Sílvia Coimbra

Sílvia Coimbra
University of Porto | UP · Departamento de Biologia

PhD

About

86
Publications
13,510
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,546
Citations
Citations since 2017
38 Research Items
991 Citations
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200

Publications

Publications (86)
Article
Full-text available
Background and aims: Morphogenesis occurs through an accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control, involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-fin...
Article
Full-text available
Quantitative real-time polymerase chain reaction (qPCR) is a widely used method to analyse the gene expression pattern in the reproductive tissues along with detecting gene levels in mutant backgrounds. This technique requires stable reference genes to normalise the expression level of target genes. Nonetheless, a considerable number of publication...
Article
Full-text available
Arabinogalactan-proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high sugar content and are widely distributed in the plant kingdom. AGPs have long been suggested to play important roles in sexual plant reproduction. The synthesis of their complex carbohydrates is initiated by a family of hydroxyproline galactosyltransferase (Hyp-...
Article
Full-text available
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins containing a high proportion of carbohydrates, widely distributed in the plant kingdom and ubiquitously present in land plants. AGPs have long been suggested to play important roles in plant reproduction and there is already evidence that specific glycoproteins are essential for...
Article
Full-text available
Each day it is becoming increasingly difficult not to notice the completely new, fast growing, extremely intricate and challenging world of epitranscriptomics as the understanding of RNA methylation is expanding at a hasty rate. Writers (methyltransferases), erasers (demethylases) and readers (RNA-binding proteins) are responsible for adding, remov...
Article
Full-text available
In flowering plants, male reproductive function is determined by successful development and performance of stamens, pollen grains, and pollen tubes. Despite the crucial role of highly glycosylated arabinogalactan-proteins (AGPs) in male gamete formation, pollen grain, and pollen tube cell walls, the underlying mechanisms defining these functions of...
Article
Full-text available
Glutamine synthetase (GS, EC 6.3.1.2) is an essential enzyme in plant metabolism, catalysing the assimilation of inorganic nitrogen into the amino acid glutamine. GS is a key enzyme in plant growth and has received special attention due to its recognized roles in plant nitrogen use efficiency and crop productivity. It occurs in plants as a collecti...
Article
Full-text available
DNA–protein interactions are essential for several molecular and cellular mechanisms, such as transcription, transcriptional regulation, DNA modifications, among others. For many decades scientists tried to unravel how DNA links to proteins, forming complex and vital interactions. However, the high number of techniques developed for the study of th...
Article
Full-text available
Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules’ embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and s...
Article
Plant development involves constant adjustments of the cell wall composition and structure in response to both internal and external stimuli. Cell walls are composed of cellulose and non-cellulosic polysaccharides together with proteins, phenolic compounds and water. 90% of the cell wall is composed of polysaccharides (e.g., pectins) and arabinogal...
Article
Full-text available
Arabinogalactan-proteins (AGPs) are a large, complex, and highly diverse class of heavily glycosylated proteins that belong to the family of cell wall hydroxyproline-rich glycoproteins. Approximately 90% of the molecules consist of arabinogalactan polysaccharides, which are composed of arabinose and galactose as major sugars and minor sugars such a...
Chapter
The arabinogalactan proteins are highly glycosylated and ubiquitous in plants. They are involved in several aspects of plant development and reproduction; however, the mechanics behind their function remains for the most part unclear, as the carbohydrate moiety, covering the most part of the protein core, is poorly characterized at the individual p...
Chapter
Pollen tubes have been key models to study plant cell wall elongation. Arabidopsis thaliana, although small, is a nice model, easy to grow and with a large set of studies to simplify result integration and interpretation. Pollen tubes may be used for gene expression essays, but also for biochemical characterization of the cell wall composition. How...
Article
Full-text available
Arabinogalactan Proteins (AGPs) are hydroxyproline-rich proteins containing a high proportion of carbohydrates, widely spread in the plant kingdom. AGPs have been suggested to play important roles in plant development processes, especially in sexual plant reproduction. Nevertheless, the functions of a large number of these molecules, remains to be...
Article
Full-text available
The double fertilization of the female gametophyte initiates embryogenesis and endosperm development in seeds via the activation of genes involved in cell differentiation, organ patterning, and growth. A subset of genes expressed in endosperm exhibit imprinted expression, and the correct balance of gene expression between parental alleles is critic...
Article
Full-text available
Key message The fasciclin-like arabinogalactan proteins organization into four groups is conserved and may be related to specific roles in developmental processes across angiosperms. Abstract Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs), which contain fasciclin-like domains in addition to typical...
Article
Full-text available
At a time of unprecedented human population growth, climate change, and losses in biodiversity, plant reproduction is a particularly strategic research topic. From the very moment that a sporophytic cell switches its developmental pathway to become the megasporocyte or microsporocyte until a seed is finally formed, an intricate network of tightly r...
Article
Full-text available
Plant organogenesis is the charming process that embodies outstanding structures of refined control of gene expression. During this elegant process, a subtle communication occurs between neighboring cells, based on chemical signals, inducing cellular mechanisms of patterning and growth. The path to be followed starts once the stigmatic cells recogn...
Article
The Arabidopsis thaliana ovule arises as a female reproductive organ composed solely of somatic diploid cells. Among them, one cell will acquire a unique identity and initiate female germline development. In this review we explore the complex network that facilitates differentiation of this single cell, and consider how it becomes committed to a di...
Article
Full-text available
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pat...
Chapter
Full-text available
The arabinogalactan proteins (AGPs) are highly glycosylated proteins, ubiquitous in plants that have been linked to numerous aspects of sexual reproduction in several plant species, including the monoecious tree species Quercus suber. AGPs are found in cell membranes and cell walls of all types of tissues, including reproductive cells and organs. P...
Article
Full-text available
Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital...
Data
Functional categories related to polysaccharide metabolism and subcellular localization regulated in the AZ-C and the FR.
Data
Phylogenetic relationships between Glycoside hydrolases.
Data
Phylogenetic relationships between Pectate lyases.
Data
Specific primers used for sqRT-PCR.
Data
Genes regulated by ethylene exclusively in AZ-C or FR cells, and in both AZ-C and FR cells.
Data
sqRT-PCR-based relative expression in the AZ-C and the FR.
Data
LM isolation of AZ-C and FR cells.
Data
Phylogenetic relationships between Expansins.
Data
Identification of citrus genes belonging to different families of cell wall remodeling enzymes, and monolignol biosynthesis and polymerization.
Data
Phylogenetic relationships between members of gene families associated with monolignol biosynthesis and polymerization.
Data
Phylogenetic relationships between Carbohydrate esterases.
Article
Full-text available
Arabinogalactan proteins (AGPs) have long been considered to be implicated in several steps of the reproductive process of flowering plants. Pollen tube growth along the pistil tissues requires a multiplicity of signaling pathways to be activated and turned off precisely, at crucial timepoints, to guarantee successful fertilization and seed product...
Article
A precise control of sperm cells delivery and fusion to the egg cell and the central cell is fundamental for the accomplishment of successful double fertilization in flowering plants. This is mostly regulated by female gametophyte egg and central cells, which control the timing of synergids cell degeneration. We recently identified an arabinogalact...
Article
The pollen tube of flowering plants undertakes a long journey to transport two sperm cells for double fertilization. New work on pollen tube guidance has identified an arabinogalactan-derived ovular factor that primes tubes to respond to female gametophyte-secreted attraction signals.
Article
Full-text available
Background and aims: Quercus suber L. (cork oak) is one of the most important monoecious tree species in semi-arid regions of Southern Europe, with a high ecological value and economic potential. However, as a result of its long reproductive cycle, complex reproductive biology and recalcitrant seeds, conventional breeding is demanding. In its comp...
Article
Successful double fertilization and subsequent seed development in flowering plants requires the delivery of two sperm cells, transported by a pollen tube, into the embryo sac of an ovule. The embryo sac cells tightly control synergid cell death, and as a result the polyspermy block. Arabinogalactan proteins are highly glycosylated proteins thought...
Article
Full-text available
Key message AGP update: plant reproduction. Arabinogalactan proteins (AGPs) are a large family of hydroxyproline-rich proteins, heavily glycosylated, ubiquitous in land plants, including basal angiosperms and also in many algae. They have been shown to serve as important molecules in several steps of the reproductive process in plants. Due to the...
Article
Full-text available
Background and aims: Quercus suber (cork oak) is a dominant tree of the Fagaceae in forests of the south-west Iberian Peninsula. It is monoecious with a long progamic phase that provides a comprehensive system for comparative studies in development and sexual reproduction. In this study the distribution of arabinogalactan protein (AGPs) and pectin...
Article
Full-text available
Arabinogalactan proteins (AGPs) are heavily glycosylated proteins existing in all members of the plant kingdom and are differentially distributed through distinctive developmental stages. Here, we showed the individual distributions of specific Arabidopsis AGPs: AGP1, AGP9, AGP12, AGP15, and AGP23, throughout reproductive tissues and indicated thei...
Article
Full-text available
Following studies on the transcriptome of pollen tubes of an agp6 agp11 Arabidopsis double null mutant, together with the knowledge that arabinogalactan protein (AGP) 6 is important for male gametogenesis and pollen germination, we sought to know whether AGP6 could be present in the vegetative cell wall or in the generative cell wall or in both. To...
Article
Full-text available
The influence of three different pollen germination media on the transcript profile of Arabidopsis pollen tubes has been assessed by real-time PCR on a selection of cell wall related genes, and by a statistical analysis of microarray Arabidopsis pollen tube data sets. The qPCR assays have shown remarkable differences on the transcript levels of spe...
Article
Full-text available
Arabinogalactan proteins (AGPs), present in cell walls, plasma membranes and extracellular secretions, are massively glycosylated hydroxyproline-rich proteins that play a key role in several plant developmental processes. After stress treatment, microspores cultured in vitro can reprogramme and change their gametophytic developmental pathways towar...
Article
Full-text available
Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes...
Data
Differentially expressed genes common to agp6 agp11 mutant and treatment with Yariv phenylglycoside reagent for 1 h and 10 h.
Article
Full-text available
Background and Aims Trithuriais the sole genus of Hydatellaceae, a family of the early-divergent angiosperm lineage Nymphaeales (water-lilies). In this study different arabinogalactan protein (AGP) epitopes in T. submersa were evaluated in order to understand the diversity of these proteins and their functions in flowering plants.Methods Immunolabe...
Article
Full-text available
Background Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a prot...
Article
Full-text available
The pollen specificity of the Arabidopsis arabinogalactan protein (AGP) genes AGP6 and AGP11 suggests that they are integral to pollen biogenesis, and their high percent of sequence similarity may indicate a potential for overlapping function. Arabidopsis agp6 agp11 double null mutants have been studied in our laboratory, and in the present work, w...
Article
Full-text available
Arabinogalactan proteins (AGPs) are structurally complex plasma membrane and cell wall proteoglycans that are implicated in diverse developmental processes, including plant sexual reproduction. Male gametogenesis (pollen grain development) is fundamental to plant sexual reproduction. The role of two abundant, pollen-specific AGPs, AGP6, and AGP11,...
Article
Full-text available
Some AGP molecules or their sugar moieties are probably related to the guidance of the pollen tube into the embryo sac, in the final part of its pathway, when arriving at the ovules. The specific labelling of the synergid cells and its filiform apparatus, which are the cells responsible for pollen tube attraction, and also the specific labelling of...