

1

Quality-Driven Model Transformations: From Requirements
to UML Class Diagrams

Silvia Abrahão1, Marcela Genero2, Emilio Insfran1, José Ángel Carsí1
Isidro Ramos1 and Mario Piattini2

ISSI Research Group, Department of Information Systems and
Computation, Valencia University of Technology, Camino de Vera s/n,
26022, Valencia, Spain, {sabrahao, einsfran, pcarsi,
iramos}@dsic.upv.es

Alarcos Research Group, Department of Information Systems and
Technologies, University of Castilla-La-Mancha, Paseo de la
Universidad 4, 13071, Ciudad Real, Spain, {Marcela.Genero,
Mario.Piattini}@uclm.es

Abstract
Model-Driven Architecture (MDA) is a software engineering approach that
promotes the use of models and model transformations as primary development
artifacts. Usually, there are several ways to transform a source model into a
target model. Alternative target models may have the same functionality but
may differ in their quality attributes (e.g., understandability, modifiability). This
chapter presents an approach to deal with quality-driven model transformations.
Specifically, it focuses on a specific set of transformations to obtain UML class
diagrams from a Requirements Model. A set of alternative transformations are
identified, and the selection of the best alternative is done through a controlled
experiment. The goal of the experiment is to empirically validate which
alternative transformation produces the UML class diagram that is the easiest to
understand. This evidence can be further used to define high-quality
transformation processes, as it will be based on empirical knowledge rather than
on common wisdom and the intuition of the researchers and developers.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

2

1. Introduction
Nowadays, the software development community is moving towards model-
driven development processes whose goal is the development of software at a
higher level of abstraction based on models and model transformations. Within
this context, the Model-Driven Architecture (MDA) initiative (OMG, 2003) has
attracted interest from both the research community and software practitioners.
This approach comprises the use of models in all the steps of a software
development project, until the delivery of the software on a given platform.
A MDA development process basically transforms a platform-independent
model (PIM) into one or more platform-specific models (PSM), which are
transformed into code (code model – CM). The CM is just the actual code
generated from PSMs through transformation. Here, the goal is to decouple the
way, in which software systems are currently defined, which is dependant on
the technology they use (OMG, 2003).
A model transformation is a process of converting one model to another model.
A model may be transformed to several alternative models that may have the
same functionality but different quality attributes. For example, one model may
be more reusable while another model may be more comprehensive to its
stakeholders. Therefore, it is necessary to identify those transformations that
produce models with the desired quality attributes.
To cope with the problem of selecting alternative transformations, this chapter
presents an approach for quality-driven model transformations. The
mechanisms to choose the appropriate alternatives can greatly differ depending
on the nature and the domain of the transformations as well as the quality
perspective that is chosen. We focus on a set of transformations defined to
obtain UML class diagrams from a Requirements Model (Insfran, 2003).
Assuring quality in representing the system’s conceptual model from
requirements is particularly important, as the traceability between these models
is not properly dealt with. Moreover, a conceptual model of good quality can
help to minimize communication problems and misunderstandings of
requirements among the stakeholders.
The quality perspective that we are interested in is the pragmatic quality1
(Lindland, Sindre & Sølvberg, 1994). This quality category addresses the

1 There are two other types of quality according to Lindland et al.’s framework:
syntactic quality, which is the degree to which model contains flaws, and semantic
quality, which is the degree to which the model is valid (contains all statements in the
model that are correct and relevant to the problem domain) and complete (contains all
statements about the problem domain that are correct and relevant). For the purpose of
our work, we focus on the evaluation of the pragmatic quality of the models obtained
with alternative transformations, leaving the evaluation of the other quality perspectives
as a topic for future research.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

3

comprehension aspect of the model from the stakeholders’ perspective.
Pragmatic quality captures how the model has selected an alternative “from
among the many ways to express a single meaning”, and it essentially deals
with making the model easy to understand.
The comprehension goal specifies that all audience members (or interpreters)
completely understand the statements in the model that are relevant to them.
This is an import quality attribute since it is recognized as one of the main
factors that influences maintainability (Selic, 2003) (Otero & Dolado, 2004)
(Reinhartz-Berger & Dori, 2005) (Genero et al., 2005; 2007). A UML class
diagram must first be understood before any desired changes to it can be
identified, designed, or implemented. In terms of the Lindland et al. framework,
improving pragmatic quality means increasing the degree of correspondence
between the set of statements in the model and the set of statements that the user
thinks the model presents (i.e. their understanding of the model).
Therefore, our main goal is to empirically evaluate which of the alternative
transformations produces the UML class diagram that is easiest to understand.
This evidence can be further used to define high-quality transformation
processes, as it will be based on empirical knowledge rather than on common
wisdom and the intuition of the researchers and developers.
The structure of the chapter is as follows. Section 2 presents the state-of-the-art
for quality in model-driven development. Section 3 describes how UML class
diagrams can be obtained from a Requirements Model using different
transformation alternatives. This section also shows the definition of these
transformations using QVT and their execution in a platform for model
management called MOMENT. Section 4 describes the design and the results of
the experiment carried out to empirically validate the selection of the alternative
transformations according to the ‘understandability’ quality attribute. Section 5
describes our conclusions. Finally, section 6 presents a discussion on future
research directions.

2. State-of-the-Art of Quality for Model-Driven Software Development
In the last few years, some proposals that deal with the quality of model
transformations from the perspective of a quality attribute have been proposed.
An organized chronological summary of these studies is presented in Table 1.
Zou and Kontogiannis (2003) proposed a quality-driven reengineering
framework for object-oriented migration. Analysis tools, transformation rules,
and non-functional requirements for the target migration systems characterize
this framework. During the migration process, the source-code transformation
rules are associated with quality features of the target system (i.e., coupling and
cohesion). This approach was applied to transform a set of gnu AVL libraries
into an UML class diagram.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

4

Table 1. Comparison of approaches for quality in model-driven development

Proposal Purpose Type of
Transformation

Input
Artifact

Quality
attributes

Automation

Zou and
Kontogiannis,
2003

Reverse
engineering
(migration)

Vertical
(CM-to-PIM)

Program code Coupling and
cohesion

No

Rottger and
Zschaler, 2004

Refinement Horizontal Context
Models

Response Time Partial

Merilinna,
2005

Refactoring Horizontal (PIM-
to-PIM)

Architectural
models

Performance,
availability,
reliability,
maintainability,
modifiability
and reusability

Yes

Kurtev, 2005 Synthesis Vertical
(PIM-to-PIM)

UML class
models

Adaptability Yes (Mistral)

Markovic and
Baar, 2005

Refactoring Horizontal (PIM-
to-PIM)

UML class
models

Syntactical
correctness

No

Sottet et al.,
2006

– – Interface
models

Compatibility,
error
protection,
homogeneity-
consistency

No

Ivkovic and
Kontogiannis,
2006

Refactoring Horizontal (PIM-
to-PIM)

Architectural
models
expressed in
UML

Maintenance,
performance
and security

No

Kerhervé et
al., 2006

Synthesis,
refinement

Horizontal and
Vertical

Information
models

Response time,
network delay,
network
bandwidth

No

(–) means that the proposal does not provide this information

Röttger and Zschaler (2004) proposed an approach for refining non-functional
requirements based on the definition of context models and their
transformations. This approach has been defined in a software development
process that separates the roles of the measurement designer and the application
designer. It is the measurement designer’s responsibility to specify
measurements, context models and transformations among these models. Then,
the application designer can apply the transformations when developing a
system. Röttger and Zschaler defined a XML-based language for the
specification of transformations between abstract and concrete context models.
The transformations used the response time quality attribute.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

5

Merilinna (2005) proposed a tool for quality-driven model transformations for
software architectures. Two types of quality attributes are considered: attributes
related to software execution (e.g., performance, availability, reliability) and
attributes related to software evolution (e.g., maintenance, modifiability,
reusability). The transformations are described according to MDA and a
proprietary transformation rule language. The approach only considers
horizontal transformations (PIM-to-PIM transformations).
Kurtev (2005) proposed a formal technique for the definition of transformation
spaces that support the analysis of alternative transformations for a given source
model. This technique provides operations for the selection and reduction of
transformation spaces based on certain desirable quality properties of the
resulting target model. Specifically, this approach deals with the adaptability of
model transformations. To generate the transformation space, the process takes
a source model and its metamodel, the target metamodel, and the quality
properties as input. The proposal has been applied to a set of transformations to
obtain XML schemas from UML class diagrams.
Markovic and Baar (2005) defined a set of transformation rules for the
refactoring of UML class diagrams. The rules have been defined using the
Query/View/Transformation (QVT) standard of OMG (OMG, 2005). The
refactoring is applied to UML class diagrams containing annotated OCL
constraints that are preserved when the transformations are applied. Therefore,
the syntactical correctness of the target model is preserved.
Similar to this proposal, Ivkovic and Kontogiannis (2006) presented an
approach for the refactoring of software architectures using model
transformations and semantic annotations. In this approach, the architectural
view of a software system is represented as a UML profile with its
corresponding stereotypes. Then, the instantiated architectural models are
annotated using elements of the refactoring context, including soft goals,
metrics, and constraints. Finally, the actions that are most advisable for a
refactoring context are applied after being selected from a set of possible
refactorings. The proposal has been applied to a case study to demonstrate that
the refactoring transformations improve the maintenance, performance and the
security of a software system.
Sottet et al. (2006) proposed an approach for model-driven mappings for
embedding the description and control of usability. A mapping describes a
model transformation that preserves properties. The mapping properties provide
the designer with a means for both selecting the most appropriate
transformation and previewing the resulting design. A case study that illustrates
an application of the mapping metamodel using usability criteria (compatibility,
error protection, and homogeneity-consistency) was presented.
Kerhervé et al. (2006) proposed a general framework for quality-driven delivery
of distributed multimedia systems. The framework focuses on Quality of

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

6

Services (QoS) information modeling and transformations. The transformations
between models express the relationships among the concepts of the different
quality information models. These relationships are defined in quality
dimensions and are used to transform instances of a source model to a target
model. Different types of transformations are applied to different layers and
services: vertical transformations are applied to transform information between
the different layers (user, service, system, and resource), and horizontal
transformation are applied to interchange information between services of the
same layer.
In summary, some proposals focus on defining horizontal transformations for
model refactoring (Merilinna 2005) (Markovic & Baar 2005) (Ivkovic &
Kontogiannis 2006). Other proposals are aimed at providing vertical
transformations for model refinement (Rottger & Zschaler, 2004), synthesis
(Kerhervé et al., 2006) (Kurtev, 2005), or reverse engineering (Zou &
Kontogiannis, 2003). Of these studies, only the one by Kurtev (2005) presents a
more systematic approach for selecting alternative transformations according to
a given quality attribute.
All these approaches propose quality criteria that can be used to drive the
transformations, but very few of these approaches (Kurtev, 2005) (Markovic &
Baar, 2005) illustrate them by means of practical examples. With the exception
of Markovic and Baar (2005) and Kurtev (2005), the transformations are poorly
defined. Therefore, more systematic approaches to ensure quality in MDA
processes are needed. Another weakness of these proposals is that they are not
empirically validated. The practical applicability of model transformations is
reported based on the intuition of the researcher. As pointed out by Czarnecki
and Helsen (2006), there is a lack of controlled experiments to fully validate the
observations made by the researchers.

3. A Quality-Driven Model Transformation Approach
This section presents a systematic approach to ensure quality in model-driven
development processes. It takes a different approach to drive the selection of
transformations, which is to empirically validate the selection of alternative
transformations through controlled experiments. The rationale of this approach
is to be able to automatically select the alternative transformation that an
experienced software developer would select if the transformation process were
manually applied.
In order to operationalize this approach, we propose the use of quality attributes
to drive the selection of the most appropriate alternative transformation that
contributes to the improvement of the target model according to a given quality
attribute. A quality attribute is a measurable physical or abstract property of an
entity (i.e., a conceptual model) (ISO, 2001).

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

7

Currently, our controlled experiments are oriented to empirically validating the
selection of the alternative transformation that maximizes the
‘understandability’ quality attribute. Fig. 1 presents an overview of our quality-
driven model transformation approach.

Fig. 1. Quality-driven model transformation approach

According to Fig. 1, a transformation is executed taking a transformation
definition as input. A transformation definition contains transformation rules
that relate constructs in the source model to constructs in the target model.
These rules can be represented using the Query-View-Transformations (QVT)
language proposed by the Object Management Group (OMG, 2005).
Another input for the transformation process is the definition of the quality
attributes together with the corresponding empirical evidence gathered from the
controlled experiments. This information will feed the transformation process
with the criteria to choose the alternative transformation that maximize the
selected quality attribute. Our final objective is to execute these transformations
in a platform for Model Management called MOMENT (Boronat, Carsí &
Ramos, 2005; 2006).
The following sections show a specific domain for applying our quality-driven
model transformation approach using a Requirements Model as source model, a
UML class diagram as target model, and “understandability” as the quality
attribute to drive the transformations.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

8

4. Transforming Requirements Models into UML Class Diagrams
The Requirements Model (Insfran, 2003) (Insfran, Pastor & Wieringa, 2002)
defines the structures and the process followed to capture the software
requirements. It is composed of a Functions Refinement Tree (FRT) to specify
the hierarchical decomposition of the system, a Use Case Model to specify the
system communication and functionality, and Sequence Diagrams to specify the
required object-interactions that are necessary to realize each Use Case.
Consequently, as only functional software requirements are gathered (business
requirements are excluded), the Requirements Model can be placed at the PIM
level. The Requirements Model is supported by a Requirements Engineering
Tool2 (RETO).
Following a MDA strategy of model transformation, once the Requirements
Model has been specified, a conceptual model including a UML class diagram
can be obtained by applying a set of transformation rules from a Transformation
Rules Catalog3 (Insfran, 2003). These transformations establish traceability
relationships between the Requirements Model and the UML class diagrams.
According to the MOF terminology, the Requirements Model and the UML
class diagram are located in the M1 level and their metamodels are located in
the M2 level. The definition of a transformation is performed at the M2 level
and implies that “a certain structural pattern is identified in the source model
(Requirements model), which corresponds to a valid structure in the target
model (UML class diagram)”.
Fig. 2 describes a simplified traceability relationship map to go from the set of
specified requirements to specific elements in the conceptual schema. These
traceability relationships may be simple (one-to-one relationships). For
example, the generation of classes for the UML class diagram is a process that
is based on the analysis of participating actors and classes in all the Sequence
Diagrams. It includes the application of the following Transformation Rules
(TR), stated here in natural language:

• TR 1. For every distinct actor class participating in any Sequence
Diagram, a class will be generated in the UML class diagram.

• TR 2. For every distinct class participating in any Sequence Diagram, a
class will be generated in the UML class diagram.

• TR 3. The boundary classes (usually called Interface or System) in
Sequence Diagrams will not have an explicit representation in the UML
class diagram.

2 RETO web site: http://reto.dsic.upv.es
3 The Transformation Rules Catalog can be found in
http://www.dsic.upv.es/~einsfran/thesis

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

9

However, the traceability relationships can also be many-to-many relationships.
This is due to the variability of the transformations, which allows multiple
possible representations in the UML class diagram that satisfy a given
requirement pattern identified in the Requirements Model. If this occurs, a
single alternative mapping must be properly selected according to some
predefined quality attribute.

Fig. 2. Traceability from Requirements to Conceptual Models

Subsection 4.1 and 4.2 briefly introduce the requirements and the UML class
diagram metamodels. The remainder of the section focus on transformations
that have multiple valid representations in the UML class diagram that satisfy a
given requirement pattern.

4.1 The Requirements Metamodel

Metamodeling is a key concept of the MDA paradigm and is used in Software
Engineering (SE) to describe the basic abstractions that define the models and
their relationships. A metamodel can be viewed as a class model whose classes
and associations encode the concepts of the model and the relationships among
them. The Meta Object Facility (MOF) (OMG, 2004) provides a framework for
defining a metamodel and querying and manipulating the resulting models.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

10

Fig. 3 shows an excerpt of the relevant parts of the Requirements Metamodel
used as source in the transformation process. The Use Case class represents the
functions of the system. Each Use Case is specified in detail by means of one or
more Sequence Diagrams. Sequence Diagrams are composed mainly of Entities
and Messages. We distinguish three types of Entities when describing a
Sequence Diagram: Actor, Interface and Class. Actor represents the users of the
Use Case (and may or may not be a class); Interface represents the boundary
among the actors and the internal classes of the system; Class represents the
different entity classes that participate in the realization of the Use Case.
Finally, in order to characterize the different nature of interaction between
objects, we identify four types of messages: Signal, Service, Query, and
Connect. Signal messages represent the interaction between actors and the
interface. Service messages represent object interactions with the purpose of
modifying the system (creation, deletion or update). Query messages represent
object interactions to query the state of an object or a set of objects. Connect
messages represent object interactions to establish a relationship between them.

Fig. 3. Requirements Metamodel

4.2 The UML Class Diagram Metamodel

Once the source metamodel is defined, the UML target metamodel (OMG,
2006) must also be defined. At least three alternatives are possible:
• To use the UML2 metamodel directly. This has the advantage that the result

can be used by all the tools that use this metamodel. However, the problem

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

11

is the size of the metamodel and its complexity. The use of the UML2
metamodel makes transformation rules difficult to specify and understand.

• To use the Ecore metamodel. This has the advantage that many tools
directly use this metamodel, and it is also very well integrated in the Eclipse
environment (www.eclipse.org). However, we could not represent two of
the three types of relationships (association class and aggregation) that we
needed to generate in this metamodel.

• To use the class diagram metamodel defined in the MOF QVT Final
Adopted Specification (OMG, 2005). This metamodel is well known,
simple, and it has the advantage that it can specify almost all the
characteristics that are needed.

Finally, we decided to use a modified version of the class diagram of the MOF
QVT specification, which we refer to as UMLite.
Fig. 4 shows the modified UMLite metamodel. The main part of the metamodel
is the same as the metamodel defined in the QVT specification (OMG, 2005). A
Package is formed by a set of PackageElements. Usually, an information
system is formed by a set of Packages. A PackageElement can be a Classifier
or a Relationship. Classifier is the generic name given to everything that can
have attributes and operations. PrimitiveDataTypes and Classes are both
Classifiers. The class PrimitiveDataType defines the Abstract Data Types used
in the definition of a system. Typical PrimitiveDataTypes are integers, doubles,
strings, and so on. Instances of the Class class will belong to a specific
Package. A Class is formed by a set of Attributes. Each one of the Attributes
has a name inherited from UMLModelElement (in fact, everything has a name
because every class inherits from the UMLModelElement class) and its type
must be a Classifier that was previously defined. The IS-A relationship between
classes is maintained with the reflexive association relationship defined in the
Class class. The Relationship class defines the relationships that can exist
between two classes (the source and the destination classes).
In order to be able to define the characteristics of relationships between classes,
two modifications have been added to the metamodel:
• An attribute named kind in the Relationship class to express the kind of

relationship between two classes (association, aggregation, or composition).
• A new relationship between the Relationship and Class classes to express

that a relationship has an association class.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

12

Fig. 4. The UMLite Metamodel

Even though there are no tools that use UMLite as their metamodel, it is still
useful. Since the main concepts of UMLite are almost the same as the concepts
in Ecore and UML2, they can be easily transformed to these metamodels.

4.3 Defining Alternative Transformations using QVT

This subsection shows how some alternative transformations for a requirement
specification generate different UML class diagrams. Although not all the
possibilities are fully explained due to space limitations, it is possible to see
that, given a requirement specification, a set of conceptual model solutions can
be identified. The example used to illustrate these alternative transformations is
taken from the specification of a Car Rental system.
A Sequence Diagram is used to specify the necessary object interactions to
realize the Use Case Create Insurance that is initiated by the Administrator
actor. This Use Case represents the creation of a car Insurance policy that must
be bought from an Insurance Company and assigned to the Car before using the
car for rentals. Fig. 5 shows the Sequence Diagram for the Use Case Create
Insurance. After introducing the necessary data and checking the existence of
the corresponding car, a new Insurance object is created (messages 1 to 5). In
addition, an Insurance Company object and a Car object must be connected to
the new created Insurance policy (messages 6 and 7).

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

13

Fig. 5. Sequence Diagram showing the required interactions for the Use Case
Create Insurance

In our approach, this information is used to transform the requirements
specification into a UML class diagram4 following an MDA approach. It is
important to remark that, for an automated transformation process to be
considered useful, it must make decisions about which transformations are more
suitable to produce the expected result by the analyst or a result that maximizes
a quality attribute (in our case the understandability attribute).
The analysis of the requirement specified as object interactions shown in Fig. 5
indicates that the messages 6 and 7 satisfy the transformation rule TR 15:

• TR15: For every message between two classes labeled with the
stereotype «connect», THEN an association relationship will be
generated.

As a result, this transformation rule is applied twice. This means that two
association relationships are established in the target model: one from Insurance
to Car and another from Insurance to InsuranceCompany (Fig. 6a, association).
An association relationship indicates a connection (link) between two classes.

4 The generated UML class diagram can later be modified according to traceability rules
(strong and weak traceability), which are explained in (Insfran, 2003).

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

14

Fig. 6. Partial UML class diagram for the analyzed Sequence Diagram

Alternatively, there are other interpretations to the object interactions shown in
Fig. 5. As a second alternative, the new created object Insurance can be
represented as a component of both the Insurance Company compound class
and the Car compound class (Fig. 6b, aggregation). This is because an
aggregation is a special form of an association, specifying a whole-part
relationship between two objects. This means that there is a connection between
classes but also implies an additional semantics which indicates that an object
‘is made up of other objects’. We are aware that not always an association
relationship can be represented as an aggregation relationship, as this decision
depends on the problem domain. However, in our example, both relationships
can be applied as an Insurance “could be related to an insurance company and a
car” or “be part of an insurance company and a car”.
A third alternative is to consider the Insurance as an association class related to
the association relationship between Insurance Company and Car (Fig. 6c,
association class). This means that when an instance of an InsuranceCompany
class is associated with an instance of a Car class, there will also be an instance
of an Insurance class.
These three types of relationships can be alternative representations for the
object interactions shown in Figure 5. In general, an association class can
always be replaced by two association or aggregation relationships.
Consequently, we have identified three types of structural relationships to
represent object interactions (there may also be other representations). This
implies the application of different transformation rules from the
Transformation Rules Catalog (Insfran, 2003) to produce these relationships.
Table 2 summarizes the alternative structural relationships and the
transformation rules that can be applied to produce them.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

15

Table 2. Three alternative structural relationships and their corresponding
transformation rules

Alternatives Transformation Rules
A1 (association) TR 14. For every message between two classes labeled with the stereotype

«service/new» where both classes are distinct from the “interface” class
THEN an association relationship between these classes will be generated.
TR 15. For every message between two classes labeled with the stereotype
«connect», THEN an association relationship between these classes will be
generated.
TR 16. For every message with the stereotype «service/new» or «connect»
where classes using role names appears THEN an association relationship
between these classes will be generated using these role names on the ends
of the relationship.

A2 (aggregation) TR 28. For every message with the stereotype «service/new» between two
classes A and B, which are distinct from the “interface” class, THEN an
aggregation relationship between these classes will be generated.

A3 (association
class)

TR 39. For every message with the stereotype «service/new» from the class
A to the class B, if there exist two messages with the stereotype «connect»
starting from the class B to the classes C and D respectively, THEN a new
association class will be generated (called B) AND also an association
relationship between C and D related to the new association class B will be
generated.
TR 40. For every message with the stereotype «connect» from the class A
to the class B, if there exist a message with the stereotype «service/new»
starting from the class A or B to the class C THEN a new association class
will be generated (called C) AND also, an association relationship between
A and B related to the new association class C will be generated..

All the transformation rules in the catalog are being specified using the
declarative QVT relations language (OMG, 2005). Fig. 7 shows the
specification of the transformation rule TR15 in QVT.

4.4 Executing the Alternative Transformations in MOMENT

MOMENT (Boronat, Carsí & Ramos, 2005) is a framework for model
management that is fully integrated in the Eclipse environment. MOMENT
combines the best features of Maude and Eclipse. First, it uses Maude (Clavel et
al., 2005) as a backend. Maude is a reflective language and system supporting
equational and rewriting logic specification. Maude has been used as a rapid
prototyping environment to develop MOMENT using some of its properties:
pattern matching, parameterization, and reflection. Second, Eclipse Modeling
Language (EMF) is an industrial standard that includes a metamodel (Ecore) to
define, modify, and serialize models with a very efficient reflexive API.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

16

Fig. 7. TR15 specified using QVT-Relations

To use MOMENT to apply transformations (Boronat, Carsí & Ramos, 2006),
the source metamodel (the Requirements Metamodel) and the target metamodel
(the UMLite class diagram Metamodel) must be defined and registered as Ecore
models. MOMENT is used to define the QVT-Relations transformation
ReqModelToUMLite. This transformation is composed of a set of rules that
defines how to transform information belonging to a model that conforms to the
Requirements Metamodel into a model that conforms to the UMLite class
diagram Metamodel.
Finally, a configuration for the MODELGEN operator is defined. This
configuration is composed of the ReqModelToUMLite transformation, a source
model that is defined with the RETO tool, and the name of the target UML
model. Additionally, a traceability model is generated to relate the elements of
the source model with the elements of the target model.
Fig. 8 shows MOMENT integrated in the Eclipse environment. On the left side,
the Package Explorer shows all the files related to the transformation:
ModelGen.mop is the model that defines the generic operator MODELGEN;
reqModel.ecore is the model that defines the Requirements Metamodel used as
the source in the transformation; UMLite.ecore is the metamodel used as the
target in the transformation; rentacar.reqmodel is a model that defines the
rentacar system (instance of the metamodel reqModel); rentacar.umlite is the
model (instance of UMLite metamodel) resulting from the application of the
transformation to rentacar.reqmodel; rentacar.traceabilitymodel is the
traceability model that maps elements of the source and target models;
ReqModelToUMLite.qvtext is the transformation expressed in QVT-Relations.
The top of the figure shows part of the UMLite metamodel. The bottom of the

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

17

figure shows a part of the ReqModelToUMLite transformation inside the QVT
text editor.
An additional transformation called UMLite2UML2 was defined to transform
UMLite class diagram models into UML2 class diagram models (see section
3.2).

Fig. 8. MOMENT environment

Once a transformation has been executed, a traceability model is generated. The
traceability model relates the elements of both models. There is a special view
designed for this information. This view allows the analyst to see the
transformation rules that have been executed and what the results are.
Fig. 9 shows the traceability model generated after executing the
reqModel2UMLite transformation. The first column shows the domain model,
which is the rentacar requirements model. The third column shows the range
model, which is the generated rentacar UMLite model. Finally, the second
column shows the traceability links (mappings) that relates the elements of the
domain and range models. A traceability link, which is the result of applying the
transformation rule EntityToClass is highlighted. This traceability link relates
the Insurance entity with the Insurance class.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

18

Fig. 9. Traceability model generated by applying the ReqModelToUMLite
transformation.

5. Experiment Description
This section presents a description of the experimental process that was
followed to select the best alternative transformation. The process is based on
the experimental frameworks proposed by (Wohlin et al., 2000; Juristo &
Moreno, 2001). This process is composed of the following activities: definition,
planning, operation, and analysis and interpretation.

5.1 Definition

The main goal of this experiment is to determine which of the transformation
rules for structural relationships between classes introduced in section 4.3 (A1,
A2, A3, and A4) obtained the easiest to understand UML class diagram.
Therefore, using the GQM (Basili & Rombach, 1988) template for goal
definition, the goal of our experiment is defined as follows:

Analyze Alternative transformation rules for structural

relationships between classes (A1, A2, and A3)
For the purpose of Evaluating
With respect to the Understandability of the obtained UML

class diagrams
From the point of view of the researchers

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

19

In the context of Undergraduate students at the Department of
Information Systems and Computation at the
Valencia University of Technology

5.2 Planning

The next step is planning. The definition determines why the experiment is
conducted, while the planning prepares how the experiment is to be conducted.
The main characteristics of the planning phase are the following:

Subjects. The participants were 39 fourth-year students in Computer Science at
the Valencia University of Technology, who were taking part in the second
Software Engineering course. We took a “convenience sample” (i.e. all the
students in the class). The subjects had six months of experience in modeling
with UML and three years of experience in the OO paradigm. The subjects were
encouraged to participate by offering them an extra point in the final grade for
performing the required tasks correctly.

Variable selection. The independent variables were the transformation rules for
structural relationships between classes (i.e., A1, A2, and A3). The dependent
variable was understandability.

Experimental material and tasks. The experimental material and tasks
consisted of:
• 9 Sequence Diagrams from three different case studies, with 3 UML class

diagrams each. These were obtained by applying the alternative
transformation rules. An example of the experimental material is shown in
Appendix A. The rest of experimental material is available at:
www.dsic.upv.es/~einsfran/experiment.

• Each Sequence Diagram has a questionnaire attached consisting of 6
Yes/No questions to test the subjects’ understanding of the Sequence
Diagrams. The effectiveness of the subjects in answering the questionnaires
(number of correct answers/number answers) was used as a criterion to
exclude those observations that did not fulfill a minimum level of quality.
Observations with a value less than or equal to 0.5 were excluded. If the
subjects did not understand the Sequence Diagrams, their questionnaires
were excluded.

• Each of the three UML class diagrams had a questionnaire attached (with 6
questions) for assessing which alternative UML class diagram was better
understood by the subjects. In addition, the subjects had to write down the
starting and ending times for completing the questionnaires. We obtained
three measures for understandability from this understanding task:
− Understandability Time, which reflects the time, in seconds, that the

subjects spent answering each questionnaire (calculated by the
difference between the ending time and the starting time). Each subject

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

20

completed 3 questionnaires detailing 3 alternatives (A1, A2, and A3).
Three understandability time measures (A1Time, A2Time, and
A3Time) were obtained.

− Effectiveness, which reflects the correctness of the answers (calculated
by dividing the number of correct answers by the number of answers).
Three understandability effectiveness measures (A2Effec, A2Effec, and
A3Effec) were obtained.

− Efficiency, which reflects the correctness of the answers by time
(calculated by dividing the number of correct answers by the
understandability time). Three measures for understandability efficiency
(A2Effic, A2Effic, and A3Effic) were obtained.

• The final task of each test consisted of asking the subjects which of the
three alternative UML class diagrams best reflected the problem modeled in
the Sequence Diagram. In this way, we obtained a subjective measure
(Alternative Selected) based on the subjects’ perception.

Hypothesis formulation. The following hypotheses were formulated:
• H10: The use of different alternative transformations (A1, A2, and A3) does

not affect the Understandability Time (A1Time, A2Time, and A3Time).
H11=¬H10

• H20: The use of different alternative transformations (A1, A2, and A3) does
not affect the Understandability Effectiveness (A1Effec, A2Effec, and
A3Effec). H21=¬H20

• H30: The use of different alternative transformations (A1, A2, and A3) does
not affect the Understandability Efficiency (A1Effic, A2Effic, and
A3Effic). H31=¬H30

• H40: There is no correlation between the Alternative Selected and the
means of objective Understandability variables (Understandability Time
Effectiveness, and Efficiency). H41= ¬H40

5.3 Operation

The experiment started with an introductory session in which the main concepts
of the Requirements Model (e.g., the notation of Sequence Diagrams) were
reviewed. The goal of the experiment was not disclosed to the subjects. Then,
the subjects were shown an example of the experimental material, which was
similar to what they would be using during the execution of the experiment.
Each subject was given all the experimental material, including nine tests
(balanced within-subject design). The diagrams were assigned in different order
to limit learning effects. The alternatives were also organized in a different
order across subjects in order not to favor one alternative over another. In total,
eighteen types of tests were prepared. The subjects were instructed how to

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

21

develop the experimental tasks and they had a maximum of two hours to
complete all the tasks.

5.4 Data Analysis and Interpretation

After the experiment took place, we collected the experiment data. It consisted
of a table of 351 rows (9 diagrams x 39 subjects) and 9 columns (A1Time,
A2Time, A3Time, A1Effec, A2Effec, A3Effec, A1Effic, A2Effec, A3Effec).
We then performed a “data cleaning”, excluding the observations that were not
complete because the subjects had not written down the time or because the
subjects did not selected the best alternative. Since all the questions in each
questionnaire were complete, the completeness of the performed tasks was
guaranteed. We also excluded the observations that had a value of effectiveness
of 50% or less for each Sequence Diagram. The final data for testing the
hypotheses were 325 observations.
The following statistical analyses were performed to analyze the data:

• A descriptive study was done to characterize the dependent variables.
• Hypotheses H1, H2, and H3 were tested using an ANOVA test with

repeated measures.
• Hypothesis H4 was tested using the Spearman correlation coefficient.

We used SPSS (SPSS, 2002) to carry out the data analyses presented in this
study.

5.4.1 Descriptive statistics

The descriptive study was performed by first analyzing the variable Alternative
Selected and then analyzing the measures of Understandability Time,
Effectiveness, and Efficiency.
From Table 3 (which shows the frequency of each type of alternative (A1, A2,
and A3) for each diagram) and Fig. 10 (which shows the percentages of
selection for each type of alternative) we can infer the following:
• A1 is the alternative transformation that was most selected by the subjects,

i.e., the subjects believed that the use of associations allowed to obtain the
best UML class diagram (the easiest to understand).

• A3 is the alternative transformation that was least selected by the subjects,
i.e., the subjects believed that it was the least appropriate alternative
transformation.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

22

Table 3. Frequency of transformation alternatives per diagram

Diagrams/
Alternatives

D1 D2 D3 D4 D5 D6 D7 D8 D9 Total

A1 6 12 13 25 18 14 16 18 7 129
A2 8 4 7 8 9 12 6 5 13 72
A3 19 20 10 5 11 12 15 14 18 124
Total 33 36 30 38 38 38 37 37 38 325

40%

36%

24%
A1

A2

A3

Fig. 10. Percentages for Alternative Selected

The descriptive statistics for the Understandability Time, Effectiveness, and
Efficiency are shown in Table 4. They are ranked in ascendant order by the
value of the mean.

Table 4. Descriptive statistics for the measures for Understandability Time,
Effectiveness and Efficiency.

 Min. Max. Mean St. Dev.
A2TIME 23 449 93.4338 57.9701
A1TIME 12 611 101.9046 79.1776
A3TIME 15 734 106.5077 72.2032

A2EFFEC 0.167 1 0.8701 0.1528
A3EFFEC 0.167 1 0.8844 0.1821
A1EFFEC 0.167 1 0.9111 0.1548

A3EFFIC 0.006 0.4 0.0677 0.0419
A2EFFIC 0.011 0.24 0.0757 0.0436
A1EFFIC 0.005 0.5 0.0803 0.0531

Table 4 reveals that, on average, the subjects spent less time performing the
tasks related to alternative A2. However, the difference with the other tasks was
not very significant (approximately 8 seconds for A1 and A3). The subjects

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

23

were more effective and efficient performing the tasks related to alternative A1;
but the difference in effectiveness with the other alternatives was not very
significant.
In summary, the descriptive statistics show a slight tendency in favor of A1,
which is the transformation based on associations.

5.4.2 Testing Hypotheses
To test the hypotheses H1, H2, and H3, we carried out an ANOVA for repeated
measures. The results show hypotheses H10, H20, and H30 can be rejected (with
a significance level = 0.05). This means that each alternative transformation
really does affect the Understandability Time, Effectiveness, and Efficiency.
Moreover, we compared the means for each measure by pairs of alternatives.
There was a significant difference between the following pairs:
• The pairs A1-A2, A1-A3 in the values of the Understandability Time.
• The pairs A1-A2, A1-A3 and A2-A3, in the Understandability

Effectiveness.
• The pairs A1-A3, A1-A3 and A2-A3, in terms of the Understandability

Efficiency.

This comparison shows that there is a significant difference between A1 (related
to associations) and the other alternatives (A2 and A3).
To test hypothesis H4, we carried out a correlation analysis using the Spearman
Correlation, separately per each diagram. We did not find any correlation
between the subjective measure (Alternative Selected) and the mean of the
objective measures (Understandability Time, Effectiveness, and Efficiency).
This reveals that the use of an alternative transformation is not dependent on
how effective or efficient the subjects are (i.e., the performance of the subjects
did not affect their perception).
In summary, the main findings of the experimentation show that there exists a
slight tendency in favor of using associations. In other words, the subjects are a
slightly more effective and efficient when performing tasks related to
association relationships (instead of aggregations or association classes).
Assuming that the three alternatives are alternatives, this indicates that
transformations related to association relationships are the most appropriate
when the understandability quality attribute is selected.

5.5 Threats to validity

This section discusses several issues that can affect the validity of the empirical
study and how we attempted to alleviate them.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

24

In order to control the risk that the variation due to individual differences is
larger than due to the treatment, we selected a homogeneous group of subjects.
In addition, to attempt to control the internal validity of the study, the following
issues were considered:
• Differences among subjects. Using a within-subjects design, error variance

due to differences among subjects was reduced. In addition, we randomly
assigned the tests to the subjects in different order. This procedure cancels
out a possible learning effect (due to similarities in the treatments) and a
confounding effect (due to the order in which the alternatives were
presented).

• Knowledge of the universe of discourse. We used the same requirement
specification document for all subjects. It specifies the requirements of a
Car Rental System for a company. This is a well-known universe of
discourse.

• Fatigue effects. On average, each subject took two hours to solve the
experimental tests, so fatigue was not very relevant.

• Persistence effects. In order to avoid persistence effects, the experiment was
carried out by subjects who had never done a similar experiment.

• Subject motivation. We motivated students to participate in the experiment
by offering them an extra point in the final grade of the course.

One limitation to the external validity of this study is the fact that the three
alternative transformation rules cannot be applied simultaneously to all
modeling situations. For instance, to establish an association class relationship
(A4), at least one «service/new» message and two «connect» messages are
needed in the source model. The goal of this experimentation was to gather
empirical evidence for the specific case when the three alternative
transformations can be applied to obtain a relationship between classes. We are
aware that, more alternatives may be possible to represent structural
relationships between classes. More experimentation is needed to validate these
other combinations.
Another limitation is the use of only students as participants. In general, our
students have no working experience in conceptual modeling. The use of
student participants may present a threat to the study’s external validity.
However, the students who participated in the experiment were fourth-year
students in Computer Science. Therefore, they can be considered as
representative of novice users of conceptual modeling approaches. To increase
external validity, the current study needs to be replicated using experienced
practitioners from the industrial sector who are experienced in UML and/or
students with higher levels of training in order to confirm our results.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

25

6. Conclusion
This chapter has presented an approach for quality-driven model
transformations. Specifically, it described a controlled experiment to investigate
the selection of alternative QVT transformations to obtain UML class diagrams
from a Requirements Model. The goal of the experiment was to gather
empirical evidence about which alternative transformation produces the UML
class diagram that is easiest to understand.
The results show that there is a slight tendency to favor the use of association
relationships when the three alternatives can be applied. This indicates that
transformations related to association relationships are the most appropriate
when the understandability quality attribute is selected. A possible reason for
this could be that this relationship has less semantic strength than the other
kinds of relationships. When an aggregation relationship is chosen instead of an
association relationship, analysts know that they are defining a part-of
relationship. However, when an association class is chosen, the same
relationship can be represented using two association or aggregation
relationships.
These results provided first evidence about the understandability of a model
obtained through a model transformation process. The study was conducted in
the context of the UML class diagram that is the most-used specification for
model-driven software development in industry. Although this evidence is
specific to this domain, and in particular, to the relationships among classes, it
should be generalized to other elements in a UML class diagram, other UML
diagrams, and also to other domains. Therefore, more experimentation is needed
to verify the generalizability of our approach.
The results that we have obtained through experimentation are promising.
However, they must be considered as preliminary results. We plan to replicate
this experiment with students from the University of Castilla-La Mancha in
Spain and also with more experienced practitioners from the industrial sector in
order to confirm these results. We believe that the level of experience in UML
modeling can considerably influence the performance of the subjects.

7. Future Research Directions
Our literature review has shown that there are very few studies that deal with
quality in model-driven development. As far as we know, there is no study
encompassing the empirical validation of model transformations. The study of
quality for model-driven development is of great relevance to software
development organizations faced to the adoption of this technology in
industry.
The empirical study presented in this chapter shows how model transformations
can be empirically validated with regard to a given quality attribute. This work
is part of a project on quality-driven model transformations whose goal is the

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

26

definition of a quality metamodel to drive the selection of model
transformations according to multiple quality attributes. Therefore, our current
research efforts are focused on the validation of the remaining transformations
of the Transformation Rules Catalog (Insfran 2003). We also plan to study other
quality attributes (i.e., efficiency, understandability, usability, modifiability) and
possible conflicts that could arise when more than one quality attribute is
chosen. Our ultimate goal is to build an empirically validated quality
metamodel to drive the selection of model transformations in different domains
(e.g., Bioinformatics and Data Warehouse). This quality metamodel will be
fully integrated in the MOMENT environment.
There is an urgent need for more research studies of this type to complement
and extend the current empirical study. Empirical evaluation of model
transformations will help software developers assess the usefulness of different
sets of transformations according to the quality of the resulting target model
and/or transformation needs.
While several studies (including this one) have studied model transformations
and its properties, it would be interesting to survey or interview domain-specific
engineers and ascertain the importance of certain model transformations to
define heuristics to drive the transformations. In our study, a heuristic could be
the type of traceability (i.e., strong and weak) assigned to each transformation
rule. This could be an additional criterion to be used during the transformation
process.
Another area of future research needs to examine other quality perspectives
(i.e., syntactic quality, semantic quality). Syntactic quality in the context of
model-driven development is trivial due to all the models are compliant to their
respective metamodel. However, assessing semantic quality will allow to verify
which alternative transformation will produce a target model that is more
correct and relevant to the problem domain.
Finally, the applicability or dependence of model transformations to the type of
domain of the application being developed would be an interesting study.

References
Basili, V. & Rombach, H. (1988). The TAME project: towards improvement-oriented
software environments. IEEE Transactions on Software Engineering, 14(6), 728-738.
Boronat, A., Carsí J.A., & Ramos I. (2006). Algebraic Specification of a Model
Transformation Engine. Proceedings of the Fundamental Approaches to Software
Engineering (FASE'06). ETAPS'06. Vienna, Austria, 262–277.
Boronat, A., Carsí, J.Á., Ramos, I. (2005). MOMENT: a formal MOdel manageMENT
tool. School on Generative and Transformational Techniques in SE. Braga, Portugal.
Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., & Talcott, C.
(2005). Maude 2.2 manual and examples, from http://maude.cs.uiuc.edu/maude2-
manual

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

27

Czarnecki, K., & Helsen, S. (2006). Feature-based survey of model transformation
approaches. IBM Systems Journal, 45(3), 621–645.
Genero, M., Manso, M., Visaggio, A., Canfora, G. & Piattini, M. (2007) Building
measure-based prediction models for UML class diagram maintainability. Empirical
Software Engineering, (to appear).
Genero, M., Moody, D., & Piattini, M. (2005). Assessing the capability of internal
metrics as early indicators of maintenance effort through experimentation. Journal of
Software Maintenance and Evolution: Research and Practice, 17, 225-246.
Insfran, E. (2003). A Requirements Engineering Approach for Object-Oriented
Conceptual Modeling, PhD Thesis, DSIC, Valencia University of Technology, Spain.
Insfran, E., Pastor, O. & Wieringa, R. (2002). Requirements Engineering-Based
Conceptual Modelling. Journal of Requirements Engineering, 7 (2), 61–72, Springer-
Verlag.
ISO, ISO/IEC 9126-1, (2001). Software Engineering – Product quality – Part 1: Quality
model.
Ivkovic, I., & Kontogiannis, K. A. (2006). Framework for Software Architecture
Refactoring using Model Transformations and Semantic Annotations, Proc. of the
Conference on Software Maintenance and Reengineering (CSMR’06), 135–144.
Jurista, N. & Moreno, A. M. (2001). Basics of Software Engineering Experimentation.
Kluwer Academic Publishers.
Kerhervé, B., Nguyen, K. K., Gerbé, O., & Jaumard, B. A. (2006). Framework for
Quality-Driven Delivery in Distributed Multimedia Systems, Proc. of the Advanced
International Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT/ICIW 2006), 195–205.
Kurtev, I. (2005). Adaptability of Model Transformations. PhD Thesis, University of
Twente, The Nederlands.
Lindland, O. I., Sindre G., & Sølvberg A. (1994). Understanding quality in conceptual
modeling. IEEE Software, 11(2), 42–49.
Markovic, S., & Baar, T. (2005). Refactoring OCL annotated UML class diagrams. In
Proc. of the 8th Int. Conference on Model Driven Engineering Languages and Systems,
280–294.
Merilinna, J. (2005). A Tool for Quality-Driven Architecture Model Transformation.
Espoo, VTT Electronics, VTT Publications.
OMG, (2006). OMG, UML 2.1 Unified Modeling Language™
OMG, (2005). OMG, MOF 2.0 Query/Views/Transformations Final Adopted
Specification, Object Management Group, from
http://www.omg.org/cgibin/apps/doc?ad/05-11-01.pdf
OMG, (2004). Meta Object Facility (MOF) 2.0 Core Specification, ptc/04-10-15.
OMG, (2003). MDA Guide, from http://www.omg.org/docs/omg/03-06-01.pdf. Version
1.0.1.
Otero, M. C., & Dolado, J. J. (2004). Evaluation of the Comprehension of the Dynamic
Modeling in UML. Information and Software Technology, 46(1), 35-53.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

28

Reinhartz-Berger, H. & Dori, D. (2005). OPM vs. UML—Experimenting with
Comprehension and Construction of Web Application Models. Empirical Software
Engineering, 10, 57–79.
Rottger S., & Zschaler, S. (2004). Model-Driven Development for Non-functional
Properties: Refinement through Model Transformation, In LNCS Volume 3273, The
Unified Modelling Language (UML) Conference, pp. 275–289.
Selic, B. (2003). The Pragmatics of Model-Driven Development. IEEE Software, 20 (5),
19-25.
SPSS, SPSS 11.5, Syntax Reference Guide. 2002, SPSS Inc.: Chicago, USA.
Sottet, J. S., Calvary, G., & Favre, J. M. (2006). Mapping Model: A First Step to Ensure
Usability for sustaining User Interface Plasticity, In: Proc. of the MODELS 2006
Workshop on Model Driven Development of Advanced User Interfaces.
Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B. and Wesslén A. (2000).
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers.
Zou, Y., Kontogiannis, K. (2003). Quality Driven Transformation Framework for OO
Migration. In. Proc. 2nd ASERC Workshop on Software Architecture, Banff, Canada,
pp. 18–24.

Additional Reading
Endres, A. & Rombach, D. (2003). A Handbook of Software and Systems Engineering:
Empirical Observations, Laws and Theories. Addison Wesley.
Frankel, D. S. (2003) Model driven Architecture: Applying MDA to Enterprise
Computing, Wiley.
Juristo, N. & Moreno, A. M. (2001). Basics of Software Engineering Experimentation.
Kluwer Academic Publishers.
Maxwell, K. (2002). Applied Statistics for Software Managers. Software Quality
Institute Series. Prentice Hall.
Stahl, T., Voelter, M., & Czarnecki, K. (2006) Model-Driven Software Development:
Technology, Engineering, Management, Wiley.
Unhelkar, B. (2005) Verification and Validation for Quality of UML 2.0 Models, Wiley-
Interscience.
Wohlin C., Runeson P., Höst M., Ohlson M., Regnell B. and Wesslén A. (2000).
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers.

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

29

Appendix A. An Example of the Experimental Material

TEST R1
The following Sequence Diagram represents the creation of a Car for a car
rental company. All the cars of the company have an assigned Rate. In addition,
they must have an Insurance policy from an Insurance Company.

Fig. 11. Sequence diagram “creation of a car”

SECTION A: Understandability

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
Answer the following Yes/No questions:

1. Is it possible in this scenario to create several Cars? ________
2. Can a Car have several Insurance policies in addition to the obligatory

one for accidents?; for example, a policy for theft ________
3. Are there four classes in this Sequence Diagram? ________
4. If an appropriate Rate for a Car does not exist, can a new type of Rate

be created and then assigned to the Car? ________
5. Can a Car be created without an obligatory Insurance policy?

6. Is it possible to associate an Insurance policy of another Car to the Car

being created? ________

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________

Silvia Abrahão, Marcela Genero, Emilio Insfran, José A. Carsí, Isidro Ramos & Mario Piattini,
Quality-Driven Model Transformations: From Requirements to UML Class Diagrams

30

Section B: Alternatives of Representation
Note: As an example of the three alternatives obtained from the Sequence
Diagram shown in Fig. 11, we include the one based on the association class
relationship.

Alternative 1:

Insurance

Insurance
Company

Car

1..1

0..n

1..1

0..n

Rate
1..1

0..n

1..1

0..n

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
Answer the following Yes/No questions:

1. Does the Insurance policy exist because there is a relationship between
the Car and Insurance Company classes? ________

2. Can an Insurance policy be related to an Insurance Company without
being related to the Car? ________

3. If the relationship between the Car and the Insurance Company is
destroyed, can the Insurance policy continue to exist? ________

4. If the Insurance policy is destroyed, must the relationship between the
Car and the Insurance Company also be destroyed? ________

5. If the Insurance policy is destroyed, must the Rate be destroyed too?

6. Can a Car have several Insurance policies? ________

WRITE DOWN THE CURRENT TIME (HH: MM: SS) ____________
…
Note: For reasons of brevity, only Alternative 1 is shown. See
www.dsic.upv.es/~einsfran/experiment for the alternatives 2-3 (in Spanish).

SECTION C: Rating tasks
In your opinion, which one of the UML class diagrams presented in Section B
best represents the scenario illustrated in the Sequence Diagram of Fig. 11?
(Mark your choice with an “X”)
Alternative 1 () Alternative 2 () Alternative 3 ()

