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The effect of malaria control on
Plasmodium falciparum in Africa
between 2000 and 2015
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Since the year 2000, a concerted campaign against malaria has led to unprecedented levels of intervention coverage
across sub-Saharan Africa. Understanding the effect of this control effort is vital to inform future control planning.
However, the effect of malaria interventions across the varied epidemiological settings of Africa remains poorly
understood owing to the absence of reliable surveillance data and the simplistic approaches underlying current
disease estimates. Here we link a large database of malaria field surveys with detailed reconstructions of changing
intervention coverage to directly evaluate trends from 2000 to 2015, and quantify the attributable effect of malaria
disease control efforts. We found that Plasmodium falciparum infection prevalence in endemic Africa halved and the
incidence of clinical disease fell by 40% between 2000 and 2015. We estimate that interventions have averted 663 (542–
753 credible interval) million clinical cases since 2000. Insecticide-treated nets, the most widespread intervention, were
by far the largest contributor (68% of cases averted). Although still below target levels, current malaria interventions
have substantially reduced malaria disease incidence across the continent. Increasing access to these interventions, and
maintaining their effectiveness in the face of insecticide and drug resistance, should form a cornerstone of post-2015
control strategies.

In the midst of an escalating malaria public health disaster, the year
2000 marked a turning point in multilateral commitment to malaria
control in sub-Saharan Africa, catalysed by the Roll Back Malaria
initiative and the wider development agenda around the United
Nations Millennium Development Goals (MDGs). The 15 years
since have seen international financing for malaria control increase
approximately twentyfold1, enabling widespread but uneven scale-up
of coverage of the main contemporary malaria control interventions:
insecticide-treated bed nets (ITNs), indoor residual spraying (IRS),
and prompt treatment of clinical malaria cases with artemisinin-
based combination therapy (ACT).

As part of this reinvigorated effort, a series of international goals
were set with a target year of 2015, in particular the MDG to “halt by
2015 and begin to reverse the incidence of malaria” and the more
ambitious target defined later by the World Health Organization
(WHO) of reducing case incidence by 75% relative to 2000 levels2.
While these targets were important for motivating action and mobil-
izing funds, no explicit plan was put in place to reliably measure
progress towards them. Now that the benchmark year of 2015 has
been reached, the international community must define a post-2015
agenda for malaria control that will shape the technical, financial and
political landscape in which the battle against the disease will be

fought. This agenda is being defined around two key policy initiatives
for the 2016–2030 period: the Global Technical Strategy3 and Action
and Investment to Defeat Malaria4, led by WHO and the Roll Back
Malaria Partnership. In this context, it is imperative that the achieve-
ments of 2015 can be robustly evaluated and, more broadly, that the
patterns, causes, and implications of changing malaria endemicity
over the past 15 years can be understood to inform an optimal strategy
for the future.

The effect of malaria control is poorly understood
Despite its importance, current knowledge on the nature and drivers
of changing endemicity in sub-Saharan Africa is remarkably weak.
National health records in 32 highly endemic countries (together
accounting for about 90% of the global malaria burden) are consid-
ered inadequate to assess trends in malaria cases1. This stems from low
care-seeking rates (many malaria cases are not seen at formal health
facilities), incomplete record keeping and curation (many recorded
cases are never captured in surveillance databases), and historically
poor access to parasitological diagnosis (malaria cases were often
diagnosed presumptively with poor specificity). As systems have
begun to improve, for example owing to greater use of rapid dia-
gnostic testing in health facilities1, these biases have been mitigated,
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but that presents further challenges for comparison of data through
time and evaluation of trends5. For these countries, the WHO has
previously adopted a “cartographic” burden measurement approach
whereby a map of climatic suitability for malaria transmission is first
used to stratify likely incidence rates across the continent, with these
rates then progressively downgraded as intervention coverage
increases according to effect sizes measured in randomized control
trials. One acknowledged limitation of this approach is its reliance on
the central assumption that effects observed in a limited number of
short-term trials can be extrapolated to sustained continent-wide
implementation. This assumption has never been validated beyond
local or national-level analyses6. In reality, the individual or combined
efficacy of interventions will vary by setting and be contingent on
many local factors, including vector ecology, health systems, and
coverage levels7,8. Other studies have investigated effects using cross-
sectional community surveys7,9. These studies capture a wider range
of real-world settings, but yield only a single pooled estimate across
diverse disease transmission settings that, again, has unknown valid-
ity when extrapolated across Africa.

Since its first use, component parts of the cartographic burden
framework have incrementally improved. Climatic suitability maps
have been superseded by empirical endemicity maps10–12 that
use model-based geostatistics to create surfaces of risk based on
thousands of geolocated cross-sectional surveys measuring infection
prevalence (termed Plasmodium falciparum parasite rate, Pf PR).
Improvements have also been made in the estimation of clinical incid-
ence rates as a function of Pf PR13–15, allowing clinical incidence rates,
which are notoriously difficult to measure in the field, to be estimated
geographically using mapped surfaces of Pf PR14,16. All these earlier
studies, however, preceded the most intense period of control effort
(from 2010 to the present), and none were designed to formally
evaluate temporal changes in disease burden or explicitly consider
the effect of interventions.

A framework to measure malaria risk in Africa
Here, we provide the first formal quantification, with rigorously
defined uncertainty, of P. falciparum infection prevalence and disease
incidence across sub-Saharan Africa from the year 2000 to the bench-
mark year of 2015, and of the role the major control interventions
have had in causing these changes. Our approach evaluates not only
point estimates, but also presents a full treatment of uncertainty
through a Bayesian hierarchical model. Components contributing
to uncertainty in outputs included the sample size and spatiotemporal
density of Pf PR surveys, uncertainty in the fitted relationships
between Pf PR and the suite of environmental and intervention
covariates, uncertainty in the input data on observed clinical incid-
ence rates, and uncertainty in the mechanistic model parameters
defining the prevalence–incidence relationship. By linking all com-
ponents together in a Bayesian framework, these distinct sources of
uncertainty are formally propagated through the predictive model
and represented as predictive posterior distributions around all out-
put results.

The analytical framework is shown schematically in Extended Data
Fig. 1. Data on ITN use and access to ACTs from over one million
households were combined with national malaria control programme
data1 on ITN, ACT and IRS provision to develop time-series models
of coverage of these interventions within each country1. These were
combined within a spatiotemporal Bayesian geostatistical model17

with Pf PR data from 27,573 georeferenced population clusters
between 1995 and 2014, along with an optimised suite of temporally
dynamic environmental and sociodemographic covariates18. The
model adjusted Pf PR observations by age19, season and type of dia-
gnostic used, and fitted flexible functional forms to capture the effect
of each intervention on declining Pf PR as a function of coverage
reached and the starting (pre-intervention) Pf PR in 2000 (Extended
Data Fig. 2). Following earlier work10,11,19, we chose to model Pf PR in

the 2-up-to-10 year age range, since this is associated with a plateau in
the age-prevalence relationship and thus acts as a standardised com-
parison. The model was used to predict a spatio-temporal ‘cube’ of
age-structured Pf PR at 5 3 5 km resolution across all endemic
African countries for each year from 2000 to 2015. Using the empir-
ically observed effect of each intervention, it was possible to generate
counterfactual maps estimating contemporary Pf PR under hypothet-
ical scenarios without interventions. We chose to evaluate this ‘no
intervention’ counterfactual to allow estimation of the total effect of
interventions.

For the 32 high-burden countries of Africa, an ensemble model was
developed to predict incidence rates of clinical malaria as a function of
community PfPR20. This brought together three independently
developed mathematical malaria transmission models14,15,21 that were
re-fitted to a common data set of age-structured clinical incidence
measured longitudinally at 30 sites22, allowing an ensemble model to
be defined to predict age-specific incidence at all locations given pre-
valence, seasonality, level of treatment, and probable immune status of
populations. We used a definition of ‘clinical malaria’ as an attributable
febrile episode (body temperature in excess of 37.5 uC), censored by a
30-day window (that is, multiple bouts of symptoms occurring within
the same 30-day period are counted as a single episode). The ensemble
model was then combined with the Pf PR cube and underlying popu-
lation surfaces23 to predict clinical incidence by country and year for
both the real and counterfactual scenarios. For the remaining eleven
low-burden countries in Africa (accounting for around 3% of cases)
where national reporting systems are more robust, we generated clinical
incidence estimates with an existing approach that uses national case
reports while adjusting for care-seeking behaviour, low diagnostic test-
ing rates, and underreporting1,24.

Infection prevalence and clinical incidence decline
We found that infection prevalence in children age 2-up-to-10 across
endemic Africa has halved since the year 2000 (population-weighted
mean Pf PR2–10: year 2000 5 33%, 95% credible interval 31–35%; year
2015 5 16%, 14–19%), with around three-quarters of this decline
occurring after 2005. Across Africa the rate of decline in Pf PR2–10

rose steadily to a peak yearly decline of 9% in 2011, after which there
was a slowing between 2011 and 2013 followed by resurgence in
recent years back to the current rate of 5% annual decline in Pf PR.
Our predicted surfaces of Pf PR2–10 demonstrate the geographical
pattern of this reduction across the continent (Fig. 1a–c), with hyper-
or holo-endemic transmission (where Pf PR exceeds 50% and 75%,
respectively, see Fig. 1d) common in 2000 across large swathes of
central and western Africa, but limited to isolated pockets by 2015.
This decline meant a marked shift in the distribution of exposure level
(Fig. 1d), with the proportion of the endemic population exposed to
hyper- or holo-endemic malaria falling from 33% (30–37%) to just 9%
(5–13%) (Table 1). Crucially, for the feasibility of post-2015 elimina-
tion efforts, the population of stable endemic Africa experiencing very
low transmission (Pf PR2–10 less than 1%) has increased sixfold since
2000 (far outpacing the 50% underlying population growth over the
period) meaning there are now 121 (110–133) million people living in
settings where elimination campaigns can be considered.

We estimated that there were 187 (132–259) million clinical cases
of P. falciparum malaria in Africa in 2015. Case incidence declined by
40% from 321 (253–427) per 1,000 persons per annum in 2000 to 192
(135–265) per 1,000 persons p.a. in 2015, with all but one of the 43
mainland endemic countries meeting the MDG target of reversing
incidence trends by 2015, 19 (17–25) achieving a .50% decline, and 7
(6–7) declining by .75% (Extended Data Fig. 3).

The model has been able to predict changes in mean Pf PR across
Africa with considerable precision, reflecting the increasing abundance
of Pf PR surveys, their relatively large signal-to-noise ratio, the adjust-
ments for diagnostic type, and the informative covariate suite, all of
which contributed to strong predictive performance of the geostatistical
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model. Credible intervals around the continental clinical incidence esti-
mates were proportionately much larger and this reflected primarily the
residual uncertainty around the modelled relationship between infection
prevalence and clinical incidence.

Attributable effect of malaria control interventions
Changes in prevalence largely followed patterns of increasing ITN
coverage, and ITNs were by far the most important intervention
across Africa, accounting for an estimated 68 (62–72)% of the declines
in Pf PR seen by 2015 (Fig. 2a). We estimated ACT and IRS contrib-
uted 19 (15–24)% and 13 (11–16)% respectively, although these inter-
ventions had larger proportional contributions where their coverage
was high (Extended Data Fig. 4). It is important to emphasize that these
proportional contributions do not necessarily reflect the comparative
effectiveness of different intervention strategies but, rather, are driven
primarily by how early and at what scale the different interventions
were deployed. In total, we estimated that malaria control interventions
have averted 663 (542–753) million clinical cases since 2000, of which 68
(62–73)%, 22 (17–28)% and 10 (5–14)% were contributed by ITNs,
ACTs, and IRS, respectively (Fig. 2b).

Discussion
Here, for the first time, the rapidly changing landscape of malaria risk
in Africa has been quantified across the 15-year span of the
Millennium Development Goals. Our approach is primarily data
driven, informed by empirical observations in the field rather than
theoretical models or extrapolated experimental results. Our mod-
elling framework requires few prior assumptions and allows patterns
of change and attribution to be identified with rigorously defined
metrics of uncertainty.

We have shown that remarkable and widespread reductions in
infection prevalence and case incidence have occurred across Africa
since 2000, and that malaria control interventions have been respons-
ible for most of the decline even though they remain well below
international targets for universal coverage1. ITNs have had by far
the largest effect, but have also been generally present for longer and at
higher levels of coverage. IRS and ACTs have both made important
contributions to reducing prevalence and incidence where they have
been implemented at scale (although it is important to note that the
primary role of ACTs is in averting severe disease and death rather
than reducing transmission and uncomplicated cases).
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Figure 1 | Changes in infection prevalence 2000–
2015. a, Pf PR2–10 for the year 2000 predicted at
5 3 5 km resolution. b, Pf PR2–10 for the year 2015
predicted at 5 3 5 km resolution. c, Absolute
reduction in Pf PR2–10 from 2000 to 2015.
d, Smoothed density plot showing the relative
distribution of endemic populations by Pf PR2–10 in
the years 2000 (red line) and 2015 (blue line).
The frequencies on the vertical axis have been
scaled to make the densities visually comparable.
The classical endemicity categories are shown for
reference in green shades. Results shown in all
panels are derived from a Bayesian geostatistical
model fitted to n 5 27,573 Pf PR survey points;
n 5 24,868 ITN survey points; n 5 96 national
survey reports of ACT coverage; n 5 688 country-
year reports on ITN, ACT and IRS distribution
by national programs; and n 5 20 environmental
and socioeconomic covariate grids. Maps in a–c are
available from the Malaria Atlas Project (http://
www.map.ox.ac.uk/) under the Creative Commons
Attribution 3.0 Unported License.

Table 1 | Changing distribution of malaria endemicity across stable endemic Africa, 2000 to 2015
Population (%) Area (%)

Endemicity class 2000 2015 Change (%) 2000 2015 Change (%)

Holo (Pf PR2–10 $ 75%) 11.57 1.32 288.57 11.81 1.38 288.32
Hyper (Pf PR2–10 50–75%) 21.51 7.46 265.31 20.18 7.88 260.93
Meso (Pf PR2–10 10–50%) 41.32 42.41 12.64 40.98 41.06 10.19
Hypo (Pf PR2–10 , 10%) 25.60 48.80 190.63 27.02 49.67 183.84
Total 100.00 100.00 100.00 100.00
Pre-elimination or eliminating (PfPR2–10 , 1%) 3.82 13.61 1255.93 3.48 11.39 1227.51
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This analysis has focused on evaluating changes in infection preval-
ence and clinical incidence, and we have not addressed effects on malaria
mortality. Data on malaria deaths are sparse both spatially and tempor-
ally, and concerted efforts must be made to both increase data collection
and improve the sensitivity and specificity of malaria death attribution.
Integrating the results of the current study with existing malaria mor-
tality estimation processes1,25,26, to yield improved understanding of lives
saved by malaria control, is an immediate priority.

The modelling framework presented here has been necessitated in
part by the absence of detailed and robust surveillance data collected

routinely by health systems across Africa. The development of more
robust surveillance systems to deliver geographically detailed and
timely data on malaria incidence will be an increasingly important
strand of malaria control efforts, particularly if prevalence continues
to decline and identification and rapid response to individual malaria
cases becomes critical to achieve elimination.

The efforts of the international community over the past 15 years
have reduced malaria risk levels for many millions of people, and large
regions of Africa are now in a position to consider elimination strat-
egies. Despite this progress, many millions of people remain at risk of
malaria disease and death in Africa in 2015. This analysis demon-
strates that current malaria interventions have been highly effective at
reducing prevalence and incidence across the continent, and provides
strong support for sustaining and increasing access to these interven-
tions as a cornerstone of post-2015 control strategies. This will need to
be coupled with a redoubling of efforts to delay the spread of drug and
insecticide resistance, tools for addressing the residual transmission
that persists in some regions despite high vector control coverage, and
concerted local programs to systematically detect and eliminate the
remaining parasites.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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Figure 2 | Changing endemicity and effect of interventions 2000–2015.
a, Predicted time series of population-weighted mean Pf PR2–10 across endemic
Africa. The red line shows the actual prediction and the black line a
‘counterfactual’ prediction in a scenario without coverage by ITNs, ACTs or
IRS. The coloured regions indicate the relative contribution of each interven-
tion in reducing Pf PR2–10 throughout the period. b, The predicted cumulative
number of clinical cases averted by interventions at the end of each year,
with the specific contribution of each intervention distinguished. Results shown
in both panels are derived from a Bayesian geostatistical model fitted to
n 5 27,573 Pf PR survey points; n 5 24,868 ITN survey points; n 5 96 national
survey reports of ACT coverage; n 5 688 country-year reports on ITN, ACT
and IRS distribution by national programs; and n 5 20 environmental and
socioeconomic covariate grids. Panel b additionally incorporates data from
n 5 30 active-case detection studies reporting P. falciparum clinical incidence.
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Extended Data Figure 1 | Schematic overview of main input data, model components, and outputs. Each component is detailed in the Supplementary
Information.
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Extended Data Figure 2 | Fitted function representing effect of ITNs.
Curves illustrate the predicted effect of ITNs as a function of coverage (five
example coverage levels are shown, specified as mean coverage over preceding
4-year period) and baseline transmission. The baseline Pf PR is shown on
the horizontal axis and the suppressed Pf PR given the ITN coverage level
shown on the vertical axis. The diagonal line (representing zero ITN effect) is

shown in black, and parameter uncertainty around each ITN effect line is
illustrated by the semi-transparent envelopes. Results shown are derived from
a Bayesian geostatistical model fitted to n 5 27,573 PfPR survey points;
n 5 24,868 ITN survey points; n 5 96 national survey reports of ACT coverage;
n 5 688 country-year reports on ITN, ACT and IRS distribution by national
programs; and n 5 20 environmental and socioeconomic covariate grids.
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Extended Data Figure 3 | Changing incidence rate by country, 2000–2015.
Estimated country-level rates of all-age clinical incidence are shown for
2000 and 2015. For Sudan and South Sudan, we used the post-2011 borders
throughout the time period to allow comparability. Results shown are
derived from a Bayesian geostatistical model fitted to n 5 27,573 Pf PR survey

points; n 5 24,868 ITN survey points; n 5 96 national survey reports of ACT
coverage; n 5 688 country-year reports on ITN, ACT and IRS distribution
by national programs; n 5 20 environmental and socioeconomic covariate
grids; and n 5 30 active-case detection studies reporting P. falciparum
clinical incidence.
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Extended Data Figure 4 | Decline in infection prevalence attributable to
main malaria control interventions. a–d, Each map shows absolute decline
in Pf PR2–10 between 2000 and 2015 within areas of stable transmission
attributable to the combined effect of ITNs, ACTs, and IRS (a); and the
individual effect of ITNs (b); ACTs (c); and IRS (d). Note that the colour scaling
differs between the panels. Results shown in all panels are derived from a
Bayesian geostatistical model fitted to n 5 27,573 Pf PR survey points;

n 5 24,868 ITN survey points; n 5 96 national survey reports of ACT coverage;
n 5 688 country-year reports on ITN, ACT and IRS distribution by national
programs; and n 5 20 environmental and socioeconomic covariate grids.
Maps in this figure are available from the Malaria Atlas Project (http://
www.map.ox.ac.uk/) under the Creative Commons Attribution 3.0 Unported
License.
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