
Simon C JohnsonUniversity of Washington Seattle | UW · Department of Neurology
Simon C Johnson
PhD
About
77
Publications
32,783
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,658
Citations
Introduction
My research is aimed at mechanistically defining how different forms of mitochondrial dysfunction lead to clinically distinct and highly complex diseases. In particular, I am interested in the role intracellular and systemic (circulating) nutrient signaling pathways play in disease pathogenesis.
https://www.johnsonlab.science/
Additional affiliations
May 2019 - present
November 2016 - May 2019
September 2013 - October 2016
Education
November 2016 - May 2019
September 2013 - November 2016
Albert Einstein College of Medicine
Field of study
- Genetics
September 2009 - August 2013
Publications
Publications (77)
Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies,
cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome,
for which there are no effective therapies. We found that rapamycin, a specific inhi...
While mitochondria have been linked to many human diseases through genetic association and functional studies, the precise role of mitochondria in specific pathologies, such as cardiovascular, neurodegenerative, and metabolic diseases, is often unclear. Here, we take advantage of the catalog of human genome-wide associations, whole-genome tissue ex...
Volatile anesthetics (VAs) are widely used in medicine, but the mechanisms underlying their effects remain ill-defined. Though routine anesthesia is safe in healthy individuals, instances of sensitivity are well-documented, and there has been significant concern regarding the impact of VAs on neonatal brain development. Evidence indicates that VAs...
Genetic mitochondrial diseases are the most frequent cause of inherited metabolic disorders and one of the most prevalent causes of heritable neurological disease. Leigh syndrome is the most common clinical presentation of pediatric mitochondrial disease, typically appearing in the first few years of life, and involving severe multisystem pathologi...
Symmetric, progressive, necrotizing lesions in the brainstem are a defining feature of Leigh syndrome (LS). A mechanistic understanding of the pathogenesis of these lesions has been elusive. Here, we report that leukocyte proliferation is causally involved in the pathogenesis of LS. Depleting leukocytes with a colony-stimulating factor 1 receptor i...
functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as thos...
Symmetric, progressive, necrotizing lesions in the brainstem are a defining feature of Leigh syndrome (LS). A mechanistic understanding of the pathogenesis of these lesions has been elusive. Here, we report that leukocyte proliferation is causally involved in the pathogenesis of Leigh syndrome. Directly depleting leukocytes with a colony-stimulatin...
Background
If anaesthetics cause permanent cognitive deficits in some children, the implications are enormous, but the molecular causes of anaesthetic-induced neurotoxicity, and consequently possible therapies, are still debated. Anaesthetic exposure early in development can be neurotoxic in the invertebrate Caenorhabditis elegans causing endoplasm...
Background
Extremely rare progressive diseases like Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) can be neonatally lethal and therefore go undiagnosed or are difficult to treat. Recent sequencing efforts have linked this disease to mutations in GPX4 , with consequences in the resulting enzyme, glutathione peroxidase 4. This offers potentia...
Background: Extremely rare progressive diseases like Sedaghatian-type Spondylometaphyseal Dysplasia (SSMD) can be neonatally lethal and therefore go undiagnosed or are difficult to treat. Recent sequencing efforts have linked this disease to mutations in GPX4, with consequences in the resulting enzyme, glutathione peroxidase 4. This offers potentia...
Volatile anesthetics (VAs) are widely used in medicine, but the mechanisms underlying their effects remain ill-defined. Though routine anesthesia is safe in healthy individuals, instances of sensitivity are well-documented, and there has been significant concern regarding the impact of VAs on neonatal brain development. Evidence indicates that VAs...
Mitochondria are eukaryotic organelles known best for their roles in energy production and metabolism. While often thought of as simply the ‘powerhouse of the cell,’ these organelles participate in a variety of critical cellular processes including reactive oxygen species (ROS) production, regulation of programmed cell death, modulation of inter- a...
Leigh Syndrome (LS) is a mitochondrial disorder defined by progressive focal neurodegenerative lesions in specific regions of the brain. Defects in NDUFS4, a subunit of complex I of the mitochondrial electron transport chain, cause LS in humans; the Ndufs4 knockout mouse (Ndufs4(KO)) closely resembles the human disease. Here, we probed brain region...
The ‘Competing interests’ statement of this Article has been updated; see accompanying Amendment for further details.
Routine general anesthesia is considered to be safe in healthy individuals. However, pre-clinical studies in mice, rats, and monkeys have repeatedly demonstrated that exposure to anesthetic agents during early post-natal periods can lead to acute neurotoxicity. More concerning , later-life defects in cognition, assessed by behavioral assays for lea...
Supporting data.
Contains all data presented in this manuscript. Data is organized by figure number, with each figure provided in an individual tab within the spreadsheet file.
(XLSX)
Human endpoints checklist.
(DOCX)
The potential for long-term neurotoxic effects of anesthetics on the developing human brain has led to intensified research in this area. To date, the human evidence has been inconclusive, but a large body of animal evidence continues to demonstrate cause for concern. On April 14 and 15, 2018 the sixth biennial Pediatric Anesthesia and Neurodevelop...
Mitochondrial diseases represent a significant clinical challenge. Substantial efforts have been devoted to identifying therapeutic strategies for mitochondrial disorders, but effective interventions have remained elusive. Recently, we reported attenuation of disease in a mouse model of the human mitochondrial disease Leigh syndrome through pharmac...
Volatile anesthetics are widely used in human medicine and generally considered to be safe in healthy individuals. In recent years, the safety of volatile anesthesia in pediatric patients has been questioned following reports of anesthetic induced neurotoxicity in pre-clinical studies. These studies in mice, rats, and primates have demonstrated tha...
CLOVES syndrome (congenital lipomatous overgrowth, vascular malformations, epidermal naevi, scoliosis/skeletal and spinal syndrome) is a genetic disorder that results from somatic, mosaic gain-of-function mutations of the PIK3CA gene, and belongs to the spectrum of PIK3CA-related overgrowth syndromes (PROS). This rare condition has no specific trea...
Nutrient signaling through insulin/IGF-1 was the first pathway demonstrated to regulate ageing and age-related disease in model organisms. Pharmacological or dietary interventions targeting nutrient signaling pathways have been shown to robustly attenuate ageing in many organisms. Caloric restriction, the most widely studied longevity promoting int...
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30...
Experimental geroscience has identified rapamycin as a top candidate for promoting healthy aging and longevity in mammals. As multiple independent studies have successfully reproduced the lifespan and healthspan promoting effects of rapamycin, the focus has shifted to possible translational use. While a promising compound, clinical use of rapamycin...
The growth hormone/insulin-like growth factor (IGF) axis can be manipulated in animal models to promote longevity, and IGF-related proteins including IGF-I and IGF-binding protein-3 (IGFBP-3) have also been implicated in risk of human diseases including cardiovascular diseases, diabetes, and cancer. Through genomewide association study of up to 30...
Many genes that affect replicative lifespan (RLS) in the budding yeast Saccharomyces cerevisiae also affect aging in other organisms such as C. elegans and M. musculus. We performed a systematic analysis of yeast RLS in a set of 4,698 viable single-gene deletion strains. Multiple functional gene clusters were identified, and full genome-to-genome c...
Rapamycin extends lifespan and attenuates age-related pathologies in mice when administered through diet at 14 parts per million (PPM). Recently, we reported that daily intraperitoneal injection of rapamycin at 8 mg/kg attenuates mitochondrial disease symptoms and progression in the Ndufs4 knockout mouse model of Leigh Syndrome. Although rapamycin...
Aging is the single largest risk factor for chronic disease. Studies in model organisms have identified conserved pathways that modulate aging rate and the onset and progression of multiple age-related diseases, suggesting that common pathways of aging may influence age-related diseases in humans as well. To determine whether there is genetic evide...
The physiological responses to nutrient availability play a central role in aging and disease. Genetic and pharmacological studies have identified highly conserved cellular signaling pathways that influence aging by regulating the interface between nutrient and hormone cues and cellular growth and maintenance. Among these pathways, the mechanistic...
Mitochondrial dysfunction contributes to a variety of pathological conditions—including cardiovascular disease, diabetes, cancer, muscular disorders, and neurodegenerative disease. Defects in genes important for mitochondrial function can cause severe illness and lead to devastating and untreatable childhood diseases. Leigh syndrome, or subacute ne...
Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are used for small RNA-based, specific gene silencing or knockdown in plants. Current methods to generate amiRNA or syn-tasiRNA constructs are not well adapted for cost-effective, large-scale production, or for multiplexing to specifically suppress multi...
Cirrhosis is the primary risk factor for the development of hepatocellular carcinoma (HCC), yet the mechanisms by which cirrhosis predisposes to carcinogenesis are poorly understood. Using a mouse model that recapitulates many aspects of the pathophysiology of human liver disease, we explored the mechanisms by which changes in the liver microenviro...
Mitochondrial dysfunction contributes to numerous health problems including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. Here, we report that rapamycin, a specifi...
Research suggests that the drug rapamycin slows mammalian aging, but a provocative new study has gained attention by claiming to show it does not.
Dietary restriction (DR) increases lifespan and attenuates age-related phenotypes in many organisms; however, the effect of DR on longevity of individuals in genetically heterogeneous populations is not well characterized. Here we describe a large-scale effort to define molecular mechanisms that underlie genotype-specific responses to DR. The effec...
Segmental progeroid syndromes are groups of disorders with multiple features suggestive of accelerated aging. One subset of adult-onset progeroid syndromes, referred to as atypical Werner syndrome, is caused by mutations in the LMNA gene, which encodes a class of nuclear intermediate filaments, lamin A/C. We previously described rapid telomere attr...
Cell viability may be judged by morphological changes or by changes in membrane permeability and/or physiological state inferred from the exclusion of certain dyes or the uptake and retention of others. This unit presents methods based on dye exclusion, esterase activity, and mitochondrial membrane potential, as well as protocols for determining th...
Many experts in the biology of ageing believe that pharmacological interventions to slow ageing are a matter of 'when' rather than 'if'. A leading target for such interventions is the nutrient response pathway defined by the mechanistic target of rapamycin (mTOR). Inhibition of this pathway extends lifespan in model organisms and confers protection...