Simón Ruiz-Lara

Simón Ruiz-Lara
Universidad de Talca · Institute of Plan Biology and Biotechnology (IBVB)

PhD

About

67
Publications
6,821
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,363
Citations
Citations since 2017
12 Research Items
856 Citations
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
2017201820192020202120222023050100150
Additional affiliations
March 1982 - present
Universidad de Talca
Position
  • Academic
Description
  • I am the leader of the research group whose lines of work are: a. Study of gene expression and regulation in abiotic stress in plants. b.- Development of plant gene expression vectors.

Publications

Publications (67)
Article
Full-text available
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4)...
Article
Full-text available
Although several genes homologous to those involved in the modulation of reproductive development in the model plant Arabidopsis thaliana have been identified in the Vitis vinifera genome, the regulatory network associated with pollen development, pollen tube elongation, and fecundation in grapevine is largely unknown. In Arabidopsis, receptor kina...
Article
Full-text available
In plants, vesicular trafficking is crucial for the response and survival to environmental challenges. The active trafficking of vesicles is essential to maintain cell homeostasis during salt stress. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are regulatory proteins of vesicular trafficking. They mediate membran...
Article
Intracellular vesicular trafficking ensures the exchange of lipids and proteins between the membranous compartments. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) play a central role in membrane fusion and they are key factors for vesicular trafficking in plants, including crops economically important such as tomato...
Article
Control of gene expression and induction of cellular protection mechanisms are two important processes that plants employ to protect themselves against abiotic stresses. ABA-, stress, and ripening-induced (ASR) proteins have been identified to participate in such responses. Previous studies have proposed that these proteins can act as transcription...
Article
Full-text available
Stomata are microscopic valves formed by two guard cells flanking a pore, which are located on the epidermis of most aerial plant organs and are used for water and gas exchange between the plant and the atmosphere. The number, size and distribution of stomata are set during development in response to changing environmental conditions, allowing plan...
Article
Physiological responses of plants to salinity stress requires the coordinated activation of many genes. A salt-induced gene was isolated from roots of the wild tomato species Solanum chilense and named SchRabGDI1 because it encodes a protein with high identity to GDP dissociation inhibitors of plants. These proteins are regulators of the RabGTPase...
Article
Full-text available
Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context plant root-associated fungi appear as a new strategy to improve ecophysiological...
Article
Full-text available
In plant cells, flavonoids are synthesized in the cytosol and then are transported and accumulated in the vacuole. Glutathione S-transferase-mediated transport has been proposed as a mechanism involved in flavonoid transport, however, whether binding of flavonoids to glutathione S-transferase (GST) or their transport is glutathione-dependent is not...
Data
Phylogenetic relationship between VviGST1, VviGST3, and VviGST4 with other plant GSTs proteins. The tree was obtained following the neighbor-joining method with 1000 replicates for boot-strap values.
Data
Structural models of GST related to the transport of flavonoids. (A) TT19. (B) VviGST1. (C) VviGST3. (D) VviGST4. Each sub-unit appears in blue and gray. In yellow the G-site (putative binding to glutathione) and in orange the H-site (putative binding flavonoids) in a monomer.
Data
Ramachandran plot for the modeled GSTs. (A) TT19. (B) VviGST1. (C) VviGST3. (D) VviGST4. Red amino acids located in advantaged regions are presented. Yellow and coffee regions are accepted, and white regions are stereochemical not accepted.
Data
PROSA energy analysis of GST proteins. (A) 5AGY: -8. (B) GST1: -7.55. (C) 4RI6: -7.55. (D) TT19: -6.31. (E) GST3: -8.21. (F) GST4: -6.67.
Data
Spatial identification of amino acids related to the putative binding of anthocyanins in TT19. (A) In blue, amino acids suggested by Conn et al. (2008). (B) In red, amino acids suggested by Kitamura et al. (2012). In green, Cyanidin 3′-O-glucoside located in the site of lower energy.
Data
Alignment of amino acid sequences of GSTs proteins related to flavonoid transport. The active residues for binding of GSH are indicated by a red asterisk. Hundred percentage identity is indicated with black background and about 80% identity in bold.
Article
Full-text available
Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening proc...
Article
Full-text available
In grapevine, anthocyanins and proanthocyanidins are the main flavonoids in berries, which are associated to organoleptic properties in red wine such as color and astringency. Flavonoid pathway is specifically regulated at transcriptional level and several R2R3-MYB proteins have shown to act as positive regulators. However, some members of this fam...
Article
Full-text available
Parthenocarpic fruit development (PFD) reduces fruit yield and quality in grapevine. Parthenocarpic seedless berries arise from fruit set without effective fertilization due to defective pollen germination. PFD has been associated to micronutrient deficiency but the relation of this phenomenon with pollen polymorphism has not been reported before....
Article
The expression of Kunitz trypsin inhibitor (KTI) genes has been associated with multiple functions in plants, including defense and development. In particular, Populus deltoides KTI3 (PdKTI3) is highly upregulated when poplars are exposed to different copper stress conditions. However, the specific participation of PdKTI3 in cell protection against...
Article
Full-text available
Key message VvMATE1 and VvMATE2 encode putative PA transporters expressed during seed development in grapevine. The subcellular localization of these MATE proteins suggests different routes for the intracellular transport of PAs. Abstract Proanthocyanidins (PAs), also called condensed tannins, protect plants against herbivores and are important q...
Data
Supplementary Fig. 1. Subcellular localization of fusion proteins and organellar markers. (A-D) VvMATE1-GFP without orgarnellar marker. (E–H) VvMATE2-GFP without organellar marker. (I-L) VvMATE2-GFP and vacuole marker (mCherry). (M-P) vacuolar marker (mCherry). (Q-T) Golgi marker (mCherry). (U-W) pAM1 empty vector (GFP). Bars in all images are 15 μ...
Article
Key message: Rice ASR genes respond distinctly to abscisic acid, dehydration and cold stress. Their tissue-specific expression provides new hints about their possible roles in plant responses to stress. Plant ASR proteins have emerged as an interesting distinct group of proteins with apparent roles in protecting cellular structures as well as puta...
Article
Tocopherols are members of the vitamin E complex and essential antioxidant compounds synthesized in chloroplasts that protect photosynthetic membranes against oxidative damage triggered by most environmental stresses. Tocopherol deficiency has been shown to affect germination, retard growth and change responses to abiotic stress, suggesting that to...
Article
Full-text available
Zinc (Zn) deficiency is one of the most widespread mineral nutritional problems that affect normal development in plants. Because Zn cannot passively diffuse across cell membranes, it must be transported into intracellular compartments for all biological processes where Zn is required. Several members of the Zinc-regulated transporters, Iron-regula...
Data
Full-text available
NS/S Expression ratio of different ESTs associated to transport. Putative genes associated to transport that showing a significant expression variation (p-value < 0.05) from expression libraries from parthenocarpic (NS) and normal (S) Vitis vinifera L. cv. carménère berries (DEGECHIVID database; http://www.genomicafrutos.cl).
Data
A) Comparison of the VvWRKY-20 amino acid sequence with its putative homologue AtZAP1. Alignment was performed with the highest homologous sequence from Vitis vinifera L. Genome to AtZAP1 (AT2G04880), named VvWRKY-20 (GSVIVT01030046001, http://www.genoscope.cns.fr). Alignments were performed using ClustalW. The WRKY motifs are highlight in yellow b...
Article
Full-text available
Boron (B) is an essential micronutrient for normal development of roots, shoots and reproductive tissues in plants. Due to its role in the structure of rhamnogalacturonan II, a polysaccharide required for pollen tube growth, B deficiency has been associated with the occurrence of parthenocarpic seedless grapes in some varieties of Vitis vinifera L....
Article
Isoprenoid compounds synthesised in the plastids are involved in plant response to water deficit. The functionality of the biosynthetic pathway of these compounds under drought stress has been analysed at the physiological and molecular levels in two related species of tomato (Solanum chilense and Solanum lycopersicum) that differ in their toleranc...
Article
Full-text available
Simultaneous exposition to low temperature and high light radiation cause photoinhibition of photosynthetic apparatus, affecting the productivity and geographical distribution of agricultural crops. In several Solanaceous species, tolerance to low temperature stress in combination with high light has been associated with some stimulation in non-pho...
Article
Simultaneous exposition to low temperature and high light radiation cause photoinhibition of photosynthetic apparatus, affecting the productivity and geographical distribution of agricultural crops. In several Solanaceous species, tolerance to low temperature stress in combination with high light has been associated with some stimulation in non-pho...
Article
Full-text available
Grapevine sexual reproduction involves a seasonal separation between inflorescence primordia (flowering induction) and flower development. We hypothesized that a repression mechanism implicating epigenetic changes could play a role in the seasonal separation of these two developmental processes in grapevine. Therefore, the expression of five grapev...
Article
Members of the abscisic acid-responsive element binding protein (AREB)/abscisic acid-responsive element binding factor (ABF) subfamily of basic leucine zipper (bZIP) transcription factors have been implicated in abscisic acid (ABA) and abiotic stress responses in plants. Here we describe two members identified in cultivated tomato (Solanum lycopers...
Article
Full-text available
Wild relatives of cultivated tomato (Solanum lycopersicum) are resistant to a wide range of abiotic and biotic stress conditions. In an effort to understand the molecular mechanisms of salt stress resistance in the wild and cultivated Solanum species, a basic leucine zipper (bZIP) transcription factor was identified in S. chilense, S. peruvianum an...
Article
Full-text available
Two previously uncharacterized Vitis vinifera CONSTANS-like genes (VvCO, VvCOL1), which are predicted to encode proteins with homology to members of the Arabidopis CONSTANS family, were identified. Under controlled conditions, both genes show a diurnal expression pattern with peak at dawn. During grapevine bud development, VvCOL1 is mainly expresse...
Article
Full-text available
The LTR retrotransposons are the most abundant mobile elements in the plant genome and seem to play an important role in genome reorganization induced by environmental challenges. Their success in this function depends on the ability of their promoters to respond to different signaling pathways that regulate plant adaptation to biotic and abiotic s...
Article
Full-text available
The TLC1 family is one of the four families of long terminal repeat (LTR) retrotransposons identified in the genome of Lycopersicon chilense. Here, we show that this family of retroelements is transcriptionally active and its expression is induced in response to diverse stress conditions such as wounding, protoplast preparation, and high salt conce...
Article
Full-text available
Improving fruit quality is a priority for the Chilean grape industry. A national effort has begun using the genomic approach to study problems related to seed formation, fruit ripening and the vine's response to Botrytis cinerea infection. Seedless cultivars such as 'Thompson Seedless' have embryo abortion at an early stage of berry growth impairin...
Article
Full-text available
Dehydrins are proteins that accumulate during environmental stresses leading to cell dehydration. Deschampsia antarctica is one of the two vascular plants that have colonized the Maritime Antarctic. This plant is usually exposed to cold, salt and desiccating winds in the field. We proposed that among the factors that allow D. antarctica to survive...
Article
Full-text available
Deschampsiaantarctica Desv. is one of two vascular plants from the Maritime Antarctic. It is usually exposed to cold, salt, and desiccating winds. We hypothesize that D.antarctica has genes that encode dehydrin proteins and their expression is regulated by low temperature, salt or osmotic stress. To test this hypothesis a fragment of a dehydrin gen...
Article
We have used the degenerated oligonucleotide primers-PCR (DOP-PCR) technique to determine the presence of Ty1/copia-related retrotransposons in the wild species of tomato, Lycopersicon chilense. Using degenerated oligonucleotides corresponding to highly conserved domains in the Ty1/copia retrotransposons, fragments of roughly 300 bp were obtained b...
Article
Nucleoplasmin, an acidic thermostable protein abundant in the nucleus of Xenopus laevis oocytes, has been found to dissociate complexes of pUC19 DNA and protein φ1, an intermediate protamine present in ripe sperm from the mollusc Mytilus edulis. Cruder preparations of nucleoplasmin, such as the amphibian oocyte S150 extract and its thermostable fra...
Article
The chromatin of the spermatozoa from the bivalve mollusc Protothaca thaca, has a peculiar composition in which coexist core histones with sperm-specific proteins H1 and Pt1, the latter being a protein exhibiting features intermediate between histones and protamines. In this paper, we report an analysis of chromatin organization using micrococcal n...
Article
Sperm DNA of the common mussel, Mytilus edulis, has been found to contain a highly repeated sequence identifiable upon restriction with the endonuclease ApaI. The repetitive nucleotide (nt) sequence amounts to 0.63% of the mollusc genome with an estimated copy number of 5.4 x 10(4) copies per haploid complement. The monomer unit with a 173-bp repea...
Article
The sperm nuclei of Aulacomya ater, family Mitylidae, contain three proteins (X, Aa5 and Aa6) which are specific to this cell type coexisting with a set of five somatic-type histones. Information about the chromatin structure resulting from this kind of association is scarce. Therefore, we have probed the structure of this sperm chromatin through d...
Article
The sperm nucleus of Aulacomyaater, family Mytilidae, order Mytiloida, contains three proteins (X, Aa5 and Aa6) which are specific of this cell. These proteins have been isolated by CM chromatography and preparative electrophoresis. Electrophoretic analysis, amino acid composition, Mr determination and tryptic digestion show that protein X correspo...

Network

Cited By