META-ANALYSIS

Physical Activity Interventions for People With Mental Illness: A Systematic Review and Meta-Analysis

Simon Rosenbaum, BSc; Anne Tiedemann, BSc, PhD; Catherine Sherrington, BAppSc(Physio), MPH, PhD; Jackie Curtis, MBBS; and Philip B. Ward, BMedSci, PhD

ABSTRACT

Objective: To determine effects of physical activity on depressive symptoms (primary objective), symptoms of schizophrenia, anthropometric measures, aerobic capacity, and quality of life (secondary objectives) in people with mental illness and explore between-study heterogeneity.

Data Sources: MEDLINE, Cochrane Controlled Trials Register, PsycINFO, CINAHL, Embase, and the Physiotherapy Evidence Database (PEDro) were searched from earliest record to 2013.

Study Selection: Randomized controlled trials of adults with a *DSM-IV-TR, ICD-10*, or clinician-confirmed diagnosis of a mental illness other than dysthymia or eating disorders were selected. Interventions included exercise programs, exercise counseling, lifestyle interventions, tai chi, or physical yoga. Study methodological quality and intervention compliance with American College of Sports Medicine (ACSM) guidelines were also assessed.

Data Extraction and Analysis: Two investigators extracted data. Data were pooled using random-effects meta-analysis. Meta-regression was used to examine sources of between-study heterogeneity.

Results: Thirty-nine eligible trials were identified. The primary meta-analysis found a large effect of physical activity on depressive symptoms (n=20; standardized mean difference (SMD)=0.80). The effect size in trial interventions that met ACSM guidelines for aerobic exercise did not differ significantly from those that did not meet these guidelines. The effect for trials with higher methodological quality was smaller than that observed for trials with lower methodological quality (SMD=0.39 vs 1.35); however, the difference was not statistically significant. A large effect was found for schizophrenia symptoms (SMD=1.0), a small effect was found for anthropometry (SMD=0.24), and moderate effects were found for aerobic capacity (SMD=0.63) and quality of life (SMD=0.64).

Conclusions: Physical activity reduced depressive symptoms in people with mental illness. Larger effects were seen in studies of poorer methodological quality. Physical activity reduced symptoms of schizophrenia and improved anthropometric measures, aerobic capacity, and quality of life among people with mental illness.

Trial Registration: PROSPERO registration #CRD42012002012

J Clin Psychiatry 2014;75(9):964–974 © Copyright 2014 Physicians Postgraduate Press, Inc.

Submitted: August 29, 2013; accepted December 17, 2013.
Online ahead of print: March 31, 2014 (doi:10.4088/JCP.13r08765).
Corresponding author: Simon Rosenbaum, BSc, AEP, The George
Institute for Global Health, Lv 13, 320 Kent St, Sydney, 2000, NSW, Australia (srosenbaum@georgeinstitute.org.au).

Physical activity has been recognized as a key component of a holistic approach to recovery within mental health services, with the potential benefits ranging from a reduction in symptoms to an improvement in service engagement and utilization. In recent years, formal exercise, defined as a subset of physical activity, has received considerable attention as both an alternative to and augmentation strategy to usual care for depressive disorders. This increased scientific focus reflects the significance of mental illness as a public health priority, with National Institute of Mental Health data showing that 5% of all adults in the United States meet criteria for a serious mental illness as specified by the DSM-IV, with 9.5% of the US population meeting criteria for a mood disorder.

The antidepressive benefits of structured exercise for both the general population and those affected by depressive illness have been established in previous systematic reviews³ (summarized in Table 1).

These reviews have been limited largely to a focus on structured exercise. Physical activity is a broader concept than exercise and encompasses exercise as well as non-exercise interventions.² Previous reviews have focused on exercise^{3,4,7,8,10–12,15} and so have excluded other physical activity interventions such as yoga, tai chi, exercise counseling, and other pragmatic lifestyle interventions that reflect real-world clinical practice in this area. In addition, key questions remain unanswered: Do physical activity interventions improve depressive symptoms in the large number of patients who experience depression comorbid with other psychiatric diagnoses?¹⁶ What role do physical activity interventions have on physical health parameters in psychiatric patients?

Assessment of the impact of physical activity in the large number of patients who experience comorbid depression is a critical issue as depression is a common comorbid diagnosis in other psychiatric conditions; for example, an estimated 25% of people diagnosed with schizophrenia also suffer depression.¹⁷ Despite this tendency for patients to suffer from comorbid psychiatric conditions, previous reviews have investigated a single diagnosis of depression, 8,11,15 anxiety,7 or schizophrenia. 13,14 Previous reviews have included both studies of help-seeking participants and studies in which participants were drawn from community samples in which depression and/or anxiety symptoms were assessed by questionnaire alone, 11,12,15 leading to uncertainty about whether all participants met criteria for a formal psychiatric diagnosis and potentially limiting the applicability of the findings made to clinical populations.

- Physical activity interventions reduce symptoms of depression regardless of psychiatric diagnoses.
- Physical activity reduces positive and negative symptoms of schizophrenia.
- Based on the available evidence, clinicians should refer patients to physical activity interventions to improve both mental and physical health outcomes.

Furthermore, there are known physical health inequalities in people with mental illness, with a reduced life expectancy of 12-15 years¹⁸ and an increased prevalence of metabolic syndrome and type 2 diabetes in patients experiencing schizophrenia and bipolar disorder, compared with the general population.¹⁹ The causes of compromised cardiometabolic health within this population are multifactorial and include low levels of physical activity²⁰ and higher prevalence of smoking²¹ as well as weight gain, dyslipidemia, and insulin resistance, particularly associated with the use of second-generation antipsychotic medication.²² Despite the established health benefits of physical activity,²³ the impact that physical activity may have on physical health outcomes in people diagnosed with mental illness is unclear and a neglected component of previous literature reviews and interventional studies. The potential impact of physical activity on self-reported quality of life (QOL) is another key outcome that requires more investigation.

Meta-analysis and meta-regression are key tools for synthesizing and interpreting the results of systematic reviews, with 4 previous reviews of exercise for mental health utilizing meta-analysis. ^{3,8,12,15} The PRISMA statement is designed to guide the quality of reporting of systematic reviews, yet only 2 previous reviews in this field cited the PRISMA statement ^{3,14} and only 4 searched for non–English language trials, ^{3,9,13,15} which raises the possibility of selection bias.

In order to obtain a comprehensive assessment of the impact of physical activity on mental illness, we conducted a review with meta-analysis and meta-regression of all studies assessing the impact of physical activity interventions in people with mental illness. To address the limitations of previous reviews, we included only studies that clearly

identified specific psychiatric diagnoses as inclusion criteria. All DSM-IV-TR and International Classification of Disease (ICD-10) adult diagnoses were considered for inclusion with the exception of dysthymia and mild depression (n=22) and eating disorders (n=2). This sampling strategy provides a clearer picture of the current state of knowledge of the impact of physical activity and exercise interventions in help-seeking individuals with psychiatric diagnoses by excluding studies focused on questionnaire-based symptom assessment in opportunistic samples (eg, college students). This review extended the scope of previous reviews by including trials not reported in English.

Specific questions to be answered by the review included the following:

- 1. What is the effect of physical activity on depressive symptoms in people with a mental illness?
- 2. What is the effect of physical activity on symptoms of schizophrenia?
- 3. Does physical activity improve anthropometric measurements, aerobic capacity, and self-reported quality of life in people with a mental illness?

METHOD

Design

The aims and methods of this systematic review with metaanalysis were registered with the PROSPERO database prior to conducting the review (#CRD42012002012). Reporting has been conducted as per the PRISMA statement.²⁴

Identification and Selection of Trials

An electronic database search was conducted from earliest record to January 2013 using MEDLINE, Embase, Cochrane Central Register of Clinical Trials, PsycINFO, CINAHL, and the PEDro Database. The search strategy is outlined in eAppendix 1. The reference lists of relevant systematic reviews were also hand searched. Study eligibility was assessed according to criteria shown in Supplementary eFigure 1 by 2 reviewers (S.R. and A.T.) with disagreements resolved by a third reviewer (C.S.). The same reviewers extracted the outcome data and trial quality information. Bilingual researchers translated studies not published in

Table 1. Summary of Previous Literature Reviews of Antidepressant Benefits of Structured Exercise Published From 2011 Through August 2013

							DSM/ICD	Reference	
		Systematic			Interventions	Assessment of	Diagnostic	to PRISMA	Search Extended
Author	Year	Review	Meta-Analysis	Population	Assessed	Risk of Bias	Criteria	Statement	Beyond English
Cooney et al ³	2013	Yes	Yes	Depression	Exercise	Yes	No	Yes	Yes
Berk ⁶	2013	No	No	Unipolar depression	Lifestyle	No	No	No	No
Jayakody et al ⁷	2013	Yes	No	Anxiety disorders	Exercise	No	Yes	No	No
Josefsson et al ⁸	2013	Yes	Yes	Depression or depressive symptoms	Exercise	Yes	Yes	No	No
Malchow ⁹	2013	No	No	Schizophrenia and affective disorders	Physical exercise	No	No	No	No
Morgan ¹⁰	2013	No	No	Varied	Exercise	No	No	No	No
Stanton and Reaburn ¹¹	2013	Yes	No	Depression	Exercise	Yes	Yes	No	No
Rethorst and Trivedi ⁴	2013	No	No	Major depressive disorder	Exercise	No	No	No	No
Rimer et al ¹²	2012	Yes	Yes	Depression	Exercise	Yes	No	No	No
Vancampfort et al ¹³	2012	Yes	No	Schizophrenia	Physical therapy	Yes	Yes	No	Yes
Vancampfort et al ¹⁴	2012	Yes	Insufficient studies identified	Schizophrenia	Yoga	Yes	Yes	Yes	No
Krogh et al ¹⁵	2011	Yes	Yes	Depression	Exercise	Yes	No	No	Yes

Table 2. Outcome M	Neasures Pooled for Meta-Analysis
Outcome	Pooled Measures
Depressive symptoms	Hamilton Depression Rating Scale (HDRS) Beck Depression Inventory (BDI) Edinburgh Postnatal Depression Scale (EPDS) Global Depression Index (GDI) Center for Epidemiologic Studies-Depression scale (CES-D) Depression Anxiety and Stress Scale (DASS) Bech-Rafaelsen Melancholy Scale (BRMS) Inventory of Depressive Symptomatology (IDS)
Schizophrenia symptoms	Positive and Negative Syndrome Scale (PANSS) Scale for Assessment of Positive Symptoms (SAPS) Scale for Assessment of Negative Symptoms (SANS)
Anthropometry	Waist circumference Hip circumference Body weight Body fat percentage Body mass index (BMI; weight [kg]/height [m²])
Exercise capacity	Maximal exercise testing (VO ₂ max) Submaximal exercise testing (heart rate)
Quality of life (QOL)	Health Survey Short Form-36 (SF-36) World-Health Organization Quality of Life Scale (WHO-QOL) Manchester Short Assessment of Quality of Life (MANSA)

English. Individual measures pooled for meta-analysis are listed in Table 2, and Table 3 summarizes the characteristics of selected trials, including diagnosis and intervention.

Assessment of Trial Characteristics and Risk of Bias

Quality. The quality of included trials was rated according to the Physiotherapy Evidence Database²⁵ Scale (1–10), which assesses the internal validity of a randomized controlled trial (RCT).^{26,27} PEDro scale scores and key features of the study design including the concealed allocation of participants to groups and the blinding of assessors are reported in Supplementary eTable 1 for all studies included in the primary analysis.

Participants. Eligible studies were those that included participants 18 years of age or older, in whom a *DSM* or *ICD* diagnosis of mental illness was made. Dysthymia, "mild-depression," and eating disorders were excluded. No restriction was placed on the source of the participants, ie, patients from primary care as well as community settings were eligible, and the source of recruitment was recorded. Gender, age, and number of participants were extracted from eligible trials.

Interventions. The terms physical activity and exercise were defined according to the American College of Sports Medicine (ACSM) definitions; physical activity is "any body movement that is produced by the contraction of skeletal muscles that increases energy expenditure," whereas exercise is "a subset of physical activity that is planned, structured and deliberate." We included all forms of physical activity that met these definitions. Aerobic, resistance-based, or mixed-type interventions were eligible, as well as interventions designed to increase incidental physical activity. Yoga and tai chi programs were included if the intervention was movement based. Exercise counseling and lifestyle change programs in which increasing physical activity participation was a significant aim of the intervention were included.

Prescribed interventions were assessed according to the ACSM guidelines for both aerobic and resistance exercise.² The ACSM guidelines state that adults should engage in aerobic exercise for at least 20 to 30 minutes per day, 3 to 5 days per week depending on intensity. The guidelines also recommend that adults should perform resistance exercises for each of the major muscle groups (8 to 10 exercises, 8 to 15 repetitions per exercise) on 2 to 3 days per week.²

Three reviewers (S.R., A.T., and C.S.) assessed whether prescribed interventions met these ACSM guidelines based on the total amount of contact with the research team as well as the prescribed volume and intensity of physical activity for the individual trial (where available). The question of whether participants adhered to the prescribed intervention and subsequently met the guidelines is an important consideration but is considered beyond the scope of this review.

Interventions of any duration were included within the meta-analysis. Short-term interventions (eg, 10 days to 4 weeks) were included to assess their potential impact on psychiatric symptoms, although such interventions were unlikely to elicit significant improvements in physical health.

Outcome measures. Trials were included in the metaanalyses if they provided outcome data for at least 1 of the previously validated outcome measures listed in Supplementary eFigure 1.

Outcome data were extracted for preintervention and postintervention time points only, as the potential longevity of the benefits of physical activity were beyond the scope of this review. For 2 trials that utilized multiple interventions, ^{29,30} the physical activity groups were pooled for analysis as suggested by the Cochrane Handbook.³¹

Data Analysis

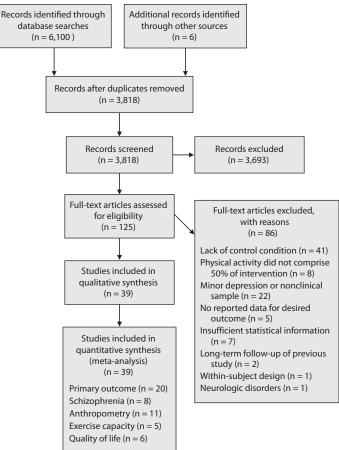
Random-effects meta-analyses were conducted using Comprehensive Meta-Analysis software (Version 2.2, Biostat, Englewood, New Jersey) and Stata software packages (StataCorp LP, College Station, Texas). Intervention effect sizes (differences between intervention and control groups) for the primary and secondary outcome measures, standardized mean differences (SMDs) using Hedges' g statistic, and 95% confidence intervals (CIs) were calculated. When a posttest standard deviation was not available, an estimate was obtained using the standard deviation of the change between initial and final assessment scores,³¹ assuming a correlation of 0.73 for the primary outcome (depressive symptoms), 0.73 (symptoms of schizophrenia), 0.9 (anthropometry), 0.65 (exercise capacity), and 0.84 (quality of life) between pretest and posttest scores, derived from the authors' previous research. Effect sizes were categorized as small (0.2), medium (0.5), or large (0.8 or greater).³²

Statistical heterogeneity was quantified using the I^2 statistic: I^2 of more than 75% was considered to indicate considerable heterogeneity, I^2 of 50%–75% was considered to indicate substantial heterogeneity, and an I^2 of less than 40% was considered to indicate limited heterogeneity.³¹

Meta-regression was conducted for the primary outcome (depressive symptoms in participants with a mental illness), to determine if there were significant differences in the effect sizes between trials in which the prescribed intervention met the ACSM aerobic guidelines and trials in which the intervention did not meet these guidelines. Meta-regression to investigate the impact on intervention effects of resistance training protocols that met the relevant ACSM guidelines was not conducted due to the relatively small number of trials that included resistance training. Further metaregression was carried out to determine the effect of study methodological quality, as measured with the PEDro scale, on pooled effect sizes. PEDro scores were dichotomized into categories of greater than or equal to 6 (indicating greater methodological quality) and less than 6 (indicating lower methodological quality). The meta-regression testing the impact on the pooled effect of an intervention that met the ACSM aerobic training guidelines was then repeated in the subset of trials in which the PEDro score was 6 or greater. Meta-regression was carried out in Stata 12 using the "metareg" command.

RESULTS

Flow of Trials Through the Review


A total of 3,818 records (excluding duplicates) were identified. After screening, 39 eligible randomized trials were identified. Twenty trials were included in the primary meta-analysis (depressive symptoms in participants with a mental illness). ^{29,30,33–50} For secondary analyses, 8 trials were pooled reporting schizophrenia symptoms, ^{51–58} 5 trials were pooled reporting measures of exercise capacity, ^{34,35,59–61} 11 trials were pooled reporting anthropometric outcomes, ^{40,51,61–69} and 6 were pooled with QOL measures. ^{47,50,52,57,61,70} Figure 1 presents the flow of studies through the review.

Characteristics of Included Trials

Table 3 summarizes the characteristics of included trials, including participant primary diagnosis, diagnostic criteria, summary of the physical activity intervention, and control group protocol. Twenty trials were included in the primary meta-analysis, involving a total of 1,298 participants. Trials included in the schizophrenia symptom analysis involved 389 participants, and trials included in the anthropometry analysis involved 55 participants. For exercise capacity, included trials involved 97 participants, and for QOL measures, the included trials involved 169 participants.

Quality. Nine trials used both blinded assessment of outcomes and concealed allocation. ^{29,30,38,39,46,47,51,62,71} Ten trials performed concealed allocation without blinded assessments, ^{34,35,42,48,52,59,60,63,72,73} and 3 trials used blinded assessment of outcomes without concealed allocation. ^{43,49,57} For the primary outcome, 10 trials ^{29,30,34,38,39,43,46–49} were of high methodological quality on the PEDro scale and 10 were of low quality. ^{33,35–37,40–42,44,45,50} For symptoms of schizophrenia,

Figure 1. Identification and Selection of Studies for the Review

1 trial⁵¹ was of high methodological quality while 7 were low. $^{52-58}$ For anthropometry, 1 trial⁵¹ was of high methodological quality while 10 were low $^{40,60-66,68,69}$; for exercise capacity, 1 trial was of high methodological quality and 4 were low $^{35,59-61}$; and for QOL, 1^{47} of the 6 trials was of high methodological quality and 5 were low. 50,52,57,61,70 The trial characteristics are shown in Table 3, and the methodological quality of trials included in the primary meta-analysis can be seen in Supplementary eTable 1.

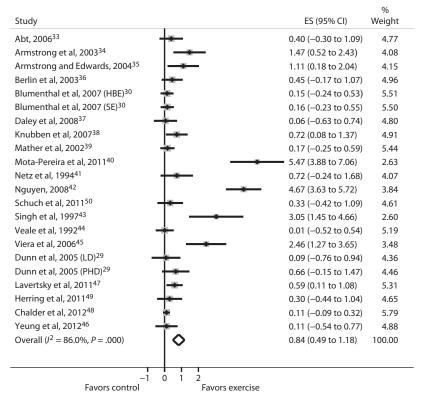
Participants. The mean age of participants in the included trials ranged from 25 to 66 years. Twelve trials recruited participants with a *DSM* diagnosis of major depressive disorder. ^{29,30,38,40,43,45–48,50,74,75} A further 12 trials recruited participants with schizophrenia or schizoaffective disorder, ^{52–58,60,66,68,69,76} and of these, 6 used *DSM* criteria, ^{52,53,60,66,69,76} 3 used physician confirmation or hospital charts to confirm the diagnosis, ^{57,58,68} 2 used the Chinese Classification of Mental Disorders, ^{54,55} and 1 trial recruited patients from a long-stay psychiatric facility. ⁵⁶

Two trials recruited participants with a diagnosis of first episode psychosis, both of which referenced the DSM.^{51,62} Five trials recruited participants with postnatal depression and all of these utilized the Edinburgh Postnatal Depression Scale (EPDS) to confirm the diagnosis (EPDS score $\geq 12^{34,35,37,77}$; EPDS score $\geq 10^{71}$). Another 12 trials recruited

Table 3. Description of the 39 Included Trials	he 39 Incl	uded Tria	S						
	Ý.	ge		Exercise Guidelines	uidelines				
Trial	Mean (SD, who Experiment	Mean (5U, when reported), y Experiment Control	Physical Activity Intervention and Intensity (when reported)	ACSM Aerobic R	ACSM Resistance	Diagnosis; Diagnostic Criteria	Control	Setting (Recruitment)	Outcome(s)/Statistic
Abt, 2006 ³³ N = 31	46.5 (8.2)	45.6 (12.4)	6 wk of $2\times$ weekly 60-min group classes of mixed-resistance and aerobic exercise	Yes	Yes	Depression/bipolar disorder; DSM	Social	Community	IDS-SR; mean, SD
Acil et al, 2008 ⁵² N = 30	32.06	32.66	10 wk of $3 \times$ weekly 40-min supervised aerobic exercise	Yes	N	Schizophrenia; <i>DSM</i>	Usual care	Previously hospitalized outpatients	SAPS, SANS, WHO-QOL- BREF-TR; mean, SD
Alvarez-Jimanez et al, 2006^{62} N = 61	26 (15.5)	27.5 (8.5)	12-wk multifactorial intervention. 1—4 exercise sessions of varying intensities and duration	No	No	First-episode psychosis; DSM	Usual care	Referrals to community service	BMI, WT; mean change, SD
Armstrong and Edwards, 2003^{34} N = 20	÷	:	12 wk of 3 × weekly 30–40 min group aerobic exercise sessions at 60%–75% of age-predicted heart rate	Yes	No N	Postnatal depression; EPDS score ≥ 12	Usual care	Referrals to program from general practice and community advertising	EPDS, DASS, VO ₂ ; mean, SD
Armstrong and Edwards, 2004^{35} N = 19	÷	:	12 wk of 3 × weekly 40-min group aerobic exercise sessions at 60%—75% age-predicted heart rate	Yes	No No	Postnatal depression; EPDS score ≥ 12	Social support	Referrals to program from general practice and community advertising	EPDS, VO ₂ ; mean, SD
Behere et al, 2011 ⁵³ N = 39 (experiment vs control; yoga condition excluded)	30.2 (8)	33.6 (9.9)	12-wk combination of supervised and unsupervised exercises	N N	o _N	Schizophrenia; <i>DSM</i>	Wait-list	Hospital outpatients	PANSS; mean, SD
Berlin et al, 2003^{36} N = 39 (experiment vs control)	:	:	4 sessions of 45-min aquatic exercise within a single week	Yes	No	Depression; psychiatric inpatients	Wait-list	Psychiatric inpatients	BDI; mean change, SD
Blumenthal et al, 2007^{30} N = 202 (HBE experiment vs control; SE vs control)	HBE: 53 (8) SE: 52 (7)	52 (8)	16 wk of 3 × weekly 45-min walking exercise sessions at 70%–85% maximum heart rate	Yes	No	Major depressive disorder; DSM	Placebo	Hospital	HDRS; change in each group
Brown et al, 2011 ⁶³ N = 136	÷	:	12-mo varying intensity dietary modification and exercise counseling program	8	N	Varied serious mental illnesses; concurrent treatment with psychiatric medication	Usual care	Clients of community mental health programs	WT; mean, SD
Chalder et al, 2012 ⁴⁸ N = 361	40.9 (12.5)	38.8 (12.7)	Up to 3 face-to-face sessions and 10 telephone calls with a trained physical activity facilitator over 8 mo	No	N	Depressive episode; ICD	Usual care	General practitioner referral	BDI
Cole, 1998 ⁵⁹ N = 28	:	:	8 wk of 2 \times weekly 35-min low-impact aerobic sessions	No	No	Various psychiatric diagnoses; as per hospital diagnosis	Wait-list	Outpatients	Exercise HR; mean, SD
Daley et al, 2008 ³⁷ N = 38	÷	:	2×60 -min exercise counseling consultations over 12-wk period	No	N	Postnatal depression; EPDS score > 12	Usual care	Community	EPDS; mean, SD
Dunn et al, 2005^{29} N= 80 (pooled groups)	36.15 (6.05)	34.5 (7.3)	12 wk of either 3 or 5 × weekly aerobic exercise sessions at either a "low" or "public-health" intensity	Yes	No	Major depressive disorder; DSM	Placebo	Community	HDRS; mean, SD
Forsberg et al, 2008 ⁶⁴ N = 41	39.8	42.8	56 wk of 2 \times weekly 120-min group fitness and sport sessions	No	No	Various diagnoses; DSM	Aesthetic control	Supported housing facility	WC, WT; mean, SD
Forsberg et al, 2010 ⁷⁰ N = 41	39.8	42.8	$56\mathrm{wk}\mathrm{of}2\times\mathrm{weekly}120$ -min group fitness and sport sessions	No	No	Various diagnoses; DSM	Usual care	Supported housing facility	SF-36, MANSA; mean, SD
Gholipou et al, 2012^{58} (N = 30)	38 (8)	41 (7)	Notspecified	No	No	Schizophrenia	Usual care	Hospital inpatients	SANS
Gilhoff et al, 2010 ⁶⁵ N = 50	48.1 (11.5)	48.9 (12)	20 wk of 1 \times weekly 20-min lifestyle training including dietary modification and exercise	No	No	Bipolar disorder; DSM	Wait-list	Outpatients	BMI, WC, WT; mean, SD
Herring et al, 2011^{49} N = 30 (pooled groups)	18–37	18–37	6wk of $2\times$ 16-min weekly sessions of either (a) lower-limb resistance training or (b) cycling	No	No	Generalized anxiety disorder; DSM	Wait-list	Community	BDI-II
Knubben et al, 2007 ³⁸ N = 38	49 (13)	50 (13)	10×30 -min treadmill walking at 80% maximal heart rate over 10 -d period	Yes	No No	Major depressive disorder; DSM	Placebo	Hospital inpatients	BRMS, CES-D; mean, SD
									(hountinued)

	Ą	ge		Exercise (Exercise Guidelines				
-	Mean (SD, who	Mean (SD, when reported), y		ACSM	ACSM			Setting	
Irial	Experiment	Control	Intervention and Intensity (when reported)	Aerobic	Kesistance	Diagnosis; Diagnostic Criteria	Control	(Kecruitment)	Outcome(s)/statistic
Kwon et al, 2006 ⁶⁶ N = 48	32 (9.22)	29.8 (6.07)	8 × supervised lifestyle education and exercise counseling sessions over a 12-wk period	No	No	Schizophrenia/schizoaffective disorder; DSM	Usual care	Hospital outpatients	BMI, WT; mean change, SD
Lavertsky et al, 2011 ⁴⁷ N= 73	69.1 (7.0)	72.0 (7.4)	10 wk of 1 × weekly 120-min tai chi chih	No	No	Major depression; <i>DSM</i>	Health education	Community nonresponders to escitalopram	HDRS, QOL
Li et al, 2005 ⁵⁴ N = 68	35 (14)	37 (14)	3 mo of 5 \times weekly 40-min physical activities including gym training, table-tennis, and gardening	Yes	Yes	Schizophrenia	Usual care	Hospital inpatients	SANS; mean, SD
Marzolini et al, 2008 ⁶⁰ N= 10	43 (6)	46.7 (12.25)	12 wk of $2\times$ weekly 90-min group aerobic and resistance exercise sessions	No	Yes	Schizophrenia/schizoaffective disorder; DSM	Usual care	Community treatment	BMI, HC, WC, WT, 6MWT; mean, SD
Mather et al, 2002 ³⁹ N = 86	63.7	66.2	10 wk of $2 \times$ weekly 45-min group exercise sessions	Yes	Yes	Affective disorder, ICD-10	Social	Primary care psychiatric services/community	HDRS, GDS; raw difference, 95% Cl
McKibbon et al, 2006 ⁶⁸ N = 64	53.1 (10.4)	54.8 (8.2)	24wk of $1\times\text{weekly}$ 90-min diabetes, nutrition and exercise education sessions	No	No	Schizophrenia/schizoaffective disorder; physician confirmed diagnosis	Usual care	Community treatment facilities	BMI, WC, WT; mean, SD
Mota-Pereira et al, 2011 40 N= 29	46.68 (2.3)	45.33 (3.11)	12 wk of 5×30 - to 45 -min weekly walking sessions at moderate intensity ($1\times$ supervised, $3\times$ unsupervised sessions per wk)	Yes	No	Major depressive disorder; DSM	Usual care	Outpatient psychiatric clinic	BDI, HDRS-17, BMI; change in each group
Netz et al, 1994 ⁴¹ N = 17	64.3 (6.3)	(9.5 (9.6)	$8\mathrm{wk}$ of $3\times$ weekly $45\mathrm{min}$ of light intensity callisthenic exercises	No	No	Depression/ psychosis; DSM	Social	Hospital inpatients	GDS; mean, SD
Nguyen, 2008 ⁴² N = 88	59.6 (9.3)	61.3 (9.9)	Daily 30 min of walking and psychotherapy for a period of 2 wk	Yes	No	Various psychiatric diagnoses; DSM	Usual care	Hospital inpatients	GDS; raw difference, SE
Ning et al, 2003 ⁵⁵ N=80	34.8	34.8 (7.8)	12 wk of 12 \times weekly 60-min group aerobic exercise with music	Yes	No	Schizophrenia	Usual care	Hospital inpatients	PANSS, SANS; mean, SD
Schuch et al, 2011 ⁵⁰ N= 26	42.8 (12.4)	42.5 (13.5)	16 kcal/kg per wk of exercise equivalent energy expenditure for period of hospitalization	No	No	Major depressive disorder; DSM	Usual care	University hospital	HDRS-17, WHO-QOL; mean, SD
Singh et al, 1997 ⁴³ N= 13 (major depression only)	:	:	10 wk of 3 \times 45-min weekly high intensity resistance training (80% of 1 repetition maximum, 3 sets of 8 repetitions of all major muscle groups)	N N	Yes	Major depressive disorder; DSM	Health education	Community	HDRS, BDI; mean, SD
Skrinar et al, 2005^{61} N = 20	39.7 (8.17)	36.3 (11.3)	12 wk of 4 \times 30- to 45-min weekly supervised aerobic and resistance based exercise at 70%–85% of age predicted maximal heart rate	Yes	Yes	Mood or psychotic disorders; DSM	Wait-list	Hospital (inpatients and outpatients)	%BF, BMI, watts, SF-36; mean, SD
Su, 1999 ⁵⁶ N = 60	35 (14)	37 (14)	5 wk of $6 \times$ weekly 60 -min dance therapy	Yes	No	Schizophrenia	Usual care	Hospital inpatients	SANS; mean change, SD
Veale et al, 1992 ⁴⁴ N = 65	:	÷	12 wk of $3 \times$ weekly supervised aerobic exercise sessions	Yes	No	Depression; psychiatric inpatients	Usual care	Practitioner referral	BDI; mean, SD
Viera et al, 2007 ⁴⁵ N= 18 (Brazil)	:	:	12 wk of $2 imes$ weekly aquatic exercise	No	No	Major depressive disorder; DSM	Usual care	Hospital outpatients	HDRS; mean, SD
Visceglia and Lewis, 2011^{57} N = 18	37.4 (13.7)	48.1 (11.2)	8 wk of 2×45 -min weekly supervised yoga dasses	No	No	Schizophrenia; hospital charts	Wait-list	Psychiatric facility	PANSS, WHO-QOL-BREF; mean change, SD
Wu et al, 2007 ⁶⁹ N= 53	:	:	24 wk of 3×60 -min group walking $+$ dietary intervention	Yes	No	Schizophrenia; <i>DSM</i>	Usual care	Hospital	BMI, %BF, HC, WC, WT; mean change, SD
Wu et al, 2008 ⁵¹ N= 128	26.1	25.8	12 wk combination of supervised and home-based aerobic exercise at 70% of heart rate reserve	Yes	No	First-episode schizophrenia; <i>DSM</i>	Placebo	Hospital outpatients	PANSS, BMI, WC, WT; mean, SD
Yeung et al, 2012 ⁴⁶	54 (12)	58 (7)	12 wk of 1 × weekly 60-min tai chi	No	No	Major depressive disorder; DSM	Wait-list	Community and clinician-	HDRS-17

Abbreviations: 6MWT = 6-minute walk test; ACSM = American College of Sports Medicine; BF = body fat; BMI = body mass index; BREF-TR = Brief Report, Turkish Version; GDS = Geriatric Depression Scale; HC = hip circumference; VO₂ = volume of oxygen; watts = maximal wattage obtained during exercise assessment; WC = waist circumference; WT = body weight; abbreviations for all other rating scales are spelled out in Table 2.


Symbol: ... = not reported.

participants with various psychiatric conditions; 8 of these referenced a *DSM* or *ICD* diagnosis, ^{33,41,42,61,64,70,73,78} 2 recruited psychiatric inpatients, ^{36,44} 1 recruited psychiatric outpatients, ⁵⁹ and 1 required a diagnosis of a serious mental illness and concurrent treatment with an antipsychotic medication. ⁶³ Single trials included participants with a *DSM* diagnosis of bipolar disorder, ⁶⁵ participants with *DSM* diagnosis of panic disorder, ⁷² participants with an *ICD* diagnosis of affective disorder, ³⁹ and participants with generalized anxiety disorder (GAD). ⁴⁹

Interventions. Thirteen of the 20 trials included within the primary meta-analysis incorporated an aerobic-based intervention, 11 of which met the ACSM aerobic guidelines. The length of the interventions ranged from short (ie, 10 days) to as long as 8 months, with 8 of the 20 trials utilizing a 12-week intervention, 29,34,35,37,40,44-46 3 trials utilizing a 10-week intervention, 39,43,47 2 utilizing 6-week interventions, 33,49 and single trials utilizing a 32-week,⁴⁸ a 16-week,³⁰ an 8-week,41 a 2-week,42 a 1-week,36 and a 10-day³⁸ intervention. Interventions included aerobic exercise, resistance exercise, multimodal group-based exercise, walking, aquatic exercise, exercise counseling, tai chi, dance therapy, and yoga (see Table 2).

Outcome measures. For the primary outcome of depressive symptoms, the most commonly utilized measure was the Hamilton Depression Rating Scale (HDRS) followed by the Geriatric Depression Index (GDI), the Beck Depression Inventory (BDI, BDI-II) the Edinburgh Postnatal Depression Scale (EPDS), the Centre for Epidemiologic Studies Depression Scale (CES-D), the Depression Anxiety and Stress Scale (DASS), the Bech-Rafaelsen Melancholia Scale (BRMS), and the Inventory of Depressive Symptomatology (IDS).⁷⁹ For trials that reported more than one measure of depressive symptoms, the first outcome based on the above sequence was used in the meta-analysis. Scores from the Scale for Assessment of Positive Symptoms (SAPS), Scale for Assessment of Negative Symptoms (SANS),⁷⁸ and the Positive And Negative Syndrome Scale (PANSS) were pooled for the schizophrenia symptom analysis. Measures of anthropometry included waist circumference, body mass index (BMI), body weight, body fat percentage, and hip circumference, and when multiple measures were provided, the first outcome based on the above sequence was used. Measures of exercise capacity included volume of oxygen consumption (VO_2) , heart rate response to a step test, 6-minute walk distance, and the maximum watts achieved during an exercise assessment. The World-Health Organization Quality of Life Scale (WHO-QOL-BREF), The Health Survey Short Form-36 (SF-36), and the Manchester

Figure 2. Forest Plot From Meta-Analysis of Physical Activity on Measures of Depression Showing Estimates of Effect Size With 95% CIs and Relative Weight (% weight) for Each Trial

Abbreviations: ES = effect size, HBE = home-based exercise, LD = low dose, PHD = public-health dose, SE = supervised exercise.

Short Assessment of Quality of Life (MANSA) were pooled to investigate the impact of physical activity on quality of life.

The Effect of Physical Activity on Depressive Symptoms in People With a Mental Illness

The pooled effect of physical activity on depressive symptoms in participants with a mental illness was large (SMD = 0.80; 95% CI, 0.47–1.13; P < .001, $I^2 = 84\%$; Figure 2).

No significant difference in the effect of physical activity on depressive symptoms was found between trials in which the prescribed intervention met ACSM aerobic-training recommendations and those that did not (P=.71). In the 11 trials in which the prescribed intervention met the ACSM aerobic training recommendations there was a large pooled effect on depressive symptoms (SMD = 0.94; 95% CI, 0.42–1.45; P<.001), while in the 9 trials that did not meet ACSM aerobic training guidelines, a lower pooled effect on symptoms was found (SMD=0.61; 95% CI, 0.18– 1.04; P<.01).

In the 10 trials with a PEDro score of 6 or more (indicating reduced risk of bias), the impact on depressive symptoms was moderate (SMD = 0.39; 95% CI, 0.15-0.63; P < .005). For the 10 trials with PEDro scores less than 6, a large

effect was found (SMD = 1.35; 95% CI, 0.52–2.17; P < .005). The difference between the subgroups was not statistically significant (P for comparison = .19).

In the subset of trials with a PEDro score of 6 or more, the impact of the intervention in the 5 trials in which the intervention met the guidelines for aerobic training was 0.36 (95% CI, 0.08–0.64; P < .05), which was comparable (P = .97) to the effect in the 5 trials in which the intervention did not meet the guideline (0.49; 95% CI, -0.03 to 1.0; P = .06).

The Effect of Physical Activity on Secondary Outcome Measures

The meta-analysis of schizophrenia symptoms found a large effect of physical activity (SMD = 1.0; 95% CI, 0.37–1.64; P<.01; $I^2=88\%$) (Supplementary eFigure 2). Meta-analysis of trials investigating the impact of physical activity on anthropometric measures found a small effect (SMD = 0.24; 95% CI, 0.06–0.41; P<.05; $I^2=0\%$) (Supplementary eFigure 3). Meta-analysis revealed a moderate effect of physical activity on exercise capacity (SMD = 0.63; 95% CI, 0.05–1.21; P<.05; $I^2=50\%$) (Supplementary eFigure 4). Meta-analysis to determine the impact of physical activity on quality of life found a moderate effect (SMD = 0.64; 95% CI, 0.35 to 0.92; P<.001; $I^2=0\%$).

DISCUSSION

This systematic review and meta-analysis found that physical activity reduced depressive symptoms among people with a psychiatric illness. This current meta-analysis differs from previous studies, as it included participants with depressive symptoms with a variety of psychiatric diagnoses (except dysthymia and eating disorders). This allowed for a more comprehensive assessment of the impact of physical activity on depressive symptoms across a range of mental health diagnoses, which is important given the high rates of comorbid depressive symptoms found in many psychiatric conditions.⁵ The magnitude of the effect of physical activity on depressive symptoms (SMD = 0.80) is in line with previous meta-analyses of exercise and depression in both clinical and nonclinical populations⁸⁰ and demonstrates the significant potential of physical activity for reducing depressive symptoms in people with a mental illness.

This review provides strong evidence for the antidepressant effect of physical activity; however, the optimal exercise modality, volume, and intensity remain to be determined. Most of the trials included within this review utilized an aerobic-based intervention; however, there was significant heterogeneity between the trials relating to intensity, frequency, and total volume of prescribed exercise. No significant difference in the effect of physical activity on the primary outcome of depressive symptoms was found between trials in which prescribed interventions met the ACSM aerobic-training guidelines and trials in which the interventions did not. There was some evidence of greater impact in the studies that met the ACSM aerobic guidelines (SMD = 0.94 versus 0.61); however, this must be interpreted with caution as the difference was no longer present in

the subset of trials that were methodologically stronger as indicated by higher PEDro scores.

There was a dearth of research regarding the impact of resistance training for people with a mental illness, despite evidence of a beneficial effect for reducing symptoms of depression in other clinical samples such as those with breast cancer⁸¹ or at high risk for type 2 diabetes⁸² and multiple sclerosis,⁸³ and this gap in the current evidence base requires more well-designed clinical trials.

Analysis of the effects of physical activity on schizophrenia symptoms revealed a significant effect of physical activity in reducing symptom severity. This result was largely driven by studies published in Chinese, not previously identified in other reviews. ^{54,55} Both positive and negative symptoms of schizophrenia were pooled within this secondary analysis. Interventions included dance, yoga, home-based exercise, and other group activity.

A small effect of physical activity on the anthropometric profile of people with a mental illness was found (SMD = 0.24). Greater impacts may be achieved with physical activity interventions that reflect current knowledge regarding the impact of such interventions in weight management. A moderate effect was found of physical activity for improving quality of life in people with a mental illness; however, this must be interpreted with caution as only 6 trials reported outcome data for quality-of-life measures. A similar caveat should be applied to the moderate effect of physical activity on exercise capacity that was found (SMD = 0.66), as only 5 studies reported sufficient data to be pooled.

The current systematic review revealed that substantial methodological limitations are present within the physical activity and mental health literature. This was demonstrated by the difference in effect sizes for the main outcome between the trials of high and low methodological quality (SMD=0.39 versus 1.35). This difference was not statistically significant, which reflects the variability of individual study results and the relative statistical power of the analysis, but requires further investigation. Methodological limitations included small sample size, lack of concealed allocation and blinding of assessors, and inadequate reporting of outcome measures.

Exercise protocols were poorly described in many of the included trials, and this limited our investigation of the relative effects of different approaches to physical activity. Only 11 of the 42 studies identified for this review described the intensity of the intervention, while many simply stated that the intervention was "aerobic" or "groupbased," rendering the studies unreproducible. Use of the exercise reporting grid proposed by Slade and Keating⁸⁴ in physical activity and mental health trials would streamline and simplify reporting of interventions (see Supplementary eTable 2). A clearly defined exercise protocol including a specific "dose"85 and modality of physical activity would facilitate the translation of research results into practice. Just as pharmacologic trials would not be acceptable if dose was not reported as per the CONSORT statement,86 trials of physical activity and exercise interventions that insufficiently report intervention details impede the goal of establishing the utility of such interventions for improving the lives of people experiencing a mental illness. Adherence to intervention is also an important aspect of pharmacologic research that is usually reported. Similarly, measurement and reporting of physical activity participation in physical activity trials, through the use of objective activity monitors or self-report questionnaires, will assist interpretation of results as well as identification of strategies that could increase the effectiveness of such interventions.

Adherence to physical activity interventions is a critical aspect of exercise-based research that requires further investigation to maximize the potential beneficial effects for people with mental illness. We elected to assess the theoretical strength of the physical activity interventions for this review against the ACSM guidelines based on the prescribed volume and intensity (dose) of the intervention as opposed to the reported adherence rates for two reasons: firstly, few trials adequately reported adherence to interventions, and secondly, in order to highlight the lack of integration of exercise guidelines and expertise in the design of interventions.

The role of psychotropic medication is beyond the scope of this review. Given the variety of medications and doses prescribed for patients with different psychiatric diagnoses, and the relatively few studies adequately reporting such detail, meta-regression to determine the effect of physical activity interventions based on medication consumption was not possible. This question does, however, require further investigation to assist clinicians in the prescription of physical activity recommendations.

This review included a range of interventions targeted at increasing physical activity, including structured exercise. Due to the relatively small number of trials identified, and the often poorly defined interventions, it was not possible to conduct separate analyses based on the type and intensity of the interventions. However, it is reasonable to assume that structured, supervised, and progressive exercise may yield superior results compared to nonstructured, unsupervised physical activity based on data from other clinical conditions such as stroke⁸⁷ and type 2 diabetes.⁸⁸ This review investigated preintervention and postintervention scores rather than pooling outcome data for multiple time points. The question of longevity of effects of physical activity on outcome measures requires further investigation. Furthermore, the effects of physical activity may be moderated by participantspecific factors such as age, comorbidities, and time since diagnosis. Investigation of these factors warrants attention, but was beyond the scope of the current review.

This systematic review has certain limitations that mainly relate to the trials selected for inclusion. These include lack of reporting of intervention adherence, poor methodological quality, and nonstandardized reporting of intervention protocols. These factors limited the ability of the review to measure the impact of greater intervention adherence and specific intervention protocols on the primary and secondary outcomes. Additionally many of the participants in the

studies reviewed were receiving concomitant psychotropic medications, which could impact the outcomes reported. If participants experience a change in physical activity at the same time as a change in medication, it is not possible to ascribe the source of any outcomes to either or both of these potential interventions.

CONCLUSION

Few interventions exist whereby patients can hope to achieve improvements in both psychiatric symptoms and physical health simultaneously without significant risks of adverse effects. Physical activity offers substantial promise for improving outcomes for people living with mental illness, and inclusion of physical activity and exercise programs within treatment facilities is warranted given the results of this review. The future of physical activity and exercise as viable and accepted components of usual care within mental health settings will be enhanced by more methodologically rigorous clinical research, using well-designed intervention protocols that adhere to established principles of physical activity and exercise prescription.

Drug names: escitalopram (Lexapro and others).

Author affiliations: Musculoskeletal Division, The George Institute for Global Health and Faculty of Medicine, University of Sydney (Drs Tiedemann and Sherrington and Mr Rosenbaum); Prince of Wales Mental Health Programme, South Eastern Sydney Local Health District; School of Psychiatry, University of New South Wales (Dr Curtis); and School of Psychiatry, University of New South Wales, and Schizophrenia Research Unit, Liverpool Hospital, South Western Sydney Local Health District (Dr Ward),

Sydney, Australia. **Potential conflicts of interest: Mr Rosenbaum** was funded by St John of God Health Care, Richmond Hospital. **Dr Sherrington** holds a Senior Research Fellowship and **Dr Tiedemann** holds a Research Training Fellowship granted by the National Health and Medical Research Council of Australia. **Drs Curtis** and **Ward** report no potential conflicts of interest relevant to the subject of this article.

Funding/support: None reported.

Supplementary material: Available at PSYCHIATRIST.COM.

REFERENCES

- Richardson CR, Faulkner G, McDevitt J, et al. Integrating physical activity into mental health services for persons with serious mental illness. *Psychiatr Serv*. 2005;56(3):324–331.
- Garber CE, Blissmer B, Deschenes MR, et al; American College of Sports
 Medicine. American College of Sports Medicine position stand. quantity and
 quality of exercise for developing and maintaining cardiorespiratory,
 musculoskeletal, and neuromotor fitness in apparently healthy adults:
 guidance for prescribing exercise. *Med Sci Sports Exerc*.
 2011;43(7):1334–1359.
- Cooney GM, Dwan K, Greig CA, et al. Exercise for depression. Cochrane Database Syst Rev. 2013;9(9):CD004366. 10.1002/14651858.CD004366.pub6.
- Rethorst CD, Trivedi MH. Evidence-based recommendations for the prescription of exercise for major depressive disorder. *J Psychiatr Pract*. 2013;19(3):204–212.
- Kessler RC, Berglund P, Demler O, et al. Lifetime prevalence and age-ofonset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):593–602.
- Berk M, Sarris J, Coulson CE, et al. Lifestyle management of unipolar depression. Acta Psychiatr Scand suppl. 2013;127(s443):38–54.
- Jayakody K, Gunadasa S, Hosker C. Exercise for anxiety disorders: systematic review [published online ahead of print January 7, 2013]. Br J Sports Med. 2013;7. 10.1136/bjsports-2012-091287.
- 8. Josefsson T, Lindwall M, Archer T. Physical exercise intervention in depressive disorders: meta-analysis and systematic review [published online ahead of print January 30, 2013]. *Scand J Med Sci Sports*.
- Malchow B, Reich-Erkelenz D, Oertel-Knöchel V, et al. The effects of physical exercise in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci. 2013;263(6):451–467.

- 10. Morgan AJ, Parker AG, Alvarez-Jimenez M, et al. Exercise and Mental Health: An Exercise and Sports Science Australia Commissioned Review. *J Exercise Physiol Online* http://web.ebscohost.com/abstract?direct=true& profile=ehost&scope=site&authtype=crawler&jrnl=10979751&AN=91532680&h=SFQXg40GIEFE455HV%2blsYEkfyN4iCPUQj0OVhRneG4Qj n5LCi5jPlxQXvb50NHfWc3FIRR6RQU2aNtHX2ow2aA%3d%3d&crl=c. Accessed December 18, 2013.
- Stanton R, Reaburn P. Exercise and the treatment of depression: a review of the exercise program variables[published online ahead of print April 18, 2013]. J Sci Med Sport.
- 12. Rimer J, Dwan K, Lawlor DA, et al. Exercise for depression. *Cochrane Database Syst Rev.* 2012;7:CD004366.
- Vancampfort D, Probst M, Helvik Skjaerven L, et al. Systematic review of the benefits of physical therapy within a multidisciplinary care approach for people with schizophrenia. *Phys Ther.* 2012;92(1):11–23.
- Vancampfort D, Vansteelandt K, Scheewe T, et al. Yoga in schizophrenia: a systematic review of randomised controlled trials. Acta Psychiatr Scand. 2012;126(1):12–20.
- Krogh J, Nordentoft M, Sterne JAC, et al. The effect of exercise in clinically depressed adults: systematic review and meta-analysis of randomized controlled trials. J Clin Psychiatry. 2011;72(4):529–538.
- Kessler RC, McGonagle KA, Zhao S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: results from the National Comorbidity Survey. Arch Gen Psychiatry. 1994;51(1):8–19.
- Siris SG. Depression in schizophrenia: perspective in the era of "atypical" antipsychotic agents. Am J Psychiatry. 2000;157(9):1379–1389.
- 18. De Hert M, Dekker JM, Wood D, et al. Cardiovascular disease and diabetes in people with severe mental illness position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry. 2009;24(6):412–424.
- Crump C, Winkleby MA, Sundquist K, et al. Comorbidities and mortality in persons with schizophrenia: a Swedish national cohort study. Am J Psychiatry. 2013;170(3):324–333.
- Vancampfort D, Knapen J, Probst M, et al. Considering a frame of reference for physical activity research related to the cardiometabolic risk profile in schizophrenia. *Psychiatry Res.* 2010;177(3):271–279.
- Ziedonis D, Hitsman B, Beckham JC, et al. Tobacco use and cessation in psychiatric disorders: National Institute of Mental Health report. *Nicotine Tob Res*. 2008;10(12):1691–1715.
- Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs. 2005;19(suppl 1):1–93.
- Nocon M, Hiemann T, Müller-Riemenschneider F, et al. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;15(3):239–246.
- Moher D, Liberati A, Tetzlaff J, et al; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
- Nickel M, Cangoez B, Bachler E, et al. Bioenergetic exercises in inpatient treatment of Turkish immigrants with chronic somatoform disorders: a randomized, controlled study. *J Psychosom Res.* 2006;61(4):507–513.
- Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. *Phys Ther*. 2003;83(8):713–721.
- de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–133.
- 28. Thompson PD, Buchner D, Piña IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Arterioscler Thromb Vasc Biol. August 1, 2003;23(8):e42–e49.
- Dunn AL, Trivedi MH, Kampert JB, et al. Exercise treatment for depression: efficacy and dose response. Am J Prev Med. 2005;28(1):1–8.
- Blumenthal JA, Babyak MA, Doraiswamy PM, et al. Exercise and pharmacotherapy in the treatment of major depressive disorder. *Psychosom Med.* 2007;69(7):587–596.
- 31. Higgins J. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1. 0. Oxford, UK: The Cochrane Collaboration; 2011.
- Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillside, NJ: Lawrence Erlbaum; 1988.
- 33. Abt KL. The Effects of a Group Exercise Intervention in the Adjunctive Treatment of Depression [dissertation]. Pittsburgh, PA:

- University of Pittsburgh; 2005.
- Armstrong K, Edwards H. The effects of exercise and social support on mothers reporting depressive symptoms: a pilot randomized controlled trial. Int J Ment Health Nurs. 2003;12(2):130–138.
- Armstrong K, Edwards H. The effectiveness of a pram-walking exercise programme in reducing depressive symptomatology for postnatal women. *Int J Nurs Pract*. 2004;10(4):177–194.
- Berlin B, Moul DE, le Page JP, et al. The effect of aquatic therapy interventions on patients with depression: a comparison study. *Annual in Therapeutic Recreation*. 2003;12:7–13.
- Daley AJ, Winter H, Grimmett C, et al. Feasibility of an exercise intervention for women with postnatal depression: a pilot randomised controlled trial (with consumer summary). Br J Gen Pract. 2008;58(548):178–183.
- Knubben K, Reischies FM, Adli M, et al. A randomised, controlled study on the effects of a short-term endurance training programme in patients with major depression. Br J Sports Med. 2007;41(1):29–33.
- Mather AS, Rodriguez C, Guthrie MF, et al. Effects of exercise on depressive symptoms in older adults with poorly responsive depressive disorder: randomised controlled trial (with consumer summary). Br J Psychiatry. 2002;180(5):411–415.
- Mota-Pereira J, Silverio J, Carvalho S, et al. Moderate exercise improves depression parameters in treatment-resistant patients with major depressive disorder. J Psychiatr Res. 2011;45(8):1005–1011.
- Netz Y, Yaretzki A, Salganik I, et al. The effect of supervised physical activity on cognitive and affective state of geriatric and psychogeriatric in-patients. Clin Gerontol. 1994;15(1):47–56.
- 42. Nguyen SD. Simultaneous Technique of Exercise and Psychotherapy (Step) as an Adjunct to Multidisciplinary Treatment in Acute Inpatient Psychiatric Hospitalized Older Adults With Depressive Symptoms [dissertation]. Loma Linda, CA: Loma Linda University; 2008.
- Singh NA, Clements KM, Fiatarone MA. A randomized controlled trial of progressive resistance training in depressed elders. J Gerontol A Biol Sci Med Sci. 1997;52(1):M27–M35.
- Veale D, Le Fevre K, Pantelis C, et al. Aerobic exercise in the adjunctive treatment of depression: a randomized controlled trial. *J R Soc Med*. 1992;85(9):541–544.
- 45. Vieira JLL, Porcu M, da Rocha PGM. A pratica de exercicios fisicos regulares como terapia complementar ao tratamento de mulheres com depressao (The regular physical exercise's practice as complementary therapy to the treatment of depressed women [Portuguese]). J Bras Psiquiatr. 2007;56(1):23–28.
- Yeung A, Lepoutre V, Wayne P, et al. Tai chi treatment for depression in Chinese Americans: a pilot study. Am J Phys Med Rehabil. 2012;91(10):863–870.
- Lavretsky H, Alstein LL, Olmstead RE, et al. Complementary use of tai chi chih augments escitalopram treatment of geriatric depression: a randomized controlled trial. Am J Geriatr Psychiatry. 2011;19(10):839–850.
- Chalder M, Wiles NJ, Campbell J, et al. Facilitated physical activity as a treatment for depressed adults: randomised controlled trial. *BMJ*. 2012;344(1):e2758.
- Herring MP, Jacob ML, Suveg C, et al. Effects of short-term exercise training on signs and symptoms of generalized anxiety disorder. *Ment Health Phys Act*. 2011;4(2):71–77.
- Schuch FB, Vasconcelos-Moreno MP, Borowsky C, et al. Exercise and severe depression: preliminary results of an add-on study. *J Affect Disord*. 2011;133(3):615–618.
- Wu RR, Zhao JP, Jin H, et al. Lifestyle intervention and metformin for treatment of antipsychotic-induced weight gain: a randomized controlled trial. *JAMA*. 2008;299(2):185–193.
- Acil AA, Dogan S, Dogan O. The effects of physical exercises to mental state and quality of life in patients with schizophrenia. *J Psychiatr Ment Health* Nurs. 2008;15(10):808–815.
- Behere RV, Arasappa R, Jagannathan A, et al. Effect of yoga therapy on facial emotion recognition deficits, symptoms and functioning in patients with schizophrenia. Acta Psychiatr Scand. 2011;123(2):147–153.
- Li M, Wang H, Li X. Effect of music and sport therapy as assistant treatment for schizophrenia. [Chinese—simplified characters]. *Heilongjiang Nurs J.* 2005;11(20):1677–1678.
- Ning XH, Chen YX, Lu F. (The effect of Jianshen gymnastics on the negative symptoms of schizophrenia) [Chinese—simplified characters]. Zhongguo Xing Wei Yi Xue Zazhi [Chinese Journal of Behavioral Medical Science] 2003;12(3):329,352.
- Su L, Fan Z, Qu Y, et al. The effect of dance therapy for chronic schizophrenia patient. [Chinese—simplified characters] *Zhonghua Jing Shen He Za Zhi* [Chinese Journal of Psychiatry]. 1999;32(3):167–169.
- 57. Visceglia E, Lewis S. Yoga therapy as an adjunctive treatment for schizophrenia: a randomized, controlled pilot study.

- J Altern Complement Med. 2011;17(7):601-607.
- Gholipour A, Abolghasemi Sh, Gholinia K, et al. Token reinforcement therapeutic approach is more effective than exercise for controlling negative symptoms of schizophrenic patients: a randomized controlled trial. *Int J Prev Med.* 2012;3(7):466–470.
- Cole JD. The Effects of an Exercise Program on Chronically Mentally Ill Outpatients: A Study of Symptom Reduction, Physical Fitness, and Stress; Chicago, IL: Illinois Institute of Technology; 1998.
- Marzolini S, Jensen B, Melville P. Feasibility and effects of a group-based resistance and aerobic exercise program for individuals with severe schizophrenia: a multidisciplinary approach. *Ment Health Phys Act*. 2009;2(1):29–36.
- Skrinar GS, Huxley NA, Hutchinson DS, et al. The role of a fitness intervention on people with serious psychiatric disabilities. *Psychiatr Rehabil J.* 2005;29(2):122–127.
- Alvarez-Jiménez M, González-Blanch C, Vázquez-Barquero JL, et al. Attenuation of antipsychotic-induced weight gain with early behavioral intervention in drug-naive first-episode psychosis patients: a randomized controlled trial. J Clin Psychiatry, 2006;67(8):1253–1260.
- Brown C, Goetz J, Hamera E. Weight loss intervention for people with serious mental illness: a randomized controlled trial of the RENEW program. *Psychiatr Serv.* 2011;62(7):800–802.
- Forsberg KA, Björkman T, Sandman PO, et al. Physical health—a cluster randomized controlled lifestyle intervention among persons with a psychiatric disability and their staff. Nord J Psychiatry. 2008;62(6):486–495.
- Gillhoff K, Gaab J, Émini L, et al. Effects of a multimodal lifestyle intervention on body mass index in patients with bipolar disorder: a randomized controlled trial. Prim Care Companion J Clin Psychiatry. 2010;12(5):e1–e8.
- Kwon JS, Choi JS, Bahk WM, et al. Weight management program for treatment-emergent weight gain in olanzapine-treated patients with schizophrenia or schizoaffective disorder: a 12-week randomized controlled clinical trial. J Clin Psychiatry. 2006;67(4):547–553.
- McIver S, O'Halloran P, McGartland M. Yoga as a treatment for binge eating disorder: a preliminary study. Complement Ther Med. 2009;17(4):196–202.
- McKibbin CL, Patterson TL, Norman G, et al. A lifestyle intervention for older schizophrenia patients with diabetes mellitus: a randomized controlled trial. Schizophr Res. 2006;86(1–3):36–44.
- Wu M-K, Wang C-K, Bai Y-M, et al. Outcomes of obese, clozapine-treated inpatients with schizophrenia placed on a six-month diet and physical activity program. *Psychiatr Serv.* 2007;58(4):544–550.
- Forsberg KA, Björkman T, Sandman PO, et al. Influence of a lifestyle intervention among persons with a psychiatric disability: a cluster randomised controlled trail on symptoms, quality of life and sense of coherence. J Clin Nurs. 2010;19(11–12):1519–1528.
- Da Costa D, Lowensteyn I, Abrahamowicz M, et al. A randomized clinical trial of exercise to alleviate postpartum depressed mood. J Psychosom Obstet Gynaecol. 2009;30(3):191–200.
- 72. Lambert RA, Harvey I, Poland F. A pragmatic, unblinded randomised

- controlled trial comparing an occupational therapy-led lifestyle approach and routine GP care for panic disorder treatment in primary care. *J Affect Disord*. 2007;99(1–3):63–71.
- Oeland A-M, Laessoe U, Olesen AV, et al. Impact of exercise on patients with depression and anxiety. Nord J Psychiatry. 2010;64(3):210–217.
- Cho KL. Effect of Tai Chi on depressive symptoms amongst Chinese older patients with major depression: the role of social support. *Med Sport Sci.* 2008:52:146–154.
- 75. van der Merwe I, Naude S. Exercise and depression: a treatment manual. *Health SA Gesondheid*. 2004;9(4):28–41.
- Beebe LH, Tian L, Morris N, et al. Effects of exercise on mental and physical health parameters of persons with schizophrenia. *Issues Ment Health Nurs*. 2005;26(6):661–676.
- Dritsa M, Dupuis G, Lowensteyn I, et al. Effects of home-based exercise on fatigue in postpartum depressed women: who is more likely to benefit and why? J Psychosom Res. 2009;67(2):159–163.
- Milano W, Grillo F, Del Mastro A, et al. Appropriate intervention strategies for weight gain induced by olanzapine: a randomized controlled study. Adv Ther. 2007;24(1):123–134.
- Sims J, Hill K, Davidson S, et al. Exploring the feasibility of a communitybased strength training program for older people with depressive symptoms and its impact on depressive symptoms. BMC Geriatr. 2006;6(1):18.
- Rethorst CD, Wipfli BM, Landers DM. The antidepressive effects of exercise: a meta-analysis of randomized trials. Sports Med. 2009;39(6):491–511.
- 81. Kolden GG, Strauman TJ, Ward A, et al. A pilot study of group exercise training (GET) for women with primary breast cancer: feasibility and health benefits. *Psychooncology*. 2002;11(5):447–456.
- Levinger I, Selig S, Goodman C, et al. Resistance training improves depressive symptoms in individuals at high risk for type 2 diabetes. *J Strength Cond Res*. 2011;25(8):2328–2333.
- Dalgas U, Stenager E, Ingemann-Hansen T. Multiple sclerosis and physical exercise: recommendations for the application of resistance-, endurance- and combined training. *Mult Scler*. 2008;14(1):35–53.
- 84. Slade SC, Keating JL. Exercise prescription: a case for standardised reporting. Br J Sports Med. 2012;46(16):1110–1113.
- Church TS, Blair SN. When will we treat physical activity as a legitimate medical therapy...even though it does not come in a pill? *Br J Sports Med*. 2009;43(2):80–81.
- Schulz KF, Altman DG, Moher D; CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8(1):18.
- Olney SJ, Nymark J, Brouwer B, et al. A randomized controlled trial of supervised versus unsupervised exercise programs for ambulatory stroke survivors. Stroke. 2006;37(2):476–481.
- Dunstan DW, Daly RM, Owen N, et al. Home-based resistance training is not sufficient to maintain improved glycemic control following supervised training in older individuals with type 2 diabetes. *Diabetes Care*. 2005;28(1):3–9.

See supplementary material for this article at PSYCHIATRIST.COM.

Supplementary Material

Article Title:

Physical Activity Interventions for People With Mental Illness: A Systematic Review

and Meta-Analysis

Author(s):

Simon Rosenbaum, BSc, ESSAM, AEP; Anne Tiedemann, BSc, PhD;

Catherine Sherrington, BAppSc(Physio), MPH, PhD; Jackie Curtis, MBBS, FRANZCP;

and Philip B. Ward BMedSci, PhD

DOI Number: 10.4088/JCP.13r08765

List of Supplementary Material for the article

- 1. eFigure 1
- 2. eFigure 2
- 3. eFigure 3
- 4. eFigure 4
- 5. eTable 1
- 6. **eTable 2**
- eAppendix
 1

Disclaimer

This Supplementary Material has been provided by the author(s) as an enhancement to the published article. It has been approved by peer review; however, it has undergone neither editing nor formatting by in-house editorial staff. The material is presented in the manner supplied by the author.

Supplementary eFigure 1. Inclusion criteria

Design

· Randomized controlled trial

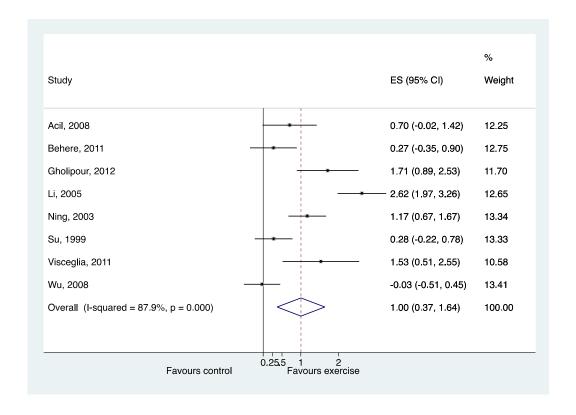
Participants

- Adults, aged 18 years or greater
- DSM, ICD or other diagnosis of a mental illness (excluding dysthymia, mild depression and eating disorders)

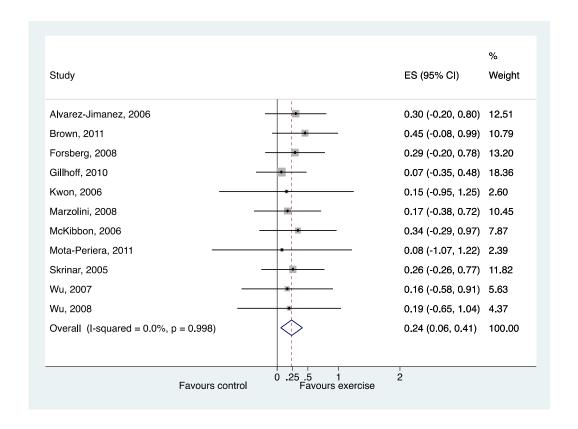
Interventions

- Physical activity or structured exercise program
- Exercise counselling
- Lifestyle interventions in which physical exercise was at least 50% of total intervention
- Tai Chi, physical yoga

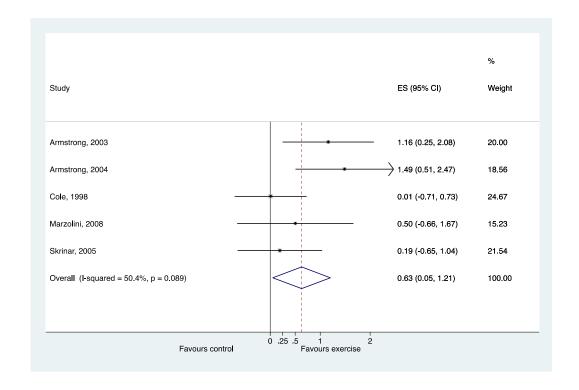
Outcome measures


- Depressive symptoms
- · Positive and negative symptoms of schizophrenia
- Anthropometry
- · Exercise capacity
- · Quality of life

Comparisons


- Physical activity/ exercise program versus usual care
- Physical activity/ exercise program versus wait-list
- Physical activity/ exercise program versus health education (not physical activity based)
- Physical activity program versus no treatment

Supplementary eFigure 2.


Forest plot from meta-analysis of physical activity on symptoms of schizophrenia showing estimates of effect size with 95% confidence intervals and relative weight (% weight) for each trial.

Supplementary eFigure 3. Forest plot from meta-analysis of physical activity on anthropometric measurements showing estimates of effect size with 95% confidence intervals and relative weight (% weight) for each trial.

Supplementary eFigure 4. Forest plot from meta-analysis of physical activity on exercise capacity showing estimates of effect size with 95% confidence intervals and relative weight (% weight) for each trial.

Supplementary eTable 1

Methodological quality of included trials for primary meta-analysis (n=20)

Trial	PEDro	Eligibility	Random	Concealed	Groups	Blinding	Blinding of	Blinding	Measures	Intention	Between-	Both point
	Score	criteria	allocation	allocation to	similar	of all	therapists	assessment	obtained	to treat	group	measures
		specified		groups	at	subjects	who	of outcome	from more	analysis	statistical	and
					baseline		administered	measures	than 85%		comparisons	measures
							therapy		of subjects		reported	of
												variability
												reported
Abt, 2006 ³³	5	W	W	N.	V	NI.	N.	M-	NI-	V	V	V
N=31	5	Yes	Yes	No	Yes	No	No	No	No	Yes	Yes	Yes
Armstrong,												
2003 ³⁴	6	Yes	Yes	Yes	Yes	No	No	No	Yes	No	Yes	Yes
N=20												

Armstrong, 2004 ³⁵ N=19	5	Yes	Yes	Yes	Yes	No	No	No	No	No	Yes	Yes
Serlin, 2003 ³⁶ N=39 (ex vs control)	3	Yes	Yes	No	No	No	No	No	No	No	Yes	Yes
Blumenthal, 2007 ³⁰ N= 202 (HE ex vs control; SE vs control)	8	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes

Chalder,												
2012^{48}	6	Yes	Yes	Yes	Yes	No	No	No	No	Yes	Yes	Yes
N=361												
Daley,												
2008 ³⁷	5	Yes	Yes	No	Yes	No	No	No	No	Yes	Yes	Yes
N=38												
Dunn,												
2005 ²⁹												
N=80	8	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
(pooled												
groups)												
Herring,												
201149												
N=30	6	No	Yes	No	Yes	No	No	Yes	Yes	No	Yes	Yes
(pooled												
groups)												
-												

Knubben,												
2007^{38}	7	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	Yes	Yes
N=38												
Lavretsky,												
2011 ⁴⁷	8	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
N=73												
Mather,												
2002 ³⁹	8	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
N=86												
Mota-												
Pereira,	-	37	37	N	37	N	N	N	37	N	3 7	37
2011 ⁴⁰	5	Yes	Yes	No	Yes	No	No	No	Yes	No	Yes	Yes
N=29												
Netz, 1994 ⁴¹												
N=17	3	Yes	Yes	No	No	No	No	No	Yes	No	Yes	No

Nguyen,												
2008 ⁴²	4	Yes	Yes	No	No	No	No	No	Yes	No	Yes	Yes
N=88												
Schuch,												
2011 ⁵⁰	5	No	Yes	No	Yes	No	No	No	Yes	No	Yes	Yes
N=26												
Singh,												
1997 ⁴³												
N=13	6	37	37	N	37	N	N	3 7	37	N	N/	N/
(major	6	Yes	Yes	No	Yes	No	No	Yes	Yes	No	Yes	Yes
depression												
only)												
Veale,												
1992 ⁴⁴	3	No	Yes	No	No	No	No	No	No	No	Yes	Yes
N=65												

Viera, 2007 ⁴⁵ N=18 (Brazil)	3	Yes	Yes	No	No	No	No	No	No	No	Yes	Yes
Yeung, 2012 ⁴⁶ N=39	8	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes

^aPEDro score ≥6 high methodological quality; PEDro score <6 low methodological quality

Supplementary eTable 2. Proposed exercise reporting grid

(Adapted with permission from: Slade SC, Keating JL. Exercise prescription: a case for standardised reporting. Br J Sports Med. 2012;46:1110–3.)

	Intervention	Control
Total sample size		
Gender %		
Name of exercises		
Setting (clinic, gym etc)		
One-on-one		
Group		
Instructor qualification		
Supervision		
Adherence measures		
Motivation strategies		
Machinery/equipment		
Individually tailored		
One size fits all exercise program		
Muscle group(s)		
Resistance exercise		
Stretching		
Aerobic exercise		
Home program		
Exercise into pain		
Exercise without pain		
Warm-up (type & time)		
Cool-down (type & time)		
Starting position		
Initial exercise reps & sets		
Decision rule for starting ex		
dosage		
Final exercise reps and sets		
Session duration (mins)		
Number of sessions (per wk)		
Program duration (wks)		
Exercise speed		
Exercise sequence		
Rest between reps & sets		
Ex progression decision rules		
Outcome measures		
Compliance (%) and how		
measured		
Drop outs & reasons		
Adverse events		
Short-term follow-up		
Long-term follow-up		

eAppendix 1

MEDLINE search strategy

1	exp exercise	57203
2	exp exercise therapy	23899
3	exp physical exertion	50886
4	exp walking	14562
5	exp running	11311
6	exp swimming	16230
7	exp jogging	655
8	exp bicyling	6157
9	exp physical education/ and train.mp [mp=protocol supplementary	11138
	concept, rare disease supplementary concept, title, original title,	
	abstract, name of substance word, subject heading word, unique	
	identifier]	
10	exp resistance training	1470
11	exp aerobic exercise	57203
12	exp physical activity	98445
13	exercise\$.tw.	161807
14	(physical adj1 activ\$).mp.	39824
15	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or	327242
	15	
16	exp mental disorders	832439
17	exp depression	61934
18	exp anxiety disorder	57409

19	exp bipolar disorder	27615
20	exp post traumatic stress disorder	17017
21	exp schizophrenia	76406
22	exp eating disorder	19351
23	exp mood disorder	100468
24	exp obsessive compulsive disorder	10042
25	exp panic disorder	5415
26	mental health.tw.	56966
27	mental illness.tw.	12319
28	16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27	897437
29	randomized controlled trial.pt.	314563
30	random.tw.	126398
31	randomly.ab.	159149
32	random\$.tw.	531657
33	29 or 30 or 31 or 32	618930
34	15 and 28 and 33	1724