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SIMION BREAZ

Abstract. We study a class of modules which can be characterized using
a duality theorem, called finitistic n-self-cotilting. Such a module Q can be
characterized using dual conditions of some generalizations for star modules:
every module M which has a right resolution with n terms isomorphic to finite
powers of Q (i.e. M is n-finitely Q-copresented) has a right resolution with
(n + 1) terms, and the functor HomR(−, Q) preserves the exactness of all
monomorphisms with their ranges finite powers of Q and cokernels n-finitely
Q-copresented modules. In the general case, these modules are independent
toward other kinds of modules which are characterized using some dualities
(w-Πf -quasi injective modules, costar modules, f -cotilting modules). Closure
properties for the classes involved in the duality are studied. In the end of
the paper connections with the cotilting theory are exhibited, in the case of
finitely dimensional algebras over fields.

1. Introduction

In this paper R denotes a unital associative ring, Q is a right R-module, S is
the endomorphism ring of Q, Mod-R is the category of all right R-modules, S-Mod
denotes the category of all left S-modules and n will be always a positive integer.

Then Q is naturally a left S-module and we have a pair of adjoint contravariant
functors

∆ = HomR(−, Q) : Mod-R À S-Mod : HomS(−, Q) = ∆
with arrows of adjunction δ : 1 → ∆2. There exist two classes

Refl(QR) = {M ∈ Mod-R | δM is an isomorphism}
and

Refl(SQ) = {A ∈ S-Mod | δA is an isomorphism}
such that if ∆ : C À D : ∆ is a duality, where C is a class of right R-modules and D
is a class of left S-modules, then C ⊆ Refl(QR) and D ⊆ Refl(SQ). A module which
belongs to one of these classes is called Q-reflexive. If X is a right R-module or a
left S-module such that the homomorphism δX is monic, then X is Q-cogenerated,
i.e. it can be embedded in a power of Q as a right R-module, respectively as a left
S-module. The class of all Q-cogenerated left S-modules is denoted by Cog(SQ).

The general problem is to establish connections between properties of Q as an R-
module, properties of Q as an S-module, properties of rings R and S and properties
of some classes C ⊆ Refl(QR), D ⊆ Refl(SQ) such that the pair ∆ : C À D : ∆ is
a duality. An important result in this direction was obtained by Colby and Fuller
in [11]. They introduced the notion of costar module as an R-module Q such that
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the functors ∆ induce a duality between the class of all Q-cogenerated R-modules
M such that the dual modules ∆(M) are finitely generated left S-modules and the
class of all finitely generated Q-cogenerated left S-modules. They characterized
this situation with some properties of Q as an R-module in [11, Theorem 2.7].
We recall that Q is costar if and only if every Q-cogenerated right R-module M
with finitely generated dual ∆(M) is semi-finitely-copresented by Q (which means
that there exists an exact sequence 0 → M → QX → QY with X a finite set)
and Q is injective relative to all short exact sequences 0 → L → QX → M → 0
in Mod-R where X is a finite set and M is a Q-cogenerated R-module (Q is w-
Πf -quasi injective). We also recall that Q is w-Πf -quasi injective if and only if
the functors ∆ induce a duality between all semi-finitely Q-copresented right R-
modules and all finitely generated Q-cogenerated left S-modules ([11, Proposition
2.6] and [20, 4.8]). A particular case of costar modules are f -cotilting-modules,
introduced by Wisbauer in [20]: Q is f -cotilting if ∆ induces a duality between
all finitely Q-cogenerated modules and all finitely generated Q-cogenerated left S-
modules, [20, 4.10]. We recall from [20, 3.12] that Q is f -cotilting if and only if
every finitely Q-cogenerated right R-module is semi-finitely-copresented and Q is
w-Πf -quasi injective. Other similar results can be found in [2], [6], [8], [16].

We shall study dualities which are induced by modules which verify some condi-
tions which have the same flavor as those which appear in the definition of costar
modules [11], self-cotilting modules [20, 3.3], and in some generalizations for the
notion of self-tilting modules introduced in [18] and [19], adding some finiteness
conditions. These conditions are necessary to obtain dualities between full sub-
categories of some module categories. We recall that in the study of equivalences
between subcategories of module categories it is important that the R-module Q
under consideration is self-small since this condition implies that the right S-module
Hom(Q,Q(I)) is free for every set I. The dual condition “Hom(QI , Q) is free” is
valid only if I is a finite set or under some set theoretic conditions imposed to Q
and I (see [13]).

In the next section we shall introduce the notion of finitistic n-self-cotilting
module, we characterize these modules using a duality (Theorem 2.7). We show in
Example 2.9 and Example 2.11 that the notion “finitistic n-self-cotilting module” is
not connected, in the general case, to other notions which can be characterized using
dualities (w-Πf -quasi injective module, costar module or f -cotilting modules). The
main aim of the third section is to enunciate closure properties for the classes which
are involved in Theorem 2.7. In Proposition 3.2 it is proved that one of these classes
is a resolving class. This establish a connection between our setting and cotilting
theory as a consequence of [5, Theorem 2.2]. A new characterization for finitistic
n-self-cotilting modules is proved in Theorem 3.4. This result is dual, modulo a
finitistic condition, to Wei’s result [18, Theorem 3.5]. In Example 3.6 it is proved
that this finitistic condition is not superfluous. At the end of the paper we consider
finitely generated finitistic n-self-cotilting modules over finite dimensional algebras
over fields. In Proposition 4.2 we present some connections between n-cotilting
modules and finitistic n-self-cotilting modules. From this proposition we deduce
that for every integer n > 0 there exists a finitistic (n + 1)-self-cotilting module
which is not a finitistic n-self-cotilting module.
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2. Finitistic n-self-cotilting modules

We say that an R-module L is n-finitely Q-copresented whenever there exists a
long exact sequence

0 → L
α0→ QX0 α1→ QX1 α2→ . . .

αn−1→ QXn−1

such that Xi are finite sets for all i ∈ {0, . . . , n − 1}. The class of all n-finitely
Q-copresented modules is denoted by n-cop(Q). Note that 1-cop(Q) is the class
of all finitely Q-cogenerated modules, and it is denoted by cog(Q). We recall that
2-finitely Q-copresented modules are studied in [2], [3] and [6]. If S is a ring, a left
S-module A is n-finitely presented if there exists an exact sequence

SYn−1 → · · · → SY0 → A → 0

such that Yi are finite sets for all i ∈ {0, . . . , n− 1}, and FPn(S) denotes the class
of all n-finitely presented modules left S-modules. The intersection

⋂∞
n=1 FPn(S)

is denoted by FP∞(S). Of course, FP1(S) is the class of all finitely generated left
S-modules, and FP2(S) is in fact the class of all finitely presented left S-modules.

Let Q be a right R-module. As in [1], a short exact sequence of right R-modules

0 → K → L → M → 0

is called Q-cobalanced if the induced sequence

0 → ∆(M) → ∆(K) → ∆(L) → 0

is exact. The right R-module Q is n-wf -quasi-injective if every exact sequence in
Mod-R

0 → L → QX → M → 0
with M ∈ n-cop(Q) and X a finite set is Q-cobalanced.

Definition 2.1. We say that a right R-module Q is a finitistic n-self-cotilting module
if it is n-wf -quasi-injective and n-cop(Q) = (n + 1)-cop(Q).

Example 2.2. Every torsion quasi-injective abelian group is a finitistic 1-self-
cotilting Z-module.

Proof. A torsion abelian group Q is quasi-injective if and only if for every prime
p the p-component Qp of Q has the form Qp

∼= ⊕
Ip
Z(pnp) with np ∈ N ∪ {∞},

where Ip is an index set. If Q is quasi-injective, it is not hard to deduce the
equality 1-cop(Q) = 2-cop(Q). Moreover, for every finite set X the Z-module QX

is also quasi-injective, hence every exact sequence 0 → L → QX → M → 0 is
Q-cobalanced. ¤

The following examples show that the conditions which define finitistic n-self-
cotilting modules are independent. Moreover, there exists a finitistic 2-self-cotilting
module which is not a finitistic 1-self-cotilting module.

Example 2.3. The rational group Q is an injective Z-module which is not a fini-
tistic 1-self-cotilting Z-modules, but it is a finitistic 2-self-cotilting Z-module.

Proof. Of course Z ∈ 1-cop(Q), but for every monomorphism α : Z→ QX (where X
is a finite set) the group Coker(α) is not torsion-free, hence it is not Q-cogenerated.
In fact, an abelian group is 2-finitely Q-copresented if and only if it is isomorphic
to a finite power of Q. ¤
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Example 2.4. If we consider the Z-module Q = Z(2) ⊕ Z(4) then 1-cop(Q) =
2-cop(Q), but Q is not 1-wf -quasi-injective.

Proof. If X is a finite set then every factor group M of QX is a finite 2-group which
is bounded by 4, hence it is isomorphic to a finite direct sum of copies of Z(2) and
Z(4). It follows that we can embed M in a finite power of Z(4), and we obtain
1-cop(Q) = 2-cop(Q). But Q is not quasi-injective, hence there exists an exact
sequence 0 → L → Q → M → 0 which is not Q-cobalanced and M ∈ 1-cop(Q),
hence Q is not 1-wf -quasi-injective. ¤

To characterize finitistic n-self-cotilting modules using a duality theorem we need
the following left orthogonal classes:

⊥<nQ = {A ∈ S-Mod | Exti
S(A,Q) = 0 for all 0 < i < n}

and
⊥Q = {A ∈ S-Mod | Exti

S(A, Q) = 0 for all 0 < i < ω}.
We start with two useful lemmas.

Lemma 2.5. If M ∈ Refl(QR) such that ∆(M) ∈ ⊥<nQ ∩ FP(n+1)(S), then M ∈
(n + 1)-cop(QR).

Proof. Let
SXn → SXn−1 → · · · → SX0 → ∆(M) → 0

be a free resolution such that the sets Xi are finite for all i ∈ {0, . . . , n}. Because
∆(M) ∈ ⊥<nQ we obtain the exact sequence

0 → ∆2(M) → ∆(SX0) → · · · → ∆(SXn)

and this completes the proof since ∆(SXi) ∼= QXi for all i ∈ {0, . . . , n}, and M ∼=
∆2(M). ¤

Lemma 2.6. Suppose that n-cop(QR) ⊆ Refl(QR) and

(?) ∆(n-cop(QR)) ⊆ ⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ) ⊆ Refl(SQ).

Then Q is n-wf -quasi-injective.
The same conclusion is valid if we replace the condition (?) with

(?′) ∆(n-cop(QR)) ⊆ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) ⊆ Refl(SQ).

Proof. Let 0 → M
α→ QX β→ N → 0 be an exact sequence such that X is a finite

set and N ∈ n-cop(QR). If A = Im(∆(α)) then it is enough to prove that A is
reflexive as a consequence of [12, Lemma 4.2.4].

From the exact sequence 0 → ∆(N) → ∆(QX)
∆(α)→ A → 0 we obtain that

A ∈ FP(n+1)(S) since ∆(N) ∈ FP(n+1)(S). Moreover A ∈ Cog(SQ) since it is a
submodule of the Q-cogenerated module ∆(M), so, under the hypothesis (?), it is
enough to prove the claim A ∈ ⊥<nQ. Using the long exact sequence

0 →∆(A) → ∆2(QX)
∆2(β)→ ∆2(N) →

→Ext1S(A, Q) → Ext1S(∆(QX), Q) → Ext1S(∆(N), Q) → . . .

we observe that this claim is equivalent to the equality Ext1S(A, Q) = 0 since
Exti

S(∆(QX), Q) = Exti
S(SX , Q) = 0 and Exti

S(∆(N), Q) = 0 for all 0 < i < n, by
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hypothesis. In fact it is enough to prove that ∆2(β) is an epimorphism. In order
to prove this, we consider the commutative diagram

QX β−−−−→ N −−−−→ 0

δQX

y δN

y

∆2(QX)
∆2(β)−−−−→ ∆2(N)

in which the top sequence is exact and all vertical arrows are isomorphisms.
Under the hypothesis (?′) the proof can be transferred verbatim. ¤

Theorem 2.7. The following are equivalent for a right R-module Q, with the en-
domorphism ring S, and an integer n > 0.

a) Q is a finitistic n-self-cotilting module;
b) ∆ : n-cop(Q) À ⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ) : ∆ is a duality.
c) ∆ : n-cop(Q) À ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) : ∆ is a duality.

Under these conditions we have
⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ) = ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ).

Proof. a)⇒b) Since we shall use this part of the proof to obtain other consequences
as well, we split it in two steps.

Step I. We will prove that the functor ∆ = HomR(−, Q) is well defined, and
n-cop(Q) ⊆ Refl(QR).

Let M ∈ n-cop(Q). Then M ∈ (n + 1)-cop(Q), hence there exists an exact
sequence

0 → M
α→ QX β→ N → 0

such that X is a finite set and N ∈ n-cop(Q). Since Q is n-wf -quasi-injective, the
sequence

0 → ∆(N)
∆(β)→ ∆(QX)

∆(α)→ ∆(M) → 0

is exact, so the diagram

0 −−−−→ M
α−−−−→ QX β−−−−→ N −−−−→ 0

δM

y δQX

y δN

y

0 −−−−→ ∆2(M)
∆2(α)−−−−→ ∆2(QX)

∆2(β)−−−−→ ∆2(N)

is commutative and with exact sequences. From the Ker-Coker Lemma and the
fact that M and N belong to n-cop(Q) (hence δM and δN are monomorphisms),
we obtain that M is reflexive. Therefore n-cop(Q) ⊆ Refl(Q).

It follows that δN is an isomorphism. This implies that ∆2(β) is an epimorphism
and it follows that Ext1S(∆(M), Q) = 0 for all M ∈ n-cop(Q). Applying this
result to N together with the isomorphism Ext1S(∆(N), Q) ∼= Ext2S(∆(M), Q), we
obtain Ext2S(∆(M), Q) = 0 for all M ∈ n-cop(Q) and inductively, using the same
technique, it follows that Exti

S(∆(M), Q) = 0 for all i > 0. Therefore ∆(M) ∈
⊥<nQ for all M ∈ n-cop(Q).

Since n-cop(Q) = (n + 1)-cop(Q), there exists a long exact sequence

0 → M
α0→ QX0 α1→ QX1 α2→ . . .

αn→ QXn
αn+1→ QXn+1
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such that Xk are finite sets and Im(αk) ∈ n-cop(Q) for all k ∈ {0, . . . , n + 1}. For
every k ∈ {0, . . . , n} we consider the exact sequence

0 → Im(αk) → QXk → Im(αk+1) → 0

and we observe that it is Q-cobalanced since Q is n-wf -quasi-injective. Moreover
M ∼= Im(α0), hence we obtain a long exact sequence

∆(QXn)
∆(αn)→ ∆(QXn−1)

∆(αn−1)→ . . .
∆(α1)→ ∆(QX0)

∆(α0)→ ∆(M) → 0

which shows that ∆(M) ∈ FP(n+1)(S). Consequently, the functor

∆ : n-cop(Q) →⊥<n Q ∩ FP(n+1)(S) ∩ Cog(SQ)

is well defined.
Step II. We prove that ∆ = HomS(−, Q) is well defined and we have the

inclusion ⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ) ⊆ Refl(SQ).
First we suppose n > 1. Let A ∈ ⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ). It follows

that there exists an exact sequence 0 → B → SY → A → 0 with Y a finite
set and B ∈ FPn(S). Moreover Exti

S(B, Q) = 0 for all i ∈ {1, . . . , n − 2} since
Exti

S(A,Q) = 0 for all i ∈ {1, . . . , n− 1}. If

SYn−1 → · · · → SY0 → B → 0

is an exact sequence such that Yk are finite sets for all k ∈ {0, . . . , n − 1} then it
induces the long exact sequence

0 → ∆(B) → ∆(SY0) → · · · → ∆(SYn−1)

which shows that ∆(B) ∈ n-cop(Q). The sequence

(]) 0 → ∆(A) → ∆(SY ) → ∆(B) → 0

is exact since Ext1S(A,Q) = 0 and we obtain ∆(A) ∈ n-cop(Q), hence the functor

∆ : ⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ) → n-cop(Q)

is well defined. Moreover the short exact sequence (]) is Q-cobalanced since Q is
n-wf -quasi-injective. Therefore the commutative diagram

0 −−−−→ B −−−−→ SY −−−−→ A −−−−→ 0

δB

y δSY

y δA

y
0 −−−−→ ∆2(B) −−−−→ ∆2(SY ) −−−−→ ∆2(A) −−−−→ 0

has exact rows; it follows that δA is an epimorphism. But A is Q-cogenerated by
the hypothesis, hence A ∈ Refl(SQ) and the proof is complete.

If n = 1 we need other arguments since in this case we have not Ext1S(A,Q) = 0.
The proof is almost the same. The only change is to replace the sequence (]) with
a sequence

(]′) 0 → ∆(A) → ∆(SY ) → K → 0
with K ≤ ∆(B). Since 1-cop(Q) is closed with respect submodules, we obtain
K ∈ 1-cop(Q), hence (]′) is Q-cobalanced.

b)⇒a) The equality n-cop(Q) = (n + 1)-cop(Q) is a consequence of Lemma 2.5,
and from Lemma 2.6 with the hypothesis (?) we deduce that Q is an n-wf -quasi-
injective module. The same argument is valid for c)⇒a), using this time Lemma
2.6 with the hypothesis (?′).
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To prove a)⇒c) we observe that in Step I we proved in fact that

∆(n-cop(Q)) ⊆ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ)

hence we have the equality
⊥<nQ ∩ FP(n+1)(S) ∩ Cog(SQ) = ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ)

as a consequence of b). ¤
If n = 1 then the class ⊥<1

SQ coincides with the class of all left S-modules,
1-cop(Q) is the class of all finitely Q-cogenerated modules, and FP2(S) is the class
of all finitely presented S-modules. Therefore we can reformulate Theorem 2.7 in
the following way:

Theorem 2.8. The following conditions are equivalent for a right module Q with
the endomorphism ring S:

a) Q is a finitistic 1-self-cotilting module;
b) ∆ : cog(Q) À FP2(S) ∩ Cog(SQ) : ∆ is a duality.

In these conditions FP2(S) ∩ Cog(SQ) ⊆ ⊥Q.

In the following we show that in the general case finitistic 1-self-cotilting modules
are not related to other kinds of modules (w-Πf -quasi-injective module, costar
modules or f -cotilting modules) which are involved in some dualities theorems (see
[11] and [20, Section 4]). In the next example we use an idea from [1].

Example 2.9. There exists a finitistic 1-self-cotilting Z-module which is not a
w-Πf -quasi-injective module, hence it is not costar nor f -cotilting.

Proof. Let Q =
⊕
ℵ1
Z be an (uncountable) free abelian group. Then for every

positive integer n the Z-module Qn is free and it is isomorphic to Q. Therefore
every 1-finitely Q-copresented Z-module is free hence it is isomorphic to a direct
summand of Q. Then 1-cop(Q) = 2-cop(Q). Moreover, every exact sequence
0 → L → Qn → M → 0 with M an 1-finitely Q-copresented splits since M is
free, hence every such a sequence is Q-cobalanced. It follows that Q is a finitistic
1-self-cotilting module.

To prove that Q is not a w-Πf -quasi-injective Z-module we consider a locally free
group G of cardinality ℵ1 which is not a free group (such a group is constructed
in [15]). Then G is a Q-cogenerated Z-module. Moreover, there exists an exact
sequence

(?) 0 → L → Q → G → 0.

If we suppose that (?) is Q-cobalanced it follows that it is a splitting sequence
because L is isomorphic to a direct summand of Q, and this implies that (?) is
L-cobalanced. Then G is a free module, a contradiction. Hence (?) is not Q-
cobalanced.

The Z-module Q is not a costar Z-module as a consequence of [11, Theorem 2.7
(e)], and it is not f -cotilting by [20, 3.12]. ¤
Remark 2.10. The cardinal number ℵ1 is the least cardinal m with the property that
Q =

⊕
m Z is a finitistic 1-self-cotilting module which is not a costar module. In

fact, using the same proof as in the previous example we can prove that Q =
⊕

m Z
is a finitistic 1-self-cotilting Z-module for every cardinal m and it is not a costar
module if m ≥ ℵ1. If m ≤ ℵ0 then we deduce that Q =

⊕
m Z is a costar module

using [14, Theorem 19.2].
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Example 2.11. There exists an injective cogenerator (hence a costar module or
an f -cotilting module) for Mod-Z which is not a finitistic 1-self-cotilting Z-module.

Proof. We consider the Z-module

Q = (
⊕

ℵ0

Q)
⊕

(
⊕

p∈P
Z(p∞)),

which is an injective cogenerator for Mod-Z. But Q is not a finitistic 1-self-cotilting
module since the group L =

⊕
ℵ0
Z ∈ 1-cop(Q) \ 2-cop(Q). This is a consequence

of the fact that for every monomorphism α : L → Qn and for every prime p the
p-socle Coker(α)[p] has infinite cardinality, hence Coker(α) cannot be embedded in
a finite power of Q.

Using again [11, Theorem 2.7] and [20, 3.12] we deduce that Q is a costar modules
and an f -cotilting module. ¤

From [20, 4.10] we deduce the following

Corollary 2.12. If Q is a right R-module such that its endomorphism ring S is
left noetherian then Q is a finitistic 1-self-cotilting module if and only if it is an
f -cotilting module.

3. Closure properties

In this section we study some closure properties for the class n-cop(Q) and for
the class ⊥Q∩FP(n+1)(S)∩Cog(SQ), where Q is a finitistic n-self-cotilting module.

Lemma 3.1. Let Q be a finitistic n-self-cotilting module. Then ⊥Q∩FP(n+1)(S)∩
Cog(SQ) ⊆ FP∞(S).

Proof. If Q is a finitistic n-self-cotilting module then Q is finitistic (n + k)-self-
cotilting for every integer k > 0. Using Theorem 2.7 and the equalities n-cop(Q) =
(n + k)-cop(Q) we obtain

⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) = ⊥Q ∩ FP(n+k+1)(S) ∩ Cog(SQ)

for all k > 0. The conclusion is now obvious. ¤

We recall that a class C of finitely generated modules is resolving if C contains
all finitely generated projective modules, and it is closed with respect to direct
summands, extensions, and kernels of epimorphisms.

Proposition 3.2. The class ⊥Q∩FP(n+1)(S)∩Cog(SQ) is a resolving class when-
ever Q is a finitistic n-self-cotilting module.

Proof. Obviously, ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) contains all finitely generated pro-
jective left S-modules. Using [9, Exercise VIII 4.2] we obtain that FP(n+1)(S) is
closed under direct summands, hence ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) has the same
property.

Let 0 → A → B → C → 0 be an exact sequence with A,C ∈ ⊥Q∩FP(n+1)(S)∩
Cog(SQ). It is easy to see that B ∈ ⊥Q ∩ Cog(SQ). Moreover, B ∈ FP∞(S) as a
consequence of A,C ∈ FP∞(S) and [10, Proposition V.2.2].

By [5, Lemma 1.1] it is enough to prove that if 0 → A → P → B → 0 is an exact
sequence of left S-modules such that P is finitely generated projective module and
B ∈ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) then A ∈ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ). But
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this is obvious (for A ∈ FP(n+1)(S) we use [9, Proposition VIII. 4.3] together with
B ∈ FP(n+2)(S)). ¤

Since Refl(QR) and ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) are closed under direct sum-
mands we can enunciate a first result concerning closure properties of n-cop(Q).

Proposition 3.3. If Q is a finitistic n-self-cotilting module, then n-cop(Q) is closed
under direct summands.

The following theorem dualizes results obtained in [18] for n-star modules. How-
ever, since in [18, Theorem 3.5] finiteness conditions are not imposed, in the fol-
lowing characterization we need an extra condition.

Theorem 3.4. The following conditions are equivalent for a right R-module Q and
an integer n > 0.

a) Q is a finitistic n-self-cotilting module;
b) i) An exact sequence 0 → L → QX → N → 0 with L ∈ n-cop(Q) and X

a finite set is Q-cobalanced if and only if N ∈ n-cop(Q),
ii) ∆(n-cop(Q)) ⊆ FP1(S).

Proof. a)⇒b) Let
(?) 0 → L → QX → N → 0

be an exact sequence of right R-modules such that L ∈ n-cop(Q) and X is a finite
set. If N ∈ n-cop(Q) then (?) is Q-cobalanced by definition.

Now suppose that (?) is Q-cobalanced. In the exact sequence

(∆(?)) 0 → ∆(N) → ∆(QX) → ∆(L) → 0

all modules belong to ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) as a consequence of Theorem
2.7 and Proposition 3.2. Then ∆(?) is Q-cobalanced and using the obvious com-
mutative diagram obtained applying ∆ to ∆(?) we obtain that N is Q-reflexive.
Moreover ∆2(N) ∈ n-cop(Q), hence N ∈ n-cop(Q).

Therefore i) is valid and ii) is a consequence of Theorem 2.7.
b)⇒a) It is enough to prove n-cop(Q) = (n + 1)-cop(Q). If N ∈ n-cop(Q) then

the S-module ∆(N) is finitely generated. As a consequence of [12, Lemma 4.2.3],
there exists a Q-cobalanced exact sequence

0 → N → QX → M → 0

with X a finite set. Then M ∈ n-cop(Q), hence N ∈ (n + 1)-cop(Q). ¤

Remark 3.5. The proof for a)⇒b) can be obtained using a dual form of the proof
for [18, Theorem 3.5] and Proposition 3.3.

Example 3.6. a) There exists a module which verifies the condition i) in Theorem
3.4, but it does not satisfy ii).

b) There exists a module which verifies the condition ii) in Theorem 3.4, but it
does not satisfy i).

Proof. a) We consider the Z-module Q = 〈 1
p | p ∈ P〉 ≤ Q, where P is the set of all

primes. Suppose that
(?) 0 → L → QX → M → 0

is an exact sequence with X a finite set. We recall from [14, Lemma 86.8] that M
is a torsion free abelian group (equivalently, the sequence (?) is pure) if and only if
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the sequence (?) splits, hence M ∈ 1-cop(Q) if and only if it is a torsion free group,
and in this situation the sequence (?) is Q-cobalanced as a splitting exact sequence.
Moreover, 1-cop(Q) ⊆ Refl(Q) as a consequence of Warfield duality, [17] (see also
[7, Theorem 1.15]).

Suppose that (?) is Q-cobalanced. Then we can embed it in a commutative
diagram

0 −−−−→ L −−−−→ QX −−−−→ M −−−−→ 0

δL

y δQX

y δM

y
0 −−−−→ ∆2(L) −−−−→ ∆2(QX) −−−−→ ∆2(M)

which has exact sequences. Applying the 3×3-Lemma we obtain that δM is monic,
hence M is a torsion-free abelian group. This is possible if and only if (?) splits,
hence M ∈ 1-cop(Q). Then Q verifies the condition i) in the previous theorem for
n = 1. But S = End(Q) ∼= Z, hence ∆(Z) ∼= Q is not a finitely generated S-module.

b) It is not hard to see that for n = 1, the Z-module Q verifies ii) but not i). ¤

The following propositions are dual to results presented in [18, Section 3].

Proposition 3.7. Let Q be a finitistic n-self-cotilting module.
a) n-cop(Q) is closed under kernels of epimorphisms.
b) Suppose that (?) 0 → L → M → N → 0 is an exact sequence of right R-

modules which is Q-cobalanced. If two of the terms of (?) belong to n-cop(Q)
then the third term is in n-cop(Q).

c) Every exact sequence 0 → L → M → N → 0 with L, M, N ∈ n-cop(Q) is
Q-cobalanced.

Proof. a) The proof is a dualization for the proof of [18, Lemma 3.2]. We give some
details for reader’s convenience.

If 0 → L → M
π→ N → 0 is an exact sequence such that M, N ∈ n-cop(Q) then

we can include it in a commutative diagram
0 0 0y

y
y

0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0y
yγ

y
0 −−−−→ QX −−−−→ QX ⊕QY −−−−→ QY −−−−→ 0y

y
y

0 −−−−→ L′ −−−−→ M ′ −−−−→ N ′ −−−−→ 0y
y

y
0 0 0

,

where 0 → M
α→ QX → M1 → 0 and 0 → N

β→ QY → N ′ → 0 are exact sequences
such that X,Y are finite sets, M1, N

′ ∈ n-cop(Q) (hence these exact sequences are
Q-cobalanced), and γ : M → QX ⊕ QY is defined by γ(m) = (α(m), βπ(m)). For
every R-homomorphism f : M → Q there exists a homomorphism f ′ : QX → M
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such that f = f ′α. If f : QX ⊕ QY → M , f(x, y) = f ′(x) then f = fγ, hence
the middle column is Q-cobalanced. It follows that M ′ ∈ n-cop(Q). Since N ′ ∈
n-cop(Q) the conclusion is obtained repeating the above proof.

b) If 0 → L → M → N → 0 is a Q-cobalanced exact sequence then we have the
exact sequence 0 → ∆(N) → ∆(M) → ∆(L) → 0 and the commutative diagram

(])

0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0y
y

y
0 −−−−→ ∆2(L) −−−−→ ∆2(M) −−−−→ ∆2(N)

,

which has exact rows.
If L,M ∈ n-cop(Q) then ∆(L), ∆(M) ∈ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ) and using

Proposition 3.2 we deduce ∆(N) ∈ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ), hence ∆2(N) ∈
n-cop(Q). Since ∆(L) ∈ ⊥Q ∩ FP(n+1)(S) ∩ Cog(SQ), the bottom sequence in
diagram (]) remains exact if we complete it with → 0 on the right side. Then N is
Q-reflexive, hence N ∈ n-cop(Q).

A similar proof is valid for the hypothesis L,N ∈ n-cop(Q).
If M, N ∈ n-cop(Q), the conclusion is a consequence of a).
c) As in the proof of a) we obtain a commutative diagram with exact sequences

0 0 0
y

y
y

0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0
y

y
y

0 −−−−→ QX −−−−→ QX ⊕QY −−−−→ QY −−−−→ 0
y

y
y

0 −−−−→ L′ −−−−→ M ′ −−−−→ N ′ −−−−→ 0
y

y
y

0 0 0
with L′,M ′, N ′ ∈ n-cop(Q). Therefore all columns and the middle row are Q-
cobalanced exact sequences. Applying the functor ∆ we obtain the commutative
square

∆(M) −−−−→ ∆(L)
x

x
∆(QX ⊕QY ) −−−−→ ∆(QX)

in which all vertical arrows and the bottom arrow are epimorphisms and the con-
clusion follows. ¤

Example 3.8. The Z-module Z is a finitistic 1-self-cotilting module, but in the
exact sequence 0 → 2Z → Z → Z(2) → 0, the first two terms belong to 1-cop(Z),
but Z(2) /∈ 1-cop(Z). A similar example can be obtained using the Z-module from
Example 3.6, a), which is a finitistic 2-self-cotilting module.
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Corollary 3.9. Let Q be a finitistic n-self-cotilting module and 0 → L → M →
N → 0 an exact sequence with L,N ∈ n-cop(Q). If M is an epimorphic image of
an n-finitely Q-copresented module then M ∈ n-cop(Q).

Proof. It is enough to prove that the exact sequence 0 → L → M → N → 0 is
Q-cobalanced. Let α : L → Q be a homomorphism. If K ∈ n-cop(Q) and K → M
is an epimorphism then we can construct a commutative diagram

0 −−−−→ L′ −−−−→ K −−−−→ N −−−−→ 0y
y

∥∥∥
0 −−−−→ L −−−−→ M −−−−→ N −−−−→ 0

in which the left square is a pushout. Observe that L′ ∈ n-cop(Q) by Theorem
3.7 a), hence the top row is Q-cobalanced. Hence, as in the proof of [20, 2.4],
the homomorphism L′ → L

α→ Q can be extended to K, and using the pushout
properties we deduce that we can extend α to a homomorphism M → Q. ¤

We remark that, in general, the class n-cop(Q) is not closed under extensions.

Example 3.10. The group Q = Z(2) is a finitistic 1-self-cotilting module, but
1-cop(Q) is not closed under extensions.

In the following proposition we characterize finitistic n-self-cotilting modules Q
such that the class n-cop(Q) is a resolving class. The proof is similar to the proofs
of [18, Proposition 3.6] and [20, 3.3]. We sketch it for the reader’s convenience.

Proposition 3.11. The following are equivalent for a right R-module Q and an
integer n > 0:

a) Q is a finitistic n-self-cotilting module such that the class n-cop(Q) is closed
under extensions.

b) n-cop(Q) = (n + 1)-cop(Q) ⊆ {M ∈ Mod-R | Ext1R(M,Q) = 0}.
c) ∆(n-cop(Q)) ⊆ FP1(S) and n-cop(Q) = {M ∈ C | Ext1R(M, Q) = 0},

where C is the class of all cokernels of monomorphisms between n-finitely
Q-copresented modules.

Proof. a)⇒b) Let M ∈ n-cop(Q). If (?) 0 → Q → L → M → 0 is an exact sequence
then its terms belong to n-cop(Q), hence it is Q-cobalanced. But this implies that
(?) splits.

b)⇒a) If (?) 0 → L → QX → N → 0 is an exact sequence with X a finite set
and N ∈ n-cop(Q), then Ext1R(N, Q) = 0}, hence (?) is Q-cobalanced. Then Q is
a finitistic n-self-cotilting module. Moreover, under the hypothesis b) every exact
sequence 0 → L → M → N → 0 with N ∈ n-cop(Q) stays exact under ∆, hence
n-cop(Q) is closed under extensions as a consequence of Proposition 3.7 b).

a, b)⇒c) The inclusion n-cop(Q) ⊆ {M ∈ C | Ext1R(M, Q) = 0} is obvious. Let
M ∈ C such that Ext1R(M, Q) = 0, and 0 → K → L → M → 0 an exact sequence
with K,L ∈ n-cop(Q). If 0 → K → QX → N with X a finite set and N ∈ n-cop(Q)
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is a Q-copresentation of K then, using a pushout, we obtain a commutative diagram
0 0y

y
0 −−−−→ K −−−−→ L −−−−→ M −−−−→ 0y

y
∥∥∥

0 −−−−→ QX −−−−→ P −−−−→ M −−−−→ 0y
y

N Ny
y

0 0

.

Observe that P ∈ n-cop(Q), since n-cop(Q) is closed with respect extensions,
and L,N ∈ n-cop(Q). Moreover, the exact sequence 0 → QX → P → M → 0
splits, hence M ∈ n-cop(Q).

c)⇒b) It is enough to prove the equality n-cop(Q) = (n + 1)-cop(Q). Let M ∈
n-cop(Q). Since ∆(M) is finitely generated as a left S-module, there exists a Q-
cobalanced exact sequence 0 → M → QX → N → 0, with X a finite set. Then
Ext1R(N, Q) = 0, since Ext1R(Q,Q) = 0. Moreover N ∈ C, hence N ∈ n-cop(Q) and
M ∈ (n + 1)-cop(Q). ¤

We close this section with a new closure property which generalizes Example 2.2.

Proposition 3.12. Let Q be a finitistic n-self-cotilting module. The following are
equivalent:

a) n-cop(Q) is closed under factor modules.
b) Q is a quasi-injective finitistic 1-self-cotilting module.

Proof. a)⇒b) Since the class n-cop(Q) is closed under kernels of epimorphisms, we
deduce that n-cop(Q) = 1-cop(Q), hence Q is a finitistic 1-self-cotilting module.
Moreover, every exact sequence 0 → L → Q → M → 0 is Q-cobalanced since Q is
1-wf -quasi-injective.

b)⇒a) We recall from [21, 17.11] that a module is quasi-injective if and only if
it is a fully invariant submodule of its injective hull. It follows that QX is quasi-
injective for all finite sets X.

Suppose that M ∈ 1-cop(Q), ι : L → M is a monomorphism, and α : L → Q is a
homomorphism. If ρ : M → QX is a monomorphism, where X is a finite set, then
there exists a homomorphism α : QX → Q such that α = αρι, hence the sequence
0 → L

ι→ M → M/ι(L) → 0 is a Q-cobalanced sequence. Using Proposition 3.7 we
deduce that M/ι(L) ∈ 1-cop(Q) and the proof is complete. ¤

4. Connections with cotilting

The main aim of this section is to prove that for every n > 0 there exists a
finitistic (n+1)-self-cotilting module which is not a finitistic n-self-cotilting module.
To obtain this we will use some cotilting theory. Recall that the right R-module Q
is an n-cotilting module if it has the following properties:
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(C1) id(Q) ≤ n;
(C2) Exti(QX , Q) = 0 for all integers i > 0 and all sets X;
(C3) There exists an injective cogenerator E and a long exact sequence 0 →

Qr → · · · → Q1 → Q0 → E → 0, where all Qk are isomorphic to direct
summands of direct products of copies of Q.

Bazzoni proved in [8, Theorem 3.11] that the right R-module Q is n-cotilting
if and only if n-Cogen(Q) = ⊥QR, where the class n-Cogen(Q) is defined as the
class n-cop(Q) deleting the condition “Xi are finite”, and ⊥QR = {M ∈ Mod-R |
Exti

R(M, Q) = 0 for all i > 0}. Moreover, in [4] and [8, Lemma 3.12] it is proved
that in the definition of n-cotilting modules the condition (C3) can be replaced by
⊥QR ⊆ Cogen(Q).

If k is a field, and Q is a finitely generated module over a finite dimensional
k-algebra R, then Cogen(Q) = Add(Q) by [12, Corollary 1.3.3], where Add(Q) is
the class of all direct summands of direct sums of copies of Q, hence we can replace
the condition (C2) by

(C2’) Exti(Q,Q) = 0 for all integers i > 0.
Moreover, we can transfer the proof presented in [4] (and in this case there

exists a finitely generated injective cogenerator), we observe that we can replace
the condition (C3) by

(C3’) ⊥QR ∩ FP1(R) ⊆ 1-cop(Q),
and we obtain a version of Bazzoni’s characterization [8, Theorem 3.11]:

Theorem 4.1. Let k be a field, Q a finitely generated right module over a finite
dimensional k-algebra, R, and n > 0 an integer. The following are equivalent:

a) ⊥QR ∩ FP1(R) = n-cop(Q);
b) Q is an n-cotilting module.

Proof. a)⇒b) Using a proof which is similar to the proof presented for [8, Lemma
3.9], using this time [12, Lemma 5.6.3] and [12, Lemma 4.2.3], we obtain that
Extn+1

R (M, Q) = 0 for all finitely generated R-modules M . If E is a (finitely
generated) injective cogenerator of Mod-R, we can construct a resolution 0 → Q →
EX0 → · · · → EXn−1 → N → 0, and using the dimension shifting formula we
deduce Ext1R(M,N) = 0 for all finitely generated modules M . Therefore, by Baer’s
criterium, N is injective, hence the injective dimension of Q is at most n. The
conditions (C2) and (C3’) are obvious.

b)⇒a) Let L ∈ ⊥QR ∩ FP1(R). Then ∆(L) is finitely generated, and there
exists a Q-cobalanced exact sequence 0 → L → QX → M → 0 with X a finite
set as a consequence of [12, Lemma 4.2.3] since L is Q-cogenerated. Hence M ∈
⊥QR ∩FP1(R) ⊆ 1-cop(Q). We can iterate this reasoning to obtain L ∈ n-cop(Q),
hence ⊥QR ∩ FP1(R) ⊆ n-cop(Q).

Conversely, let M ∈ n-cop(Q). Then there exists a long exact sequence

0 → M → QX0 → · · · → QXn−1 → N → 0

and it follows that Exti
R(M, Q) ∼= Extn+i

R (N, Q) = 0 for all i > 0. ¤

Theorem 4.2. Let k be a field, R a finitely dimensional k-algebra and Q a finitely
generated right R-module.

a) If Q is n-cotilting then it is a finitistic n-self-cotilting module.
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b) If Q is a finitistic n-self-cotilting module such that R ∈ n-cop(Q) then it is
an n-cotilting module.

c) If Q is an (n + 1)-cotilting module which is not n-cotilting, then Q is not a
finitistic n-self-cotilting module.

Proof. a) Let Q be a finitely generated right R-module. Then every finitely gen-
erated module which is Q-cogenerated is finitely Q-cogenerated as a consequence
of [12, Corollary 1.3.3]. Using this together with [8, Proposition 3.6], we obtain
n-cop(Q) = (n + 1)-cop(Q) ⊆ ⊥QR. Then Q is a finitistic n-self-cotilting module
as a consequence of Proposition 3.11.

b) Since R ∈ n-cop(Q), using Corollary 3.9 we deduce that n-cop(Q) is closed un-
der extensions. Hence n-cop(Q) = (n + 1)-cop(Q) ⊆ {M ∈ Mod-R | Ext1R(M, Q) =
0} by Proposition 3.11 b).

The rest of proof is dual to the proof of (4) ⇒ (1) in [18, Theorem 4.3]. We give
some details for reader’s convenience.

If M ∈ n-cop(Q) and . . .
αm+1→ Rkm → . . .

α1→ Rk0
α0→ M → 0 is a free reso-

lution of M then, inductively, Ker(αm) ∈ n-cop(Q) by Proposition 3.7 a), hence
Ext1R(Ker(αi), Q) = 0 for all i ≥ 0. Then Exti

R(M, Q) = 0 for all i ≥ 1, and it
follows that n-cop(Q) ⊆ ⊥QR ∩ FP1(R).

If M ∈ ⊥QR ∩ FP1(R), we consider a free resolution Rkn
αn−1→ . . .

α1→ Rk0
α0→

M → 0. Using a dual version of [18, Proposition 3.7] we obtain Ker(αn−1) ∈
n-cop(Q). Suppose that Ker(αn−i) ∈ n-cop(Q) for some i ∈ {1, . . . , n − 1}. Then
we have an exact sequence 0 → Ker(αn−i) → Rkn−i → Ker(αn−i−1) → 0, which
is Q-cobalanced since Ext1(Ker(αn−i−1), Q) = 0. Therefore, by Proposition 3.7,
Ker(αn−i−1) ∈ n-cop(Q). Then Ker(α0) ∈ n-cop(Q), and, using the same argument
as in the inductive step, we obtain M ∈ n-cop(Q). Then ⊥QR∩FP1(R) ⊆ n-cop(Q).

c) Using the previous theorem we obtain n-cop(Q) 6= ⊥QR ∩ FP1(R) = (n +
1)-cop(Q), hence Q is not a finitistic n-self cotilting module. ¤

Finally, we present connections between some standard notions and finitistic 1-
self-cotilting notion for the case R is a finite dimensional k-algebra. I am indepted
to Lidia Angeleri Hügel for her help to state these connections.

Proposition 4.3. Let R be a finite dimensional k-algebra and Q be a finitely
generated right R-module. We consider the following statements:

a) Q is a finitistic 1-self-cotilting module;
b) Q is a costar module;
c) Q is an f-cotilting module;
d) the dual module Homk(Q, k) is a ?-module.
e) Q is a finitely cotilting module;
f) Q is an cotilting module;

Then d) ⇔ e) ⇒ a) ⇔ b) ⇔ c). All these are equivalent if Q is a faithful module.

Proof. a), b) and c) are equivalent as a consequence of Corollary 2.12, [11, Theorem
2.7] and [20, 4.10]. The rest of proof is presented in [20, 3.7 and 3.9]. ¤

By [20, 3.9], we obtain the following

Example 4.4. Every semisimple module of injective dimension > 1 over a finite
dimensional algebra is a finitistic 1-self-cotilting module which is not a (1-) cotilting
module.



16 SIMION BREAZ

Acknowledgement. I like to thank to Professors Lidia Angeleri Hügel, Jan Trlifaj
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