 and 2 under P

as compared to a random classifier P FIFO:

∆W1(P ) = [ ρ1
1−ρ

− ρ1P11
1−ρ1P11−ρ2P21−ρ3P31

− ρ1P12
(1−ρ1P11−ρ2P21−ρ3P31)(1−ρ1(P11+P12)−ρ2(P21+P22)−ρ3(P31+P32)

− ρ1P13
(1−ρ1(P11+P12)−ρ2(P21+P22)−ρ3(P31+P32)))(1−ρ)

]

(29)

∆W2(P ) = [ ρ2
1−ρ

− ρ2P21
1−ρ1P11−ρ2P21−ρ3P31

− ρ2P22
(1−ρ1P11−ρ2P21−ρ3P31)(1−ρ1(P11+P12)−ρ2(P21+P22)−ρ3(P31+P32)

− ρ2P23
(1−ρ1(P11+P12)−ρ2(P21+P22)−ρ3(P31+P32)))(1−ρ)

]

The optimal P ∗ solves the following optimization problem

maximize(c1µ1 − c3µ3)∆W1(P )+ (c2µ2 − c3µ3)∆W2(P ) ⇐⇒

subject to :

TV (F1,F2)−P11 +P21 ≥ 0, TV (F1,F2)−P21 +P11 ≥ 0

TV (F1,F2)−P12 +P22 ≥ 0, TV (F1,F2)−P22 +P12 ≥ 0

TV (F1,F3)−P11 +P31 ≥ 0, TV (F1,F3)−P31 +P11 ≥ 0

TV (F1,F3)−P32 +P12 ≥ 0, TV (F1,F3)−P12 +P32 ≥ 0

TV (F2,F3)−P21 +P31 ≥ 0, TV (F2,F3)−P31 +P21 ≥ 0

TV (F2,F3)−P22 +P32 ≥ 0, TV (F2,F3)−P32 +P22 ≥ 0

1−P11 ≥ 0, 1−P12 ≥ 0

1−P21 ≥ 0, 1−P22 ≥ 0

1−P31 ≥ 0, 1−P32 ≥ 0

1−P11 −P12 ≥ 0, 1−P21 −P22 ≥ 0, 1−P31 −P32 ≥ 0

P11 ≥ 0, P12 ≥ 0

P21 ≥ 0, P22 ≥ 0

P31 ≥ 0, P32 ≥ 0

P11 +P12 −P21 −P22 +TV (F1,F2)≥ 0

P21 +P22 −P11 −P12 +TV (F1,F2)≥ 0
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P11 +P12 −P31 −P32 +TV (F1,F3)≥ 0

P32 +P31 −P11 −P12 +TV (F1,F3)≥ 0

P21 +P22 −P31 −P32 +TV (F2,F3)≥ 0

P31 +P32 −P21 −P22 +TV (F2,F3)≥ 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P11

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P11

−λ1 +λ2 −λ5 +λ6 −λ13 −λ19 +λ22 +λ28 −λ29 +λ30 −λ31 = 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P12

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P12

−λ3 +λ4 +λ7 −λ8 −λ14 −λ19 +λ23 +λ28 −λ29 +λ30 −λ31 = 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P21

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P21

+λ1 −λ2 −λ9 +λ10 −λ15 −λ20 +λ24 −λ28 +λ29 +λ32 −λ33 = 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P22

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P22

+λ3 −λ4 −λ11 +λ12 −λ16 −λ20 +λ25 −λ28 +λ29 +λ32 −λ33 = 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P31

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P31

+λ5 −λ6 +λ9 −λ10 −λ17 −λ21 +λ26 −λ30 +λ31 −λ32 +λ33 = 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P32

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P32

−λ7 +λ8 +λ11 −λ12 −λ18 −λ21 +λ27 −λ30 +λ31 −λ32 +λ33 = 0

∂∆W1(P )

∂P11

=
ρ1

(1− ρ(1, P )− ρ(2, P ))(1− ρ)
− ρ1

1− ρ(1, P )
− ρ21P11

(1− ρ(1, P ))2
− ρ21P12

(1− ρ(1, P ))2(1− ρ(1, P )− ρ(2, P ))

− ρ21P12

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2
− ρ21P13

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W1(P )

∂P12

=
ρ1

(1− ρ(1, P )− ρ(2, P ))(1− ρ)
− ρ1

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))

− ρ21P12

(1− ρ(1, P )(1− ρ(1, P )− ρ(2, P ))2
− ρ21P13

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W1(P )

∂P21

=− ρ1ρ2P11

(1− ρ(1, P ))2
− ρ1ρ2P12

(1− ρ(1, P ))2(1− ρ(1, P )− ρ(2, P ))
− ρ1ρ2P12

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2

− ρ1ρ2P13

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W1(P )

∂P22

=− ρ1ρ2P12

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2
− ρ1ρ2P13

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W2(P )

∂P21

=
ρ2

(1− ρ(1, P )− ρ(2, P ))(1− ρ)
− ρ2

1− ρ(1, P )
− ρ22P21

(1− ρ(1, P ))2
− ρ22P22

(1− ρ(1, P ))2(1− ρ(1, P )− ρ(2, P ))

− ρ22P22

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2
− ρ22P23

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W2(P )

∂P22

=
ρ2

(1− ρ(1, P )− ρ(2, P ))(1− ρ)
− ρ2

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))
−

ρ22P22

(1− ρ(1, P )(1− ρ(1, P )− ρ(2, P ))2
− ρ22P23

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W2(P )

∂P11

=− ρ1ρ2P21

(1− ρ(1, P ))2
− ρ1ρ2P22

(1− ρ(1, P ))2(1− ρ(1, P )− ρ(2, P ))
− ρ1ρ2P22

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2

− ρ1ρ2P23

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)
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∂∆W2(P )

∂P12

=− ρ1ρ2P22

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2
− ρ1ρ2P23

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W2(P )

∂P31

=− ρ3ρ2P21

(1− ρ(1, P ))2
− ρ3ρ2P22

(1− ρ(1, P ))2(1− ρ(1, P )− ρ(2, P ))
− ρ3ρ2P22

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2

− ρ3ρ2P23

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

∂∆W2(P )

∂P32

=− ρ3ρ2P22

(1− ρ(1, P ))(1− ρ(1, P )− ρ(2, P ))2
− ρ3ρ2P23

(1− ρ(1, P )− ρ(2, P ))2(1− ρ)

Proof (i)

First, we focus on solutions where P11 = 1, P12 = 0, P13 = 0

1. ∂∆W1(P )

∂P11
> 0, ∂∆W1(P )

∂P12
> 0, ∂∆W1(P )

∂P21
< 0, ∂∆W1(P )

∂P22
= 0, ∂∆W1(P )

∂P31
< 0, ∂∆W1(P )

∂P32
< 0

2. ∂∆W2(P )

∂P11
< 0, ∂∆W2(P )

∂P12
< 0, ∂∆W2(P )

∂P21
> 0, ∂∆W2(P )

∂P22
> 0, ∂∆W2(P )

∂P31
< 0, ∂∆W2(P )

∂P32
< 0

3. If c1µ1−c2µ2
c2µ2−c3µ3

is sufficiently large, then

(c1µ1 − c3µ3)
∂∆W1(P )

∂P11

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P11

> 0 =⇒ λ1 +λ5 +λ13 +λ19 +λ29 +λ31 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P12

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P12

> 0 =⇒ λ3 +λ8 +λ14 +λ19 +λ29 +λ31 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P21

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P21

< 0 =⇒ λ1 +λ10 +λ24 +λ39 +λ32 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P22

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P22

> 0 =⇒ λ4 +λ11 +λ16 +λ20 +λ28 +λ33 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P31

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P31

< 0 =⇒ λ5 +λ9 +λ26 +λ31 +λ33 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P32

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P32

< 0 =⇒ λ8 +λ11 +λ27 +λ31 +λ33 > 0

Table 6 shows all possible values of P11, P12, P21, P22, P31, and P32 that satisfy the above constraints.

First, we consider the solutions where P21 +P22 = 1−TV (F1,F2) or P31 +P32 = 1−TV (F1,F3)

(i) Since P21 ≥ 1−TV (F1,F2), so one solution is P21 = 1−TV (F1,F2), P22 = 0, P23 = TV (F1,F2).

Since P22 = 0, the only possibility (check under P22) is P31+P32 = 1−TV (F1,F2)−TV (F2,F3)

but then it contradicts |P13 −P33| ≤ TV (F1,F3) and due to triangle inequality TV (F1,F3)≤

TV (F1,F2)+TV (F2,F3)

(ii) Now the only possibility is P31 = 1−TV (F1,F3), P32 = 0, P33 = TV (F1,F3)

(iii) Since |P11 −P21| ≤ TV (F1,F2), P21 = 1−TV (F1,F2)

(iv) P22 = TV (F1,F2) (not possible because P23 −P33 ≤ TV (F2,F3))

(v) P22 = TV (F2,F3) (possible only when TV (F2,F3) < TV (F1,F2)), then P23 = TV (F1,F2) −

TV (F2,F3) and |P33 −P23|= |TV (F1,F3)−TV (F1,F2)+TV (F2,F3)|, which is not possible
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P11 P12 P21

P11 = P21 +TV (F1, F2) P12 = P22 +TV (F1, F2) P21 = P11 −TV (F1, F2)

P11 = P31 +TV (F1, F3) P12 = P32 +TV (F1, F3) P21 = P31 −TV (F2, F3)

P11 = 1 P12 = 1 P21 = 0

P11 = 1−P12 P12 = 1−P11 P21 = 0

P11 +P12 = P21 +P22 +TV (F1, F2) P11 +P12 = P21 +P22 +TV (F1, F2) P21 +P22 = P11 +P12 −TV (F1, F2)

P11 +P12 = P31 +P32 +TV (F1, F3) P11 +P12 = P31 +P32 +TV (F1, F3) P21 +P22 = P31 +P32 −TV (F2, F3)

P22 P31 P32

P22 = P12 +TV (F1, F2) P31 = P11 −TV (F1, F3) P32 = P12 −TV (F1, F3)

P22 = P32 +TV (F2, F3) P31 = P21 −TV (F2, F3) P32 = P22 −TV (F2, F3)

P22 = 1 P31 = 0 P32 = 0

P22 = 1−P21

P21 +P22 = P11 +P12 +TV (F1, F2) P31 +P32 = P11 +P12 −TV (F1, F3) P31 +P32 = P11 +P12 −TV (F1, F3)

P21 +P22 = P31 +P32 +TV (F2, F3) P31 +P32 = P21 +P22 −TV (F2, F3) P31 +P32 = P21 +P22 −TV (F2, F3)

Table 6

(vi) Hence P22 = TV (F1,F2)+TV (F2,F3)−TV (F1,F3) , P23 = TV (F1,F3)−TV (F2,F3)

P1 =

 1, 0, 0

1−TV (F1,F2), TV (F1,F2)+TV (F2,F3)−TV (F1,F3), TV (F1,F3)−TV (F2,F3)

1−TV (F1,F3), 0, TV (F1,F3)


Next, we consider the solutions where P21 = P11 −TV (F1,F2) or P21 = P31 −TV (F2,F3)

(i) Let P21 = 1−TV (F1,F2)

(a) P31 = P21 −TV (F2,F3), 0 are not possible

(b) Let P31 = 1− TV (F1,F3) and P22 = TV (F1,F2). For P32 = TV (F1,F2)− TV (F2,F3) to

be feasible, TV (F1,F2) − TV (F2,F3) ≥ 0. But then P33= TV (F1,F3) − TV (F1,F2) +

TV (F2,F3)>TV (F2,F3) (not possible because TV (F1,F3)≥ TV (F2,F3)). If P32 = 0, then

P33 = TV (F1,F3) > TV (F2,F3) (not possible). Next, if P32 = TV (F1,F3)− TV (F2,F3),

and P33 = P23. So a feasible solution is

P2 =

 1, 0, 0

1−TV (F1,F2), TV (F1,F2), 0

1−TV (F1,F3), TV (F1,F3)−TV (F2,F3), TV (F2,F3)


(c) Let P31 = 1 − TV (F1,F3) and P22 = P32 + TV (F2,F3) =⇒ |P23 − P33| = TV (F2,F3) +

TV (F1,F3)−TV (F1,F2)>TV (F2,F3)

(d) Let P31 = 1−TV (F1,F3) and P21+P22 = P31+P32+TV (F2,F3) =⇒ P22 = TV (F1,F2)−

TV (F1,F3)+TV (F2,F3)+P32. The solution is of the form

P =

 1, 0, 0

1−TV (F1,F2), TV (F1,F2)+TV (F2,F3)−TV (F1,F3)+P32, TV (F1,F3)−TV (F2,F3)−P32

1−TV (F1,F3), P32, TV (F1,F3)−P32


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where 0≤ P32 ≤ TV (F1,F3)−TV (F2,F3). We can show that C(P ) is a linear fractional in

P32, and is monotonic in P32. Hence the optimal solution occurs at P32 = 0 (which leads

to P = P1) or at P32 = TV (F1,F3)−TV (F2,F3) (which leads to P = P2).

(ii) Let P21 = P31 −TV (F2,F3). There is no feasible value of P31.

Next, we focus on the solutions where P11 +P12 = 1, P12 > 0

1. ∂∆W1(P )

∂P11
> 0, ∂∆W1(P )

∂P12
> 0, ∂∆W1(P )

∂P21
< 0, ∂∆W1(P )

∂P22
< 0, ∂∆W1(P )

∂P31
< 0, ∂∆W1(P )

∂P32
< 0

2. ∂∆W2(P )

∂P11
< 0, ∂∆W2(P )

∂P12
< 0, ∂∆W2(P )

∂P21
> 0, ∂∆W2(P )

∂P22
> 0, ∂∆W2(P )

∂P31
< 0, ∂∆W2(P )

∂P32
< 0

3. We consider solutions where:

(c1µ1 − c3µ3)
∂∆W1(P )

∂P11

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P11

> 0 =⇒ λ1 +λ5 +λ13 +λ19 +λ29 +λ31 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P12

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P12

> 0 =⇒ λ3 +λ8 +λ14 +λ19 +λ29 +λ31 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P21

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P21

< 0 =⇒ λ1 +λ10 +λ24 +λ39 +λ32 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P22

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P22

< 0 =⇒ λ3 +λ12 +λ25 +λ29 +λ32 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P31

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P31

< 0 =⇒ λ5 +λ9 +λ26 +λ31 +λ33 > 0

(c1µ1 − c3µ3)
∂∆W1(P )

∂P32

+(c2µ2 − c3µ3)
∂∆W2(P )

∂P32

< 0 =⇒ λ8 +λ11 +λ27 +λ31 +λ33 > 0

P11 P12 P21

P11 = P21 +TV (F1, F2) P12 = P22 +TV (F1, F2) P21 = P11 −TV (F1, F2)

P11 = P31 +TV (F1, F3) P12 = P32 +TV (F1, F3) P21 = P31 −TV (F2, F3)

P11 = 1 P12 = 1 P21 = 0

P11 = 1−P12 P12 = 1−P11

P11 +P12 = P21 +P22 +TV (F1, F2) P11 +P12 = P21 +P22 +TV (F1, F2) P21 +P22 = P11 +P12 −TV (F1, F2)

P11 +P12 = P31 +P32 +TV (F1, F3) P11 +P12 = P31 +P32 +TV (F1, F3) P21 +P22 = P31 +P32 −TV (F2, F3)

P22 P31 P32

P22 = P12 −TV (F1, F2) P31 = P11 −TV (F1, F3) P32 = P12 −TV (F1, F3)

P22 = P32 −TV (F2, F3) P31 = P21 −TV (F2, F3) P32 = P22 −TV (F2, F3)

P22 = 0 P31 = 0 P32 = 0

P21 +P22 = P11 +P12 −TV (F1, F2) P31 +P32 = P11 +P12 −TV (F1, F3) P31 +P32 = P11 +P12 −TV (F1, F3)

P21 +P22 = P31 +P32 −TV (F2, F3) P31 +P32 = P21 +P22 −TV (F2, F3) P31 +P32 = P21 +P22 −TV (F2, F3)

Table 7

Table 7 shows all possible values of P11, P12, P21, P22, P31, and P32 that satisfy the above constraints.

Next, we explore the different possible solutions:

1. Let P21 = P11 −TV (F1,F2)

(a) P22 = P12 −TV (F1,F2) is not possible
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(b) Let P22 = P32−TV (F2,F3). Now P32 = P12−TV (F1,F3), P32 = P22−TV (F2,F3), P32 = 0,

P31+P32 = P21+P22−TV (F2,F3) are not possible. Let P31+P32 = P11+P12−TV (F1,F3).

Therefore, P12 − P32 − TV (F1,F3) = P31 − P11 ≥ −TV (F1,F3) =⇒ P12 ≥ P32 ≥ P22 +

TV (F2,F3). But P11 ≥ P21 +TV (F1,F2). Not possible.

(c) Let P22 = 0. Then P23 = P12 +TV (F1,F2) but P13 = 0, hence P23 −P13 > 0 (not possible)

(d) Let P21 + P22 = P11 + P12 − TV (F1,F2). This implies P22 = P12, P23 = TV (F1,F2). Now

P32 = P12 − TV (F1,F3) = P22 − TV (F1,F3) is not possible. Let P32 = P22 − TV (F2,F3) =

P12 − TV (F2,F3). Now P31 = P11 − TV (F1,F3), P31 = P21 − TV (F2,F3) are not possible.

If P31 = 0, then P33 = 1 − P12 + TV (F1,F3) = P11 + TV (F1,F3) (not possible because

P13 = TV (F1,F3)

(e) Let P21 + P22 = P31 + P32 − TV (F2,F3). Hence P31 + P32 = P11 + P12 − TV (F1,F3) is not

possible. Now, P31 = P11 − TV (F1,F3) and P32 = 0 are not possible because then P33 =

1− P11 + TV (F1,F3) (not possible). P31 = P11 − TV (F1,F3) and P32 = P22 − TV (F2,F3)

implies P21 = P31 − 2TV (F2,F3) (not possible). P31 = P21 − TV (F2,F3) (not possible).

If P31 = 0, then P32 = P12 − TV (F1,F3) implies P33 = P11 + TV (F1,F3), not possible. If

P31 = 0, then P32 = P22 − TV (F2,F3) implies P21 = P31 − 2TV (F2,F3). If P31 = 0, then

P32 = 0 is not possible.

2. Let P21 = P31 −TV (F2,F3).

(a) The only feasible P31 satisfies P31+P32 = P11+P12−TV (F1,F3) or P31+P32 = P21+P22−

TV (F2,F3).

(b) First, let P31 + P32 = P11 + P12 − TV (F1,F3) i.e., P33 = TV (F1,F3). Now, P22 = P32 −

TV (F2,F3) is not possible. If P22 = P12−TV (F1,F2), then P23 = P11−P31+TV (F2,F3)+

TV (F1,F2) (not possible because for the optimal solution P11 −P31 ≥ 0). If P22 = 0, then

P23 = P32 +P33 +TV (F2,F3) = P32 +TV (F1,F3)+TV (F2,F3) (not possible). Now, if P22

satisfies P21 + P22 = P11 + P12 − TV (F1,F2), then P21 + P22 = P31 + P32 + TV (F1,F3)−

TV (F1,F2) i.e., P23 = P33 − TV (F1,F3) + TV (F1,F2) = TV (F1,F2). Then, P22 = 1 −

P31 +TV (F2,F3)−TV (F1,F2), P32 = 1−P31 −TV (F1,F3), and P22 −P32 = TV (F1,F3)−

TV (F1,F2) + TV (F2,F3) > TV (F2,F3) (not possible). Now, if P22 satisfies P21 + P22 =

P31 +P32 −TV (F2,F3) = P11 +P22 −TV (F1,F3)−TV (F2,F3) (not possible).

(c) Next, let P31 +P32 = P21 +P22 −TV (F2,F3) =⇒ P32 = P22 − 2TV (F2,F3). (not possible)

3. Let P21 = 0

(a) P22 = P12 − TV (F1,F2), P23 = 1− P12 + TV (F1,F2) = P11 + TV (F1,F2) (not possible be-

cause P13 = 0).

(b) P22 = P32 −TV (F2,F3) is not possible

(c) P22 = 0 is not possible, because then P23 = 1
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(d) P21 + P22 = P11 + P12 − TV (F1,F2), P22 = 1 − TV (F1,F2), P23 = TV (F1,F2). Now, let

P31 = P11 − TV (F1,F3). For this to be possible, P11 > TV (F1,F3). But then P21 = 0 (so

not possible)

(e) P21 + P22 = P31 + P32 − TV (F2,F3). Now P31 = P11 − TV (F1,F3), P32 = 0 is not pos-

sible, because then P33 = P12 + TV (F1,F3). The only possible combination is P31 =

P11 − TV (F1,F3) and P32 = P22 − TV (F2,F3) = P31 + P32 − 2TV (F2,F3), hence P31 =

2TV (F2,F3) (not possible because P21 = 0)

4. Let P21 +P22 = P11 +P12 −TV (F1,F2)

(a) If P31 +P32 = P11 +P12 −TV (F1,F3), then the objective is to maximize

c1µ1ρ1(ρ̄P11 − 1)+ c2µ2ρ2(ρ̄P21 − (1−TV (F1,F2)))+ c3µ3ρ3(ρ̄P31 − (1−TV (F1,F3)))

1− ρ1P11 − ρ2P21 − ρ3P31

where ρ̄ = ρ− ρ2TV (F1,F2)− ρ3TV (F1,F3). Since it is optimal to keep P31 as small as

possible, we have P31 = P11−TV (F1,F3). When c1µ1−c2µ2
c2µ2−c3µ3

is sufficiently high, we can show

that that it is optimal to have P21 = P11−TV (F1,F2). In this case, we can prove that the

objective is increasing in P11 i.e., the optimal value is at P11 = 1,P12 = 0.

(b) P31 +P32 = P21 +P22 −TV (F2,F3) = P11 +P12 −TV (F1,F2)−TV (F2,F3) is not possible

5. Let P21 +P22 = P31 +P32 −TV (F2,F3).

(a) Let P31 = P11 − TV (F1,F3), then P32 = P12 − TV (F1,F3) or P32 = 0 are not possible.

Let P32 = P22 − TV (F2,F3), then P21 + P22 = P31 + P22 − 2TV (F2,F3), or P21 = P31 −

2TV (F2,F3) (not possible)

(b) Let P31 = P21 −TV (F2,F3), then P22 = P32 − 2TV (F2,F3) (not possible)

(c) Let P31 = 0, then P32 = P12 − TV (F1,F3) is not possible, because P33 = P11 + TV (F1,F3)

(not possible). If P32 = P22−TV (F2,F3), then P21 =−2TV (F2,F3) (not possible). P32 = 0

is not possible.

The candidates for the optimal solution are P1 and P2. Through numerical experiments, we find

that both the matrices are possible. Q.E.D.

Proof of Proposition 5:

minimizeC(P ) =maximize
c1µ1ρ1(ρP11 − 1)+ c2µ2ρ2(ρP21 − 1)+ c3µ3ρ3(ρP31 − 1)

(1− ρ1P11 − ρ2P21 − ρ3P31)(1− ρ)

subject to :

TV (F1,F2)−P11 +P21 ≥ 0

TV (F1,F3)−P11 +P31 ≥ 0

TV (F2,F3)−P21 +P31 ≥ 0

1−P11 ≥ 0
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1−P21 ≥ 0

1−P31 ≥ 0

The lagrangian is:

L(P11, P21, P31,Λ)=
c1µ1ρ1(ρP11 − 1)+ c2µ2ρ2(ρP21 − 1)+ c3µ3ρ3(ρP31 − 1)

(1− ρ1P11 − ρ2P21 − ρ3P31)(1− ρ)

+λ1(TV (F1,F2)−P11 +P21)+λ2(TV (F1,F3)−P11 +P31)+λ3(TV (F2,F3)−P21 +P31)

+λ4(1−P11)+λ5(1−P21)+λ6(1−P31)

∂L(P11, P21, P31,Λ)

∂P11

=
ρ1ρ2(c1µ1 − c2µ2)(1− ρP21)+ ρ1ρ3(c1µ1 − c3µ3)(1− ρP31)

(1− ρ1P11 − ρ2P21 − ρ3P31)2(1− ρ)2
−λ1 −λ2 −λ4 = 0

∂L(P11, P21, P31,Λ)

∂P21

=
ρ1ρ2(c2µ2 − c1µ1)(1− ρP11)+ ρ2ρ3(c2µ2 − c3µ3)(1− ρP31)

(1− ρ1P11 − ρ2P21 − ρ3P31)2(1− ρ)2
+λ1 −λ3 −λ5 = 0

∂L(P11, P21, P31,Λ)

∂P31

=
ρ1ρ3(c3µ3 − c1µ1)(1− ρP11)+ ρ2ρ3(c3µ3 − c2µ2)(1− ρP21)

(1− ρ1P11 − ρ2P21 − ρ3P31)2(1− ρ)2
+λ2 −λ3 −λ6 = 0

1.

ρ1ρ3(c3µ3 − c1µ1)(1− ρP11)+ ρ2ρ3(c3µ3 − c2µ2)(1− ρP21)

(1− ρ1P11 − ρ2P21 − ρ3P31)2(1− ρ)2
< 0 =⇒ λ2 > 0 =⇒ P31 = P11−TV (F1,F3)

2. Consider ρ1ρ2(c2µ2 − c1µ1)(1− ρP11)+ ρ2ρ3(c2µ2 − c3µ3)(1− ρP31)=

ρ2ρ1(c2µ2 − c3µ3)(
ρ3(1− ρP11 + ρTV (F1,F3))

ρ1(1− ρP11)
− γ)

For TV (F1,F3)≤ P11 ≤ 1,

ρ3
ρ1(1− ρTV (F1,F3))

− γ ≤ ρ3(1− ρP11 + ρTV (F1,F3))

ρ1(1− ρP11)
− γ ≤ ρ3(1− ρ+ ρTV (F1,F3))

ρ1(1− ρ)
− γ

3. If γ > ρ3(1−ρ+ρTV (F1,F3))

ρ1(1−ρ)
, then

ρ1ρ2(c2µ2−c1µ1)(1−ρP11)+ρ2ρ3(c2µ2−c3µ3)(1−ρP31)< 0 =⇒ λ1 > 0 =⇒ P21 = P11−TV (F1,F2)

4. If γ > ρ3(1−ρ+ρTV (F1,F3))

ρ1(1−ρ)
, then P31 = P11 − TV (F1,F3), P21 = P11 − TV (F1,F2) =⇒ λ3 = λ5 =

λ6 = 0

5.
∂L(P11, P21, P31,Λ)

∂P11

+
∂L(P11, P21, P31,Λ)

∂P21

+
∂L(P11, P21, P31,Λ)

∂P31

= 0 =⇒

ρ1ρ2(c1µ1 − c2µ2)(ρP11 − ρP21)+ ρ1ρ3(c1µ1 − c3µ3)(ρP11 − ρP31)+ ρ2ρ3(c2µ2 − c3µ3)(ρP21 − ρP31)

(1− ρ1P11 − ρ2P21 − ρ3P31)2(1− ρ)2
−λ4 = 0

6. The optimal solution has P11 > P21 and P11 > P31. If in addition P21 > P31, then λ4 > 0 i.e.,

P11 = 1 (which holds since TV (F1,F2)≤ TV (F1,F3)).

7. If γ < ρ3
ρ1(1−ρTV (F1,F3))

, then λ1 −λ3 −λ5 < 0 i.e. λ3 > 0 or λ5 > 0
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8. If γ < ρ3
ρ1(1−ρTV (F1,F3))

, then the optimal P21 is 1 or P31 + TV (F2,F3) = P11 − TV (F2,F3) +

TV (F1,F3)

9. Since |P21 −P31| ≤ TV (F2,F3), P21 = P11 +TV (F2,F3)−TV (F1,F3)

10. The optimal matrix is

 P11, 1−P11

P11 +TV (F2,F3)−TV (F1,F3), 1−P11 +TV (F1,F3)−TV (F2,F3)

P11 −TV (F1,F3), 1−P11 +TV (F1,F3)


11. P11 −P21 = TV (F1,F3)−TV (F2,F3)≤ TV (F1,F2) (triangle inequality)

12. Hence the problem simplifies to maximizing the below over P11 ∈ [TV (F1,F3),1]

c1µ1ρ1(ρP11 − 1)+ c2µ2ρ2(ρ(P11 +TV (F2,F3)−TV (F1,F3))− 1)+ c3µ3ρ3(ρ(P11 −TV (F1,F3))− 1)

(1− ρ1P11 − ρ2(P11 +TV (F2,F3)−TV (F1,F3))− ρ3(P11 −TV (F1,F3)))(1− ρ)

Note that d
dx
(ax+b
cx+d

) = ad−bc
(cx+d)2

, in this case x= P11 and ad− bc=

(c1µ1ρ1 + c2µ2ρ2 + c3µ3ρ3)ρ(1+ ρ2(TV (F1,F3)−TV (F2,F3))+ ρ3TV (F1,F3))−

ρ(c1µ1ρ1 + c2µ2ρ2(1+ ρ(TV (F1,F3)−TV (F2,F3)))+ c3µ3ρ3(1+ ρTV (F1,F3)))> 0

Therefore, the maximum occurs at P11 = 1 Q.E.D.

Proof of Proposition 6: First, we prove the following result: For N = T = 3, and P (3, β3)

specified in eq. (23):

1 C(P (3, β3))≥C(I3×3) ∀β3 ∈ [0,1].

2 ∃β∗(Φ)∈ [0,1), such that β1
3 ≥ β2

3 =⇒ C(P (3, β1
3))≤C(P (3, β2

3)) ∀β2
3 ≥ β∗(Φ).

3 If λ1
µ1

= λ2
µ2

= λ3
µ3
, then β1

3 ≥ β2
3 =⇒ C(P (3, β1

3))≤C(P (3, β2
3)) ∀β2

3 ≥ 0.

Let δ = (1 − β3)/2 (equivalently, β3 = 1 − 2δ). 0 ≤ β3 ≤ 1 ⇐⇒ 0 ≤ δ ≤ 1/2. Let ∆(δ) =

C(P (3, β3 = 1))−C(P (3, β3)):

∆(δ) =
c1µ1ρ1
1− ρ1

+
c2µ2ρ2

(1− ρ1)(1− ρ1 − ρ2)
+

c3µ3ρ3
(1− ρ1 − ρ2)(1− ρ1 − ρ2 − ρ3)

− c1µ1ρ1(1− 2δ)+ c2µ2ρ2δ+ c3µ3ρ3δ

1− ρ1(1− 2δ)− ρ2δ− ρ3δ
− c1µ1ρ1δ+ c2µ2ρ2(1− 2δ)+ c3µ3ρ3δ

(1− ρ1(1− 2δ)− ρ2δ− ρ3δ)(1− ρ1(1− δ)− ρ2(1− δ)− ρ3(2δ))

− c1µ1ρ1δ+ c2µ2ρ2δ+ c3µ3ρ3(1− 2δ)

(1− ρ1(1− δ)− ρ2(1− δ)− ρ3(2δ))(1− ρ1 − ρ2 − ρ3)

=
(c1µ1 − c2µ2)(ρ1ρ2(3δ

2 − 4δ)+ ρ1ρ3(−2δ− 3δ2))+ (c2µ2 − c3µ3)(ρ2ρ3(3δ− 4δ2)+ ρ1ρ3(−2δ− 3δ2))

(1− ρ1)(1− ρ1(1− 2δ)− ρ2δ− ρ3δ)(1− ρ1(1− δ)− ρ2(1− δ)− ρ3(2δ))(1− ρ1 − ρ2 − ρ3)
,

where ρ1 =
λ1
µ1
, ρ2 =

λ2
µ2
, ρ3 =

λ3
µ3
.

Since (c1µ1 − c2µ2)≥ 0, (c2µ2 − c3µ3)≥ 0, and 3δ2 − 4δ ≤ 0, −2δ− 3δ2 ≤ 0, (1− ρ1(1− 2δ)−
ρ2δ−ρ3δ)≥ 0, (1−ρ1(1−δ)−ρ2(1−δ)−ρ3(2δ))≥ 0, ∀δ ∈ [0,1/2], we have that ∆(δ)≤ 0 ∀δ ∈
[0,1/2] i.e., C(P (3, β3))≥C(P (3, β3 = 1)) ∀β3 ∈ [0,1]. This proves part 1 of the proposition.

Next, C(P (3, β3)) is decreasing in β3 if and only if ∆(δ) is decreasing in δ, which holds if and

only if f(δ) is decreasing in δ, where

f(δ) =
γρ1(ρ2(3δ

2 − 4δ)+ ρ3(−2δ− 3δ2))+ ρ3(ρ2(3δ
2 − 4δ)+ ρ1(−2δ− 3δ2))

(1− ρ1(1− 2δ)− ρ2δ− ρ3δ)(1− ρ1(1− δ)− ρ2(1− δ)− ρ3(2δ))
,
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The derivative f
′
(δ) of f(δ) w.r.t δ satisfies

f
′
(δ) =

g(δ)

(1− ρ1(1− 2δ)− ρ2δ− ρ3δ)2(1− ρ1(1− δ)− ρ2(1− δ)− ρ3(2δ))2
,

where g(δ) = (A1 +A2)δ
2 +(B1 +B2)δ+C1 +C2:

A1 = γρ1

[
3(ρ2−ρ3)[(1−ρ1)(ρ1+ρ2−2ρ3)+(1−ρ1−ρ2)(2ρ1−ρ2−ρ3)]+2(2ρ2+ρ3)(ρ1+ρ2−2ρ3)(2ρ1−ρ2−ρ3)

]
A2 = ρ3

[
3(ρ2−ρ1)[(1−ρ1)(ρ1+ρ2−2ρ3)+(1−ρ1−ρ2)(2ρ1−ρ2−ρ3)]+2(2ρ2+ρ1)(ρ1+ρ2−2ρ3)(2ρ1−ρ2−ρ3)

]
B1 = 6ρ1(ρ2 − ρ3)(1− ρ1)(1− ρ1 − ρ2)

B2 = 6ρ3(ρ2 − ρ1)(1− ρ1)(1− ρ1 − ρ2)

C1 =−2ρ1(2ρ2 + ρ3)(1− ρ1)(1− ρ1 − ρ2)

C2 =−2ρ3(2ρ2 + ρ1)(1− ρ1)(1− ρ1 − ρ2)

Now, f(δ) is decreasing in δ wherever g(δ)≤ 0. Further, B1δ+C1 ≤ 0 and B2δ+C2 ≤ 0 ∀δ ∈
[0,1/2]. If A1+A2 ≤ 0, then g(δ)≤ 0 ∀δ ∈ [0,1/2], and f(δ) and ∆(δ) are decreasing in δ ∀δ ∈
[0,1/2], and C(P (3, β3)) is decreasing in β3 ∀β3 ∈ [0,1]. If A1+A2 ≥ 0, then g(δ) is convex in δ.

Since g(0) =C1+C2 < 0, if g(1/2)≤ 0, then g(δ)≤ 0 ∀δ ∈ [0,1/2], and C(P (3, β3)) is decreasing

in β3 ∀β3 ∈ [0,1]. Otherwise, if g(1/2)> 0 (as is for ρ1 = 0.46, ρ2 = 0.46, ρ3 = 0.01, γ = 100), then

∃δ∗(Φ)∈ (0,1/2] such that g(δ)≤ 0 ∀δ ∈ [0, δ∗(Φ)], and equivalently, C(P (3, β3)) is decreasing

in β3 ∀β3 ∈ [β∗(Φ) = 1− 2δ∗(Φ),1]. This proves part 2 of the proposition.

Finally, if ρ1 = ρ2 = ρ3, then g(δ) = C1 +C2 < 0 ∀δ ∈ [0,1/2], and equivalently, C(P (3, β3)) is

decreasing in β3 ∀β3 ∈ [0,1]. This proves part 3 of the proposition. Q.E.D.

Next, we prove the statement of Proposition 6. For T = 3,N = 3 and accuracy β3 = q, let

P = P (3, q). If we cluster the predicted classes 1 and 2 into priority queue 1 and predicted

class 3 into priority queue 2, it would lead to a 3× 2 classification matrix P o(2, 1+q
2
, q) (as

defined in eq. (25)):

P o
ij(2,

1+ q

2
, q) =



1+q
2

i= 1,2, j = 1

1−q
2

i= 1,2, j = 2

q i= 3, j = 2

1− q i= 3, j = 1

Similarly, if we cluster the predicted classes 2 and 3 into priority queue 2 and predicted

class 1 into priority queue 1, it would lead to a 3× 2 classification matrix P u(2, q, 1+q
2
) (as

defined in eq. (25)):

P u
ij(2, q,

1+ q

2
) =



1+q
2

i= 2,3, j = 2

1−q
2

i= 2,3, j = 2

q i= 1, j = 1

1− q i= 1, j = 2



52 Feature-Driven Priority Queuing

From Proposition 2, we know that both these classification matrices have a higher average

waiting cost than the original 3× 3 classifier P (3, q) i.e.,

C(P (3, q))≤min{C(P o(2,
1+ q

2
, q)),C(P u(2, q,

1+ q

2
))}.

From proposition 9, we know that,

C(P o(2,
1+ q

2
, q))≤C(P o(2, q, q)) = C(P o(2, q))

, and

C(P u(2, q,
1+ q

2
))} ≤ C(P u(2, q, q)) = C(P u(2, q)).

Hence,

C(P (3, q))≤min{C(P o(2, q)),C(P u(2, q))}.

The average waiting cost for N = 3 and β3 =
1
3
is equal to that under N = 2 and β2 =

1
2
, as

both are equivalent to a single queue with first in first out (FIFO) system with no prioritiza-

tion. Therefore, the average waiting cost at N = 3 and β3 =
1
3
is more than that under N = 2

and β2 = 1 (min{C(P o(2,1)),C(P u(2,1))}); see Proposition 1. The average waiting cost under

N = 3 and β3 = 1 is less that under N = 2 and β2 = 1 (from Proposition 1). Now, if β∗(Φ)

is less than 1/3, then C(P (3, β3)) is decreasing ∀β3 ∈ [1/3,1]. Therefore, there exists a value

β∗
3(Φ) between 1/3 and 1 such that cost under N = 3 and β3 is less than the cost under N = 2

and β2 = 1 ∀β3 ∈ [β∗
3(Φ),1]. If, β

∗(Φ) is more than 1/3, then C(P (3, β∗(Φ)))≥ C(P (3,1/3)).

Since C(P (3, β3)) is decreasing ∀β3 ∈ [β∗(Φ),1]. Therefore, there exists a value β∗
3(Φ) between

β∗(Φ) and 1 such that cost under N = 3 and β3 is less than the cost under N = 2 and β2 = 1

∀β3 ∈ [β∗
3(Φ),1]. Q.E.D.

Proof of Proposition 7: When under-prioritization of type 2 is better than over-

prioritization for β2 = 1, i.e., C(P u(2,1))≤ C(P o(2,1)), then the value of β3 for which N = 3

has same cost as N = 2, β2 = 1 (C(P (3, β3)) = C(P u(2,1)) satisfies:

β∗
3(Φ) =

(3c1λ1 − 2c2λ2 − c3λ3)− ρ(6c1λ1 − 3c2λ2 − 3c3λ3)

(3c1λ1 − 3c3λ3)− ρ(6c1λ1 − 3c2λ2 − 3c3λ3)

1
3
≤ β∗

3(Φ)≤ 1 for 0≤ ρ≤ 1
3
, and decreases with ρ.

When over-prioritization of type 2 is better than under-prioritization, i.e., C(P o(2,1)) ≤

C(P u(2,1)), then the value of β3 for which N = 3 has same cost as N = 2, β2 = 1 (C(P (3, β3)) =

C(P o(2,1)) satisfies:

β∗
3(Φ) =

(2c1λ1 + c2λ2 − 3c3λ3)− ρ(3c1λ1 − 3c3λ3)

(3c1λ1 − 3c3λ3)− ρ(6c1λ1 − 3c2λ2 − 3c3λ3)
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1
3
≤ β∗

3(Φ)≤ 1 for 0≤ ρ≤ 1
3
, and increases with ρ. In fact,

β∗
3(Φ) =


(3c1λ1−2c2λ2−c3λ3)−ρ(6c1λ1−3c2λ2−3c3λ3)

(3c1λ1−3c3λ3)−ρ(6c1λ1−3c2λ2−3c3λ3)
if ρ< γ−1

3γ

(2c1λ1+c2λ2−3c3λ3)−ρ(3c1λ1−3c3λ3)

(3c1λ1−3c3λ3)−ρ(6c1λ1−3c2λ2−3c3λ3)
otherwise

Q.E.D.

Proof of Proposition 8: Let ∆= C(P u(2, β2))−C(P o(2, β2)):

∆=

[
c1λ1β2 + c2λ2(1−β2)+ c3λ3(1−β2)

1− ρ1β2 − ρ2(1−β2)− ρ3(1−β2)
+

c1λ1(1−β2)+ c2λ2β2 + c3λ3β2

(1− ρ1β2 − ρ2(1−β2)− ρ3(1−β2))(1− ρtot)

]

−

[
c1λ1β2 + c2λ2β2 + c3λ3(1−β2)

1− ρ1β2 − ρ2β2 − ρ3(1−β2)
+

c1λ1(1−β2)+ c2λ2(1−β2)+ c3λ3β2

(1− ρ1β2 − ρ2β2 − ρ3(1−β2))(1− ρtot)

]

∆=(1− 2β2)

[
(c1λ1ρ2(1−β2ρtot)+ c2λ2(ρtotβ2(ρ1 − ρ3)+ ρtot(ρ3 − 1)+ ρ2)

(1− ρ1β2 − ρ2β2 − ρ3(1−β2))(1− ρ1β2 − ρ2(1−β2)− ρ3(1−β2))(1− ρtot)

+
c3λ3ρ2(1− (1−β2)ρtot)

(1− ρ1β2 − ρ2β2 − ρ3(1−β2))(1− ρ1β2 − ρ2(1−β2)− ρ3(1−β2))(1− ρtot)

]
Where ρtot = ρ1 + ρ2 + ρ3. Substituting λ1 = ρ1µ1, λ2 = ρ2µ2, λ3 = ρ3µ3, ∀β2 ∈ [0.5,1]:

∆≤ 0 ⇐⇒ β2ρtot[(c1µ1−c2µ2)ρ1+(c2µ2−c3µ3)ρ3]≤ (c1µ1−c2µ2)ρ1+(c3µ3−c2µ2)ρ3(1−ρtot)

Q.E.D.

Proof of Proposition 9. Let the value of C(P u(2, β11, β22)) = C(P ):

C(P ) =E[S]

(
c1λ1β11 +(c2λ2 + c3λ3)(1−β22)

1− ρ1β11 − (ρ2 + ρ3)(1−β22)
+

c1λ1(1−β11)+ (c2λ2 + c3λ3)β22

(1− ρ1β11 − (ρ2 + ρ3)(1−β22))(1− ρ1 − ρ2 − ρ3)

)
∂C(P )

∂β11

=C(P )

[
−ρ1((c1µ1 − c2µ2)ρ2 +(c1µ1 − c3µ3)ρ3)(1− (1−β22)(ρ1 + ρ2 + ρ3))

((c1λ1β11 +(c2λ2 + c3λ3)(1−β22))(1− ρ1 − ρ2 − ρ3)+ c1λ1(1−β11)+ (c2λ2 + c3λ3)β22)

]
< 0

∂C(P )

∂β22

=C(P )

[
−ρ1((c1µ1 − c2µ2)ρ2 +(c1µ1 − c3µ3)ρ3)(1−β11(ρ1 + ρ2 + ρ3))

((c1λ1β11 +(c2λ2 + c3λ3)(1−β22))(1− ρ1 − ρ2 − ρ3)+ c1λ1(1−β11)+ (c2λ2 + c3λ3)β22)

]
< 0

∂C(P )

∂β11

<
∂C(P )

∂β22

⇐⇒ β11 +β22 − 1> 0

∂C(P )

∂β11

<
∂C(P )

∂β22

=⇒

∣∣∣∣∣∂C(P )

∂β11

∣∣∣∣∣>
∣∣∣∣∣∂C(P )

∂β22

∣∣∣∣∣
The proof for C(P o(2, β11, β22)) is similar and hence omitted. Q.E.D.


