
Simone ConiaSapienza University of Rome | la sapienza · Department of Computer Science
Simone Conia
PhD student in Computer Science
PhD student in NLP and AI at the Sapienza NLP group. Currently working on multilingual and cross-lingual semantics.
About
21
Publications
4,735
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
96
Citations
Introduction
3rd-year PhD student in Computer Science, member of the Sapienza NLP group. Currently studying Natural Language Processing (NLP), with a focus on Semantic Role Labeling (SRL), Word Sense Disambiguation (WSD) and Semantic Parsing.
Additional affiliations
November 2019 - present
Position
- PhD Student
Description
- I am among those lucky people who can study what they love and love what they study. Currently, I am a second-year PhD student in Computer Science at the Sapienza NLP group. My research revolves around multilinguality and cross-linguality in Semantics, with a focus on Semantic Role Labeling, Word Sense Disambiguation and Semantic Parsing.
Education
September 2016 - January 2019
September 2013 - October 2016
Publications
Publications (21)
Recent research indicates that taking advantage of complex syntactic features leads to favorable results in Semantic Role Labeling. Nonetheless, an analysis of the latest state-of-the-art multilingual systems reveals the difficulty of bridging the wide gap in performance between high-resource (e.g., English) and low-resource (e.g., German) settings...
While cross-lingual techniques are finding increasing success in a wide range of Natural Language Processing tasks, their application to Semantic Role Labeling (SRL) has been strongly limited by the fact that each language adopts its own linguistic formalism, from PropBank for English to AnCora for Spanish and PDT-Vallex for Czech, inter alia. In t...
Multilingual and cross-lingual Semantic Role Labeling (SRL) have recently garnered increasing attention as multilingual text representation techniques have become more effective and widely available. While recent work has attained growing success, results on gold multilingual benchmarks are still not easily comparable across languages, making it di...
Notwithstanding the growing interest in cross-lingual techniques for Natural Language Processing , there has been a surprisingly small number of efforts aimed at the development of easy-to-use tools for cross-lingual Semantic Role Labeling. In this paper, we fill this gap and present InVeRo-XL, an off-the-shelf state-of-the-art system capable of an...
Thanks to the effectiveness and wide availability of modern pretrained language models (PLMs), recently proposed approaches have achieved remarkable results in dependency-and span-based, multilingual and cross-lingual Semantic Role Labeling (SRL). These results have prompted researchers to investigate the inner workings of modern PLMs with the aim...
In this paper, we present the Universal Semantic Annotator (USeA), which offers the first unified API for high-quality automatic annotations of texts in 100 languages through state-of-the-art systems for Word Sense Disambiguation, Semantic Role Labeling and Semantic Parsing. Together, such annotations can be used to provide users with rich and dive...
In the field of sentiment analysis, several studies have highlighted that a single sentence may express multiple, sometimes contrasting, sentiments and emotions, each with its own experiencer, target and/or cause. To this end, over the past few years researchers have started to collect and annotate data manually, in order to investigate the capabil...
With state-of-the-art systems having finally attained estimated human performance, Word Sense Disambiguation (WSD) has now joined the array of Natural Language Processing tasks that have seemingly been solved, thanks to the vast amounts of knowledge encoded into Transformer-based pre-trained language models. And yet, if we look below the surface of...
Entity Linking (EL) systems have achieved impressive results on standard benchmarks, mainly thanks to the contextualized representations provided by recent pretrained language models. However, such systems still require massive amounts of data — millions of labeled examples — to perform at their best, with training times that often exceed several d...
Entity Linking (EL) systems have achieved impressive results on standard benchmarks, mainly thanks to the contextualized representations provided by recent pretrained language models. However, such systems still require massive amounts of data — millions of labeled examples — to perform at their best, with training times that often exceed several d...
Over the past few years, Word Sense Disambiguation (WSD) has received renewed interest: recently proposed systems have shown the remarkable effectiveness of deep learning techniques in this task, especially when aided by modern pretrained language models. Unfortunately, such systems are still not available as ready-to-use end-to-end packages, makin...
Despite the recent great success of the sequence-to-sequence paradigm in Natural Language Processing, the majority of current studies in Semantic Role Labeling (SRL) still frame the problem as a sequence labeling task. In this paper we go against the flow and propose GSRL (Generating Senses and RoLes), the first sequence-to-sequence model for end-t...
Despite the recent great success of the sequence-to-sequence paradigm in Natural Language Processing, the majority of current studies in Semantic Role Labeling (SRL) still frame the problem as a sequence labeling task. In this paper we go against the flow and propose GSRL (Generating Senses and RoLes), the first sequence-to-sequence model for end-t...
The intelligent manipulation of symbolic knowledge has been a long-sought goal of AI. However, when it comes to Natural Language Processing (NLP), symbols have to be mapped to words and phrases, which are not only ambiguous but also language-specific: multilinguality is indeed a desirable property for NLP systems, and one which enables the generali...
Recent studies treat Word Sense Disambiguation (WSD) as a single-label classification problem in which one is asked to choose only the best-fitting sense for a target word, given its context. However, gold data labelled by expert annotators suggest that maximizing the probability of a single sense may not be the most suitable training objective for...
Recent studies treat Word Sense Disambiguation (WSD) as a single-label classification problem in which one is asked to choose only the best-fitting sense for a target word, given its context. However, gold data labelled by expert annotators suggest that maximizing the probability of a single sense may not be the most suitable training objective for...
To date, the most successful word, word sense, and concept modelling techniques have used large corpora and knowledge resources to produce dense vector representations that capture semantic similarities in a relatively low-dimensional space. Most current approaches, however, suffer from a monolingual bias, with their strength depending on the amoun...
To date, the most successful word, word sense, and concept modelling techniques have used large corpora and knowledge resources to produce dense vector representations that capture semantic similarities in a relatively low-dimensional space. Most current approaches, however, suffer from a monolingual bias, with their strength depending on the amoun...
Semantic Role Labeling (SRL) is deeply dependent on complex linguistic resources and sophisticated neural models, which makes the task difficult to approach for non-experts. To address this issue we present a new platform named Intelligible Verbs and Roles (InVeRo). This platform provides access to a new verb resource, VerbAtlas, and a state-of-the...
We present VerbAtlas, a new, hand-crafted lexical-semantic resource whose goal is to bring together all verbal synsets from WordNet into semantically-coherent frames. The frames define a common, prototypical argument structure while at the same time providing new concept-specific information. In contrast to PropBank, which defines enumerative seman...
Projects
Projects (3)
The aim of the project is to enable the development of high-performing NER and Entity Linking systems in multiple languages, even when few training data or limited hardware resources are available.