About
18
Publications
44,086
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,806
Citations
Introduction
Current institution
Additional affiliations
August 2014 - present
November 2011 - July 2014
January 2007 - October 2011
Publications
Publications (18)
Autophagy is a major cellular degradation pathway in eukaryotes. Recent studies have revealed the importance of autophagy in many aspects of plant life, including seedling establishment, plant development, stress resistance, metabolism, and reproduction. This is manifested by the dual ability of autophagy to execute bulk degradation under severe en...
Selective autophagy has been extensively studied in various organisms, but knowledge regarding its functions in plants, particularly in organelle turnover, is limited. We have recently discovered ATG8-INTERACTING PROTEIN1 (ATI1) from Arabidopsis thaliana and showed that following carbon starvation it is localized on endoplasmic reticulum (ER)-assoc...
Degradation of chloroplasts is a hallmark of both natural and stress-induced plant senescence. Autophagy and senescence-associated vacuoles are two established cellular pathways for chloroplast degradation. Recently, a third independent pathway for chloroplast degradation was reported. Here we will discuss this new discovery in relation to the othe...
γ-Aminobutyric acid (GABA) is a non-proteinogenic amino acid that is found in uni- and multi-cellular organisms and is involved in many aspects of plant life cycle. GABA metabolism occurs by the action of evolutionary conserved enzymes that constitute the GABA shunt, bypassing two steps of the TCA cycle. The central position of GABA in the interfac...
In plants, γ-aminobutyric acid (GABA) accumulates in the cytosol in response to a variety of stresses. GABA is transported into mitochondria, where it is catabolized into TCA cycle or other intermediates. Although there is circumstantial evidence for mitochondrial GABA transporters in eukaryotes, none have yet been identified. Described here is an...
Plant growth is governed by the integration of environmental cues and nutritional status. Under stress conditions, growth is usually attenuated in favor of stress response, creating a trade-off between growth and stress. Autophagy is a vital process in eukaryotes, maintaining cellular balance by degrading and recycling cellular components. It is tr...
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of...
Autophagy, a cellular degradation pathway, and the phytohormone ethylene function in plant development, senescence, and stress responses. However, the manner of their interaction is mostly unknown. We reasoned that this may be revealed by studying autophagy in a climacteric fruit ripening context, for which ethylene is crucial. During ripening, fru...
Autophagy, an intracellular process that facilitates the degradation of cytoplasmic materials, plays a dominant role in plant fitness and immunity. While autophagy was shown to be involved in plant response to fungi, bacteria, and viruses, its role in response to insect herbivory is as yet unknown. In this study, we demonstrate a role of autophagy...
This article comments on:
Hickl D, Drews F, Girke C, Zimmer D, Mühlhaus T, Hauth J, Nordström K, Trentmann O, Neuhaus E, Scheuring D, Fehlmann T, Keller K, Simon M, Möhlmann T. 2021. Differential degradation of RNA species by autophagy-related pathways in Arabidopsis. Journal of Experimental Botany 72, XXXX–XXXX.
Reticulophagy, the selective autophagy of endoplasmic reticulum (ER) components, is known to operate in eukaryotes from yeast and unicellular algae to animals and plants. Thus far, only ER-stress induced reticulophagy was reported and analyzed in plants. In this study we characterize a reticulophagy pathway in Arabidopsis thaliana that is triggered...
ER-phagy, the selective autophagy of endoplasmic reticulum (ER) components, is known to operate in eukaryotes from yeast and unicellular algae to animals and plants. Thus far, only ER-stress derived ER-phagy was reported and analyzed in plants. In this study we characterize an ER-phagy pathway in Arabidopsis thaliana that is triggered by dark-induc...
Significance
The viral suppressor of RNA silencing P0 is known to target plant antiviral ARGONAUTE (AGO) proteins for degradation via an autophagy-related process. Here we utilized P0 to gain insight into the cellular degradation dynamics of AGO1, the major plant effector of RNA silencing. We revealed that P0 targets endoplasmic reticulum (ER)-asso...
In metazoans, autophagy is an essential component of host defense against viruses, orchestrating their degradation. Such antiviral functions for autophagy have also been long suspected in the green lineage. Two recent reports provide molecular insights on how plants selectively send viral proteins and even particles to the vacuole.
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring au...
Macroautophagy (hereafter referred to as autophagy) is a cellular mechanism dedicated to the degradation and recycling of unnecessary cytosolic components by their removal to the lytic compartment of the cell (the vacuole in plants). Autophagy is generally induced by stresses causing energy deprivation and its operation occurs by special vesicles,...
Trafficking of proteins from the endoplasmic reticulum (ER) to the vacuole is a fundamental process in plants, being involved both in vacuole biogenesis as well as with plant growth and response to environmental stresses. Although the canonical transport of cellular components from the ER to the vacuole includes the Golgi apparatus as an intermedia...
Autophagy is a mechanism used for the transport of macromolecules to the vacuole for degradation. It can be either non-selective or selective, resulting from the specific binding of target proteins to Atg8, an essential autophagy-related protein. Nine Atg8 homologs exist in the model plant Arabidopsis thaliana, suggesting possible different roles f...
Questions
Question (1)
Does anyone know a good method to perform Agrobacterium-mediated transient transformation of Arabidopsis roots (without having to chop the roots into small pieces)? Please let me know. Thanks.