
A Metamodeling Approach to Estimate Software Size from Requirements
Specifications1

Silvia Abrahão and Emilio Insfran

1Department of Information Systems and Computation

Valencia University of Technology
Camino de Vera, s/n, 46022, Valencia, Spain

{sabrahao, einsfran}@dsic.upv.es

1 This work is supported by the META (Models, Environments, Transformations and Applications) project, with reference
TIN2006-15175-C05-01.

Abstract

Early software size estimation is essential for good
project management. Although several proposals to
estimate software size from requirements specifications
exist, most of them have not been properly defined or
automated. This paper presents the design and automation
of a measurement procedure (ReqPoints) to estimate the
size of software projects from a requirements specification.
The procedure is based on a requirements engineering
approach that provides a MDA framework for
requirements specification and model transformations to
obtain the architecture of UML models. Specifically, a set
of measurement rules is defined as a mapping between the
concepts of the Requirements Metamodel onto the concepts
of the Function Point Analysis (FPA) Metamodel. A
Requirements EStimation Tool (REST) was built to
automate the measurement process. We demonstrate the
feasibility of applying the estimation tool to a case study.

Keywords: Model-driven Software Development,

Requirements Engineering, Functional Size Measurement.

1. Introduction

Estimates of cost and effort for software projects are
based on a prediction of the size of the future system.
Therefore, the capability to accurately quantify the size of
software systems at early stages of the development lifecycle
is a critical issue.

Functional Size Measurement (FSM) is supposed to be
a suitable approach for early size measurement. It assesses
the logical external view of the software from the users’
perspective by measuring the amount of functionality to be
delivered. However, current FSM methods (i.e., FPA)
depend on the human interpretation, which leads to large

variability in the measurement results. Some proposals for
sizing object-oriented systems from requirements
specifications have been defined in the last few years. The
main limitation of these approaches is that they have not
been properly defined in accordance with a standard FSM
method (e.g., [13]). In addition, the requirements artifacts
used as input for measurement do not have a well-defined
traceability to other artifacts built in the upcoming phases
of the software development lifecycle [5], [13]. This can
probably affect the usefulness of the size measure obtained
with these artifacts. Furthermore, most approaches are not
automated [2], [4], [5], [6], [7], [8], [13], [16] which limits
their use and adoption.

To address these limitations, this paper introduces a
measurement procedure for object-oriented systems called
Requirements Points (ReqPoints). A measurement
procedure is a “set of operations, described specifically,
used in the performance of particular measurements
according to a given method of measurement” [11]. The
aim of our procedure is to size a requirements specification
that is developed using a Requirements Model [9] that
follows an MDA-based approach. The construction of the
requirements specification is supported by a Requirements
Engineering TOol (RETO).

We present the design and application of ReqPoints
using a process model for software measurement [12] (see
Figure 1). This process model was successfully applied in a
previous work [1]. According to this process, a
measurement method is designed, that is, the concept to be
measured is defined and the measurement rules are devised.
Then, the measurement method is applied. The results of
the method are then presented and verified. This
verification includes determining whether the value that is
produced is the result of a correct application and
interpretation of the measurement rules. Finally, the results
are used to build different types of models (e.g.,
productivity analysis models, effort estimation models).

Design of the

measurement

method

Application of the

measurement

method rules

Exploitation of the

measurement

results

Measurement

method results

Figure. 1. Measurement process steps (Source: [12])

We detail how the first three steps of the process model
are conducted to design and automate ReqPoints. The
verification of the measurement results (e.g., evaluation of
the reproducibility and accuracy of the results) is out of the
scope of this work.

This paper is organized as follows. Section 2 presents
an overview of related work. Section 3 presents the
Requirements Model and the RETO tool. Section 4
presents the design of ReqPoints followed by its
application in Section 5. Section 6 shows the automation
of the measurement procedure in the Requirements
EStimation Tool (REST). Finally, section 7 presents the
conclusions and further work.

2. Related Work

The first proposal of size estimation for requirements
specification (Use Case Points – UCP) was published in
1993 by Karner et al. [14]. Since then, another eight
studies have proposed other functional size measurement
procedures ([2], [4], [5], [6], [7], [8], [13], [16]). UCP was
defined by practitioners, and the remaining proposals were
defined by researchers. With the exception of UCP [14], all
the other procedures have not been automated. Even though
several tools to automate UCP have been developed, they
provide only partial automation to extract the actors and
use cases. Their complexity classification has to be done
manually. In addition, the majority of the proposals have
not been validated, either empirically or theoretically. A
summary of each of these studies is presented in Table 1.

Table 1. Measurement procedures to estimate size from

Requirements Specifications

Proposal FSM
method

Input
Artifacts

Auto-
mated

Vali-
dated

Use Case
Points [14]

IFPUG
FPA-like

Use Case
Model Partial Partial

Fetcke et al.
[7]

IFPUG
FPA v. 4.0

Use Cases,
Class diagram No No

Bévo et al. [5] COSMIC-
FFP v. 2.0

Use Cases,
Class diagrams No Partial

Jenner [13] COSMIC-
FFP v. 2.0

Use Cases,
Sequence
Diagrams

No No

Tavares et al.
[16]

IFPUG
FPA v. 4.1

Use Cases,
Class diagrams No No

Azzouz [2] COSMIC-
FFP v. 2.2 RUP No No

Bertolami et
al. [4]

Mark II
FPA LEL No No

Condori-
Fernandez et

al. [6]

COSMIC-
FFP v. 2.2

Use Cases,
Sequence
Diagrams

No Yes

Habela et al.
[8]

COSMIC-
FFP v. 2.2

Use Cases,
Sequence
Diagrams

No No

The main limitation of these approaches is that they are
not properly defined in accordance with a standard FSM
method. Although they are based on a FSM standard
method, their measurement rules are not fully compliant to
these standards. Only [6] conducted an evaluation
conformance of the proposed measurement procedure with
respect to a FSM standard.

In addition, the requirements artifacts used as input for
measurement do not have a well-defined traceability to
other artifacts in the upcoming phases of the software
development lifecycle. For instance, the Jenner proposal
[13] discusses the problem of granularity at the Use Cases
level. However, it is not enough to simply indicate that
Sequence Diagrams have the most appropriate level of
granularity to measure the functional size. A method of how
to construct these diagrams is also needed. The same
happens with the Bévo et al. proposal [5].

Another drawback of these procedures is the lack of a
clear definition of the different types of Base Functional
Component (BFC) types. These are the important elements
for measurement.

3. The Requirements Model

The Requirements Model [9] provides primitives for the
specification of requirements following a Model-Driven
Architecture (MDA) approach. The requirements of the
software system are specified using the standard UML
notation. The approach is completed with a Transformation
Rules Catalog (TRC), which defines transformation rules to
obtain the architecture of UML models, establishing clear
traceability links. The Requirements Model is mainly
composed by a mission statement, a function refinement
tree, and a use case model.

The Mission Statement is a high-level description of
the nature and purpose of the system (main goal).
Considering the future software system as a black box, its
visible (external) interactions are identified as functions.
These functions are hierarchically structured and organized
in a Functions Refinement Tree (FRT), where the root is
the mission statement, the internal nodes are functional
groups, and the leaves are the elementary functions of the
system that correspond to the concept of use case. The Use
Case Model includes all the identified functions from the
FRT, which are the use cases, including their corresponding
communication relationships with actors and the structural
relationships among actors (inheritance).

Finally, a requirements specification is completed with a
Requirements Domain Model, which defines the
vocabulary of the problem domain including the relevant
entities and their structural relationships, and an
Interaction Model, which captures the main object

interactions to realize each identified use case using the
UML Sequence Diagram notation.

This Requirements Model is defined by a MOF
metamodel that is introduced in section 3.1 This approach
is supported by a Requirements Engineering Tool (RETO),
which can be downloaded at http://reto.dsic.upv.es.

3.1 The MOF Requirements Metamodel

Metamodeling is a key concept of the MDA paradigm

and is used in Software Engineering (SE) to describe the
basic abstractions that define the models and their
relationships. The Meta Object Facility (MOF) [15]
provides a multi-layer architecture for defining
metamodels. Figure 2 shows an excerpt of the relevant
parts of the MOF Requirements Metamodel.

The functions of the system are represented by the Use
Case class. Each Use Case is specified by means of one or
more Sequence Diagrams that are mainly composed of
Entities and Messages. We distinguish three types of
Entities when describing a Sequence Diagram: Actor,
Interface, and Class. Actor represents the users of the Use
Case, Interface represents the boundary among the actors
and the internal classes of the system, and Class represents
the different entity classes that participate in the realization
of the Use Case.

Finally, to characterize the different nature of interaction
between objects, we identify four types of messages:
• Signal Messages: they are labeled with the stereotype

«signal» and represent interactions between an Actor
and the system. The only property for this message
type is the direction, which can have two types of
values: input and output.

• Service Messages: they are labeled with the stereotype
«service» and represent interactions where the objects
of the receiver class changes their state. The changes
can be of three types:

o New: creation of a new object instance of the
target class.

o Update: change of state of an object instance of
the target class.

o Destroy: destruction of an existing object of the
target class.

• Query Messages: they are labeled with the stereotype
«query» and represent queries on related objects or on
a class population.

• Connect Messages: they are labeled with the stereotype
«connect» and are used to establish a structural relation
between the participant objects in the interaction.

Moreover, these messages can also be labeled with a

condition that, if satisfied, allows the interaction to occur.
The syntax for this type of condition is: [boolean-
expression] message-name.

An INCLUDE relationship allows a base Use Case to
perform an explicit inclusion of an included Use Case. This
relationship is represented in a base Sequence Diagram by
a message call with the syntax: [condition] INCLUDE
IncludedUseCaseName. The EXTEND relationship is only
known by the Use Case that extends. For this reason, the
base Sequence Diagram does not make any reference to the
Use Case that extends.

4. The Design of the Procedure

The design of ReqPoints is done by following the

activities suggested in the first step of the process model
shown in Figure 1. Four activities are suggested for a
complete design of a measurement method [12]: definition
of the objectives, characterization of the concept to be
measured, definition or selection of the metamodel, and
definition of the numerical assignment rules.

Figure 2. MOF Requirements Metamodel

4.1 Definition of the objectives

According to the GQM template [3], our goal is to
design a FSM procedure for the purpose of sizing a
requirements specification with respect to its functional
size from the point of view of the researcher. The context
is that this procedure should conform to the IFPUG FPA
method version 4.1 [10], referred to here as FPA.

4.2 Characterization of the concept

The entity to be measured consists of a Requirements

Model specification obtained with the RETO tool. It is
mainly composed of a Use Case Model and a set of
Sequence Diagrams that capture the system functionality
and the object interactions necessary to realize each use
case, respectively. The attribute to be measured is
functional size, which is the size of the software derived by
quantifying the functional user requirements.

4.3 Selection of the metamodel

The metamodel of a FSM method provides a precise

basis to design the measurement rules that identify and
measure the relevant concepts that contribute to the size of
a system. As our measurement procedure is intended to
conform to the IFPUG method [10], it assumes the same
metamodel as FPA. Figure 3 shows the FPA metamodel for
the IFPUG method. It illustrates the information that must
be captured in order to size a software project. These
concepts will be used in the definition of the mapping rules.

4.3.1 Definition of the mapping rules. The mapping rules
help identify the elements in a Requirements Model that
contribute to the functional size of the system. These rules
are defined as a mapping between the concepts of the FPA
Metamodel onto the concepts in the Requirements
Metamodel [9].

First, Rules 1 to 4 are applied to establish the counting
scope and the boundary of the system. Then, the data (ILF
and EIF) and transactional (EI, EO, and EQ) functions are
identified by applying Rules 5 to 11.

The counting scope defines what is going to be sized. In
the Requirements Model, it corresponds to the Use Case
Model, which includes all the use cases (Rule 1). However,
other scopes might also be established considering any
functional group of the Functional Refinement Tree.

The boundary indicates the border between the project
or application being measured and the external applications
or user domain. A Use Case Model is the visual
representation of the actors who interact with the use cases
that define the system’s functionality. An Actor can be a
human actor such as a user of the application (Rule 2) or a
non-human actor such as an external application (Rule 3).
The boundary corresponds to an imaginary line traced in
the Use Case Model. The actors are considered to be

outside the boundary, whereas the Use Cases are
considered to be inside the boundary since they define the
system’s functionality (Rule 4).

Once the boundary has been established, the data and
transaction functions can be identified. The data functions
(ILF and EIF) are identified using the Interaction Model
(Sequence Diagrams) as input.

An ILF is a user identifiable group of logically related
data or control information maintained within the boundary
of the system [10]. In the Requirements Model, an ILF
corresponds to an entity of type Class because it represents
a collection of objects described structurally by a set of
attributes (Rule 5). An EIF is a user identifiable group of
logically related data or control information referenced by
the system, but maintained within the boundary of another
system [10]. In the Requirements Model, an EIF
corresponds to an external entity of type Class because it
represents objects or components that are outside of the
system but that are referred to it (Rule 6).

A transactional function (EI, EO, and EQ) is identified
considering the different types of messages defined in the
Sequence Diagrams (signal, query, service and connect).

An EI is an elementary process that manipulates data or
control information that comes from outside the system
boundary. Its goal is to maintain one or more ILFs and/or to
alter the behavior of the system [10]. In the Requirements
Model, an EI corresponds to a «signal» message with an
input value because it represents an interaction between
the actor and the system (Rule 7).

In addition, the «service/new», «service/destroy», and
«service/update» messages are also considered as EIs
since they maintain the information of the target objects
(Rule 8). Finally, a «connect» message is also an EI
because it represents the establishment of a relationship
between the source and target objects (Rule 9).

An EQ is an elementary process that sends data or
control information outside the system boundary. Its goal is
to present information to a user through the retrieval of data
[10]. In the Requirements Model, an EQ corresponds to a
«query» message with a «signal» message to show the
result of the query to an actor (Rule 10).

Finally, an EO has the same definition as an EQ, but its
processing logic must contain at least one mathematical
formula or calculation, or it has to create derived data [10].
In the Requirements Model, an EO also corresponds to a
«query» message together with a «signal» message (Rule
11). However, this rule is only applied if there are other
messages indicating an internal process with the result of
the query before showing the result to the actor.

4.4 Definition of numerical assignment rules

The purpose of this phase is to produce a quantitative

value that represents the functional size of the system. This
is accomplished by applying two sets of rules that are
introduced below.

Figure 3. The FPA metamodel for the IFPUG method

4.4.1 Definition of the measurement rules. These rules
are defined to count the number of DETs, RETs and FTRs
of each data function and transactional function previously
identified. Once these concepts have been counted, the FPA
counting rules are applied to classify the function
complexity as low, average, or high.

4.4.1.1 Establishing the complexity of an entity.
According to the FPA metamodel, the complexity of an
entity (ILF) or an external entity (EIF) is determined by
counting the number of Data Element Types (DET) and
Record Element Types (RET). A DET is a unique user
recognizable, non-repeated field. A RET is a user
recognizable subgroup of data elements within an ILF or
EIF. We identify a RET for the entity itself as it represents
a group of logically related data. Thus, the following rules
are proposed:
• Rule 12: Count a RET for each entity of type class
• Rule 13: Count a RET for each external entity

In the Requirements Model, only the entities and
possible relationships among them are identified.
Therefore, at this level is not possible to know the number
of DETs of each entity of type class. As a consequence, a
low complexity is directly assigned to each entity of type
class (ILF) and external entity (EIF). According to the
complexity weights of the data functions provided by the
IFPUG standard [10] (see Table 2), this corresponds to a
function with one RET and up to fifty DETs.

Table 2. Complexity weights for ILF and EIF

RETs 1-19 DETs 20-50 DETs 51+ DETs
1 Low Low Average

2-5 Low Average High
6+ Average High High

4.4.1.2 Establishing the complexity of a message. The
complexity of the different types of messages (EI, EQ, and
EO) is determined by counting the number of Data Element
Types (DET) and File Types Referenced (FTR). A FTR is
an entity of type class that is read or maintained by a
transactional function or an external entity that is read by a
transactional function.

A DET could be identified for each single parameter of
a message. However, because we are dealing with early
object interactions, the number of DETs obtained by
counting the number of message parameters is not
meaningful. Usually, at this level, only the most relevant
data is indicated. The precise amount of data interchanged
among objects will be completed in the subsequent stages
of the development lifecycle. Consequently, a fixed range
of DETs are assigned to each transactional function taking
into account the complexity weights described in Table 3
and Table 4.

The complexity of a signal, service and connect message
(EIs) is established by directly assigning 5-15DETs for
each one of these functions. We use the middle column of
Table 3 as a reference value. Two of these DETs are
counted in order to be compliant to the IFPUG method: one
DET for the capability of the application to send a message
outside the boundary (error, confirmation, control), and
another DET for the ability to specify an action to be taken.
The remaining DETs are an estimation of the number of
DETs that can be manipulated when a message is executed.
In terms of FTRs, an FTR is counted for the entity class
where the message is defined. Therefore, the following
measurement rule is defined:
• Rule 14: Count a FTR for the entity class in which the

message is defined (the target of the message).

Additionally, other FTRs are counted for the conditions
of a message, the precondition of the Use Case, and the
invariants associated to an entity of type class.

The condition of a service, query or connect message
may reference data from an entity class that is different
from a target class. This implies recovering the value of the
attributes involved in the condition in order to evaluate it. If
this occurs, an additional FTR must be counted for each
different entity class involved in the condition. Therefore,
the following measurement rule is defined:
• Rule 15: Count a FTR for each single entity of type

class referenced in a condition of a message.
In addition, in the Use Case template specification, it is

possible to define a precondition for the execution of the
Use Case. A precondition can also increase the complexity
of a signal, service and connect message as defined in the
following rule:
• Rule 16: Count a FTR for each single entity of type

class referenced in the precondition of the use case.
The specification of an invariant is not specifically

associated to a Sequence Diagram but rather to the entire
system since it is defined as a property of an entity of type
class. The following rule is considered as a complementary
rule to the identification of FTRs since the invariant should
be evaluated after any modification of the corresponding
entity of type class. This rule is defined as follows:
• Rule 17: Count a FTR for each single entity of type

class referenced in an invariant associated to an entity.
Finally, the complexity of a signal, service and connect

message is established by using the complexity weights for
EIs (see Table 3) provided in the IFPUG standard [10].
Note that the complexity will depend on the amount of
FTRs: a message with one FTR will have a low complexity,
a message with two FTRs will have an average complexity,
and a message with more than three FTRs will have a high
complexity.

Table 3. Complexity weights for EI

FTRs 1-4 DETs 5-15 DETs 16+ DETs
0-1 Low Low Average
2 Low Average High

3+ Average High High

Similarly, the complexity of a query message (EQ or

EO) is established by assigning 6-19DETs for each one of
these functions. Again, we use the middle column of Table
4 as a reference value. Rules 14 to 17 are used to count the
number of FTRs for messages of this type.

Finally, the complexity of a query message is
established by using the complexity weights for EQ and EO
(see Table 4) provided in the IFPUG standard [10]. The
complexity of a query message will also depend on the
amount of FTRs of the function.

Table 4. Complexity weights for EQ and EO

FTRs 1-5 DETs 6-19 DETs 20+ DETs
0-1 Low Low Average
2-3 Low Average High
4+ Average High High

4.4.2 Calculating the functional size of the system. This
step consists of assigning a value of Function Points (FP) to
the classified functions and aggregating the assigned values
into an overall functional size value for the software
system. A FP value is assigned to each function depending
on its type and complexity level. Table 5 shows the number
of FPs per function type and complexity provided in the
IFPUG counting manual [10]. For instance, an ILF with
low complexity has 7 FPs.

Table 5. Number of FPs per function type and complexity

Function type Low Average High
ILF 7 10 15
EIF 5 7 10
EI 3 4 6
EQ 3 4 6
EO 4 5 7

The sum of the FP values of the different types of

messages (EI, EQ, and EO) is the size of a Sequence
Diagram as indicated by the following equation:

() () () ()!!!
===

++=
n

m

m

n

j

j

n

i

i EOSizeEQSizeEISizeagramSequenceDiSize
111

 (1)

The size of a Use Case is then determined by the size of

its Sequence Diagram, as indicated as follows:
())(kk agramSequenceDiSizeUseCaseSize = (2)

However, if a Use Case is related to other use cases by

«include» or «extend» relationships, two additional rules
are defined:
• Rule 18: The size of a use case extended by other use

cases is equal to the sum of the size of the base use
case plus the size of each use case that extends it.

• Rule 19: The functional size of a use case that includes
other use cases is equal to the sum of the size of the
base use case plus the size of each included use case.

These rules are expressed by the following equation:
()

()

()!

!

=

=

+

+=

n

j

j

n

i

i

rr

eCaseIncludedUsSize

seCaseExtensionUSize

agramSequenceDiSizeUseCaseSize

1

1

((3)

The sum of the size of all Use Cases is the size of the
transactional functions of the system, as indicated by the
following equation:

() ()!
=

=
n

i

i
UseCaseSizennalFunctioTransactioSize

1

 (4)

The sum of the size of all entities of type class and
external entities is the size related to the data functions of
the system, as indicated by the following equation:

() () ()!!
==

+=
n

j

j

n

i

i EIFSizeILFSizeonDataFunctiSize
11

 (5)

Finally, the sizes of the transactional and data functions
are summed to produce the functional size of the system in
unadjusted function points, as indicated below:

() () ()onDataFunctiSizennalFunctioTransactioSizeSystemSize += (6)

5. Application of the Procedure

This section illustrates the use of ReqPoints in a case
study. This is done by following the activities suggested in
the second step of the process model shown in Figure 1.
These activities are described below.

5.1 Software documentation gathering

The documentation used to apply ReqPoints include: a
Requirements Model of a Car Rental System obtained with
the RETO tool and a set of guidelines explaining how to
apply the measurement procedure.

The mission of the Car Rental system is “to automate
the management of cars and car rentals of the company. It
also includes the car maintenance and repair, additional
accessories to be rented (extras), and customer
management”. The Functions Refinement Tree is built
based on the definition of the system’s mission. Due to
space limitations, we only consider the first-level functional
groups: car management, customer management, user
management, and contract management.

5.2 Construction of the software model

This step consists in identifying the elements in the
Requirements Model specification that contribute to the
functional size of the system. The result is a collection of
data and transactional functions that can be quantified in
the next step. The software model for the Car Rental
system is built by applying the mapping rules described in
Section 4.3.1.

5.2.1 Defining the counting scope and boundary.
According to Rule 1, the counting scope includes all the
Use Cases and their corresponding Sequence Diagrams that
comprise the four first-level functional groups (car
management, customer management, user management,
and contract management).

The boundary is established by identifying the users and
the external systems that interact with them. This is done
by applying Rules 2 to 4. The boundary for the Car Rental
System is shown in Figure 4. It shows the main Use Case
diagram as packages and the two users of the system (User
and Administrator).

Figure 4. The boundary for the Car Rental System

5.2.2 Identifying the data functions. The entities of a
Sequence Diagram can be entities of type class (ILF) or
external entities (EIF). By applying Rules 5 and 6, we
identify the following data functions:
• ILFs: Access Manager, Administrator, Car, Contract,

Customer, Direct Customer, Disabled Car, Extra
Contract, Extra Type, Garage, Insurance, Insurance
Company, User.

• EIF: Agency Customer.
Note that User and Administrator are also considered as

entities of type class because some information related to
these actors is maintained inside of the system boundary.

5.2.3 Identifying the transactional functions. We explain
the application of the appropriate mapping rules defined for
the identification of transactional functions using an
excerpt from the Create Insurance Sequence Diagram
shown in Figure 5. In this scenario, after introducing the
initial data, the existence of the car is verified. After that,
the rest of the data is entered into the system. A new
insurance policy is created and the corresponding insurance
company and the car are related to the created insurance
policy. Finally, the record of insurance policies of the
insurance company is updated.

Figure 5. Create Insurance Sequence Diagram

By applying Rule 8, two External Inputs (EIs) are
identified: one for the create_insurance message and
another for the modify_number_of_insurances message.
Similarly, by applying Rule 9, two additional EIs are
identified: connect_insurance_company and connect_car
messages.

Boundary

5.3 Application of numerical assignment rules
Finally, to obtain the functional size value for the Car

Rental system, we first apply the measurement rules
described in Section 4.4.1 and then the aggregation rules
described in Section 4.4.2.

5.3.1 Establishing the complexity of entities. By applying
Rule 12, we identify a RET for the entity of type class itself
since it represents a group of logically related data. As it is
not possible to know the number of DETs of each entity at
this development phase (Requirements), a low complexity
is assigned to each one of the thirteen identified entities of
type class (ILFs). Similarly, by applying Rule 13, a low
complexity rate is assigned to the Agency Customer entity.

5.3.2 Establishing the complexity of messages. The
complexity of a signal, service and connect message (EI) is
established by assigning 5-15DETs for each one of these
functions. The number of FTRs is identified by applying
Rules 14 to 17. They assist the project manager to identify
the number of entities that participate in the message
execution.

For the Car Rental system, we take all the Use Cases
and their Sequence Diagrams. In total, we have identified
25 signal, service and connect messages that manipulate
only one entity, 5 messages that manipulate two entities,
and 5 messages that manipulate three or more entities. For
instance, the messages create_insurance,
modify_number_of_insurances, connect_car, and
connect_insurance_company (see Figure 5) have low
complexity since they manipulate only one entity class
each. Consequently, there are 25 messages with low
complexity, 5 messages with average complexity, and 5
messages with high complexity.

We have identified 14 query messages with signal
messages and an output value (EQ). Of these, 8 manipulate
only one entity and 6 messages manipulate two or three
entities. Consequently, there are 8 messages with low
complexity and 6 messages with average complexity. We
also identified 3 query messages together with an internal
process that show the result of the query (EO). One of them
manipulates one entity and the other two manipulate three
entities. Consequently, there is 1 message with low
complexity and 2 messages with average complexity.

5.3.3 Calculating the functional size of the system. In this
step, we assign a Function Point (FP) value for each one of
the functions identified in the previous step and then
aggregate the values to obtain the functional size of the Car
Rental system.

By applying the complexity weights from Table 6 and
equation 1, the size of the Create Insurance (see Figure 5)
is as follows:

Size (Create Insurance) = 4 x 3 + 0 + 0 = 12 FP

Similarly, the other Sequence Diagrams of the Car
Rental system are measured. As each Use Case is specified
as a Sequence Diagram, the size of the Sequence Diagram
corresponds to the size of the Use Case (see equation 2).
The next step is to sum the values of each Use Case to
obtain the size of the transactional functions of the system.
This is done by applying equation 4:

Size (TransactionalFunction) = 187 FP
Then, equation 5 is applied to obtain the size of the data

functions of the system:
Size (DataFunction) = 13 x 7 + 1 x 5 = 96 FP
Finally, equation 6 is applied to obtain the total size of

the system in unadjusted function points.
Size (System) = 187 + 96 = 283 FP

6. Automating the Procedure
The automation of the measurement procedure is done

by the REST tool. This tool is able to import a requirements
specification that is built using the RETO tool. This step
corresponds to the automation of the software
documentation gathering activity. When the requirements
specification is imported, the REST tool stores “on the fly”
all the relevant information that is needed to get the
functional size of the system. This step consists in
identifying the elements in the requirements model that
contribute to functional size. This step corresponds to the
automation of the construction of the software model
activity.

Finally, the functional size of the system is obtained
through the application of the measurement rules (see
section 4.4.1). The REST tool performs the queries to the
stored requirements to get the values to calculate the
functional size. This corresponds to the application of the
numerical assignment rules activity. Although the weights
suggested in the FPA standard are used, the tool has an
advanced configuration module that allows the project
manager to change the complexity weights. A running
example of a requirements model being sized with
ReqPoints is shown in Figure 6. Specifically, it shows the
size estimation report for the Car Rental System. This tool
provides a real-time detailed report of both the number of
function points per function type and the number of
function points for the overall system.

We compared the size estimate obtained by the REST
tool with the estimate that was manually obtained by a
Certified Function Point Specialist (CFPS). The CFPS
sized the IEEE 830 specification of the Car Rental system
(automatically obtained with the RETO tool). A small
difference of only 6 FPs was observed due to the
establishment of function complexity. The results were
used to adjust the measurement rules and improve the
REST tool.

Figure 6. The REST tool

7. Conclusions
This paper has introduced ReqPoints as a measurement

procedure for estimating the functional size of object-
oriented systems from requirements specifications. The
procedure is compliant to the IFPUG method, which is a
widely used FSM method in industry. Since the procedure
was designed as a mapping between the FPA metamodel
and the requirements metamodel, a conformity evaluation
was made during the design stage to assure that all the
concepts in the standard were properly dealt with.

In addition, ReqPoints was automated in the REST tool.
Thus, a size measure of a system can be easily estimated in
an early stage of the development lifecycle when the
requirements model is specified. This avoids the ambiguity
of interpreting the FPA counting rules and the need for
special training to count function points in an accurate and
repeatable way. Since ReqPoints has been defined for a
Requirements Model that follows a MDA approach, the
measurement performed at this early stage of the software
development process can be considered as representative of
the size of the corresponding conceptual model, and
consequently, of the final application. However, further
studies have to be done in order to determine the accuracy
of a size estimate obtained in the requirements level with
respect to the size of the final application. Nevertheless, the
more widely used MDA transformation processes become
in the software development community, the greater the
need for automated measurement procedures to be defined
at higher levels of abstraction.

8. References

[1] Abrahão S., Poels P., Pastor O. A Functional Size
Measurement Method for Object-Oriented Conceptual Schemas:
Design and Evaluation Issues, Software & System Modeling 5(1):
48-71, 2006, Springer.

[2] Azzouz S., Abran A. A Proposed Measurement Role in the
RUP and its Implementation with ISO 19761: COSMIC-FFP.
Software Measurement European Forum, Italy, 2004.
[3] Basili, V., Rombach, H. The TAME project: towards
improvement-oriented software environments. IEEE Transactions
on Software Engineering 14(6): 728-738, 1988.
[4] Bertolami M., Oliveros A. Functionality Measurement Process
on the Requirements Elicitation, Ibero-American Workshop on
Requirements Engineering and Software Environments, 2004.
[5] Bévo V., Lévesque G., and Abran A. UML Notation for
Functional Size Measurement Method. 9th International
Workshop on Software Measurement, Canada, 1999, pp. 230-242.
[6] Condori N., Abrahão S., Pastor O. Towards a Functional Size
Measure for OO Systems from Requirements Specifications, 4th
Conference on Quality Software (QSIC 2004), 2004, pp. 94 - 101.
[7] Fetcke T., Abran A., and Nguyen T. Mapping the OO
Jacobson approach to function point analysis. In Proc. of the
TOOLS Conference, Santa Barbara, USA, 1997, pp. 1-12.
[8] Habela P., Glowacki E., Serafinski T. Adapting Use Case
Model for COSMIC-FFP based Measurement. 15th International
Workshop on Software Measurement, Canada, 2005.
[9] Insfran E., Pastor O., Wieringa R.: Requirements Engineering-
Based Conceptual Modelling. Journal of Requirements
Engineering 7(2): 61–72, 2002, Springer.
[10] ISO/IEC 20926: Software engineering- IFPUG 4.1
Unadjusted size measurement method - Counting manual, 2003.
[11] ISO, International Vocabulary of Basic and General Terms in
Metrology, Second edition, 1993.
[12] Jacquet J. P., Abran, A. From Software Metrics to Software
Measurement Methods: A Process Model, 3rd International
Standard Symposium and Forum on Software Engineering
Standards (ISESS'97), Walnut Creek, USA, 1997.
[13] Jenner M.S. COSMIC-FFP and UML: Estimation of the Size
of a System Specified in UML-Problems of Granularity. European
Conf. Soft. Measurement and ICT Control, 2001, pp. 173-184.
[14] Karner, G. Metrics for Objectory. Diploma thesis, University
of Linköping, Sweden, December 1993.
[15] OMG, Meta Object Facility (MOF) 2.0 Core Spec., 2004.
[16] Tavares H., Carvalho A., Castro J. Function Points
Measurement from Requirement Specification. 5th Workshop on
Requirements Engineering, Spain, 2002, pp. 278-298.

