
1.  Introduction
Extreme precipitation poses detrimental effects on agriculture, human health, economy, and the environment 
(IPCC, 2021; Jin et  al., 2021; Kotz et  al., 2022; Lu et  al., 2020). China is one of the regions suffering from 
frequent precipitation extremes (Gu et al., 2022; Wang & Zhou, 2005). In July 2021, a catastrophic flood blew 
Zhengzhou in central Henan Province, China, causing 502 casualties (Wang et al., 2021). Understanding how 
such extreme events evolve in time and space is beneficial for mitigating their impacts. Therefore, it is of great 
significance to improve the understanding of the spatiotemporal evolution behaviors of extreme precipitation 
events.

Under global warming, many regions witnessed significant increases in extreme precipitation events (IPCC, 2021; 
Xu et al., 2021). The impact of climate change on extreme precipitation can be via both thermodynamic and 
dynamic pathways. On the one hand, climate warming leads to increased available atmospheric moisture for 
making extreme precipitation over most parts of the world following the thermodynamic Clausius-Clapeyr 
(CC) relationship (Allen & Ingram, 2002; Tabari, 2020). On the other hand, atmospheric dynamics have also 
been undergoing significant changes under global warming (Horton et  al.,  2015). They result in changes in 
mid-latitude circulation, monsoons, and storm track activities that are closely associated with the occurrence of 
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regional extreme precipitation (Chang et al., 2022; Coumou et al., 2015). A recent study concluded that the ther-
modynamic changes increase extreme precipitation in all global land monsoon regions, while dynamic changes 
are responsible for regional disparities (Chang et al., 2022).

In China, the behaviors of extreme precipitation have been extensively examined, with particular focus on their 
temporal changes. The frequency and intensity of precipitation extremes in China exhibited a slight upward trend 
with regional disparities during the last several decades, especially in summer (Jin et al., 2021; Li et al., 2013; Liu 
et al., 2021; Lu et al., 2020; Wang & Yang, 2017; Zhai et al., 2005). Besides temporal changes, previous studies 
have also investigated the spatial scale and extent of extreme precipitation events in view of the co-occurrence of 
extreme precipitation in neighboring regions (Du et al., 2020; Tan et al., 2021; Touma et al., 2018). For example, 
Tan et al.  (2021) examined the areal extent of extreme precipitation across the globe during 1983–2018, and 
demonstrated significant increases in both monsoon and non-monsoon regions. Touma et al. (2018) evaluated 
the climatological spatial scales of daily precipitation extremes in the United States. They also suggested that 
the length scales of extreme events in the east US display stronger seasonal variation, that is, around 200 km in 
summer and 400 km in winter, while those in the northwest have smaller scales (around 150 km) and exhibit 
marginal variation. Comparatively, the Meiyu precipitation extremes in eastern China have average scales from 
500 km to 1,400 km (Du et al., 2020). However, how these spatial characteristics change with time over the past 
decades remains less understood.

Extreme precipitation events often evolve jointly in both space and time (i.e., co-occurring in contiguous regions 
within a consecutive period), showing spatiotemporal three-dimensional (3D, latitude × longitude × time) conti-
guity characteristics (see an example in Figure 1a). However, the abovementioned studies reduced three dimen-
sions to one dimension or two dimensions, respectively, by focusing on either temporal changes in the fixed areas 
or spatial changes within a predefined period. The complete picture of joint behaviors of extreme precipitation 
events in both time and space, that is, the “true” 3D structures and evolution patterns, remains poorly understood. 
The changes in the 3D behaviors of spatiotemporal contiguous extreme precipitation events (SCEPEs) over the 
past decades have not been revealed. For the first time, here we evaluate the characteristics of the 3D structure 
and evolution of SCEPEs in China from a 3D perspective. Various patterns of SCEPEs along with distinct 3D 
characteristics are identified, and the long-term trends of their multidimensional properties are also investigated.

2.  Data Set and Methodology
2.1.  Data Set

In this study, we use the Global Precipitation Climatology Project (GPCP) data set to extract the SCEPEs. The 
data set has a spatial resolution of 1° × 1° across the global lands and oceans, and has a long-term temporal 
coverage from October 1996 to the present (Huffman et al., 1997). Previous studies have demonstrated that the 
GPCP data set performs well in reproducing extreme precipitation in China (Ma et al., 2009; Nogueira, 2020). 
We collect daily precipitation data in 50°−160°E, 5°S–75°N in the rainy seasons (i.e., May–September) during 
1997–2021. This selected area is larger than the enveloped extent of China's territory to ensure that all the 
SCEPEs influencing China can be selected, as some of such events propagated toward China may be originated 
from outside of China. Such a consideration also explains the reason we choose the GPCP data set, which can 
extract the events originated from the oceans or land areas outside China.

2.2.  Identification of Spatiotemporally Contiguous Extreme Precipitation Events (SCEPEs)

SCEPEs refer to the connected extreme precipitation events that occur synchronously in neighboring regions or 
consecutively in adjacent days, similar to spatiotemporal contiguous heatwaves as defined in previous studies 
(Luo et al., 2022; Reddy et al., 2021). These events exhibit the processes of initiating, growing, diminishing, 
and terminating, evolving across the space and time. For each grid, an extreme precipitation day is first labeled 
when its daily precipitation amount (P) exceeds the 95th percentile (P95) of daily precipitation amounts in all 
rainy days (P ≥ 0.1 mm) in the rainy seasons (i.e., from May to September) of 1997–2021. The selection of the 
P95 threshold is consistent with previous studies (He & Zhai, 2018; Tang et al., 2021). This threshold has also 
been recommended by the World Meteorology Organization (WMO) and Intergovernmental Panel on Climate 
Change (IPCC) (IPCC, 2021; Tank et al., 2009). Then the extreme precipitation days (P > P95) in neighboring 
grids within the preceding and ensuing days are connected and marked as a contiguous event (i.e., SCEPE). 
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Figure 1.
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This spatiotemporally contiguous events tracking (SCET) process is executed by the connected component 3D 
labeling algorithm (Silversmith, 2021), which has been used in tracking contiguous heatwaves (Luo et al., 2022; 
Reddy et al., 2021). More details of the SCET process are described in Supporting Information S1 (Figure S1).

2.3.  Metrics of Contiguous Extreme Precipitation Events

The SCEPEs can be characterized by multidimensional metrics, including frequency, intensity, duration, areal 
extent, and movement (see Table S1 in Supporting Information S1). It is noted that the centroid represents the 
spatiotemporal location, that is, the average of latitude, longitude, and time (i.e., day of year) by weighting the 
area and precipitation intensity of the corresponding grids. The moving direction of SCEPEs is measured by 
the  azimuth angle pointing from the centroid of the first half of the event to the centroid of the second half (Luo 
et al., 2022), similar to previous studies analyzing drought events (Feng et al., 2021; Lloyd-Hughes, 2012).

2.4.  Statistical Methods

The long-term trends of multidimensional metrics of SCEPEs are estimated by the simple linear regression. Their 
statistical significances are evaluated by the modified Mann-Kendall test at the 0.05 level (Hamed & Rao, 1998). 
To identify possibly different propagation patterns of SCEPEs across China, the k-means clustering (Hartigan & 
Wong, 1979) is also applied to the zonal and meridional movements of the events. The optimal number of clusters 
is determined by examining the change of the sum of square error (SSE) and the Silhouette Score with varying 
cluster number from 3 to 8 (Pham et al., 2005). The optimal number is selected when the Silhouette Score reaches 
its peak value and/or the SSE curve shows an “elbow” (crossover point).

3.  Results
3.1.  Climatology of Contiguous Extreme Precipitation in China

A total of 7,741 SCEPEs passing through the territory of China in the rainy seasons of 1997–2021 are identified, 
and 7,305 of them have their centroids located in the mainland of China. Considering that the large-scale events 
often pose more profound damages, we rank the above SCEPEs by the accumulated area and select the top 5% 
(364) events for subsequent analyses. Using a lower threshold (e.g., the top 10% events) allows that more SCEPEs 
are selected in the examinations, but their results (e.g., the spatial distribution and moving patterns; see Figure S2 
in Supporting Information S1) are similar to those of the top 5% events. Table S2 of Supporting Information S1 
summarizes the characteristics of the top 10 largest contiguous events, of which the accumulated areas are larger 
than 4.7 × 10 6 km 2, and the largest event covers a projected area of 5.7 km 2. These events have a mean lifespan 
of 13 days and a mean intensity of 28.14 mm/day. Their total moving distances range from 3,185 to 11,280 km.

Figure 1c shows the spatial distribution of the top 5% (364) large SCEPEs in China, with the size and color 
of the circles representing the accumulated area and magnitude (sum of precipitation amount multiplied by 
the affected area, see Table S1 in Supporting Information S1), respectively. Their average accumulated area is 
1.27 × 10 6 km 2, and the average magnitude 0.43 × 10 8 km 2 × mm. SCEPEs are seen in nearly all portions of the 
mainland of China. Their magnitude displays a geographical tendency of higher values in southeastern areas and 
lower in the northwest. The frequency distributions of the accumulated area and magnitude of the SCEPEs are 
shown in Figure 1d. Most SCEPEs have accumulated areas smaller than 2 × 10 6 km 2 and magnitudes less than 
10 8 km 2 × mm, with a mean intensity of 35.20 mm/day.

The vectors in Figure 1e display the spatial distribution map of the moving direction of large SCEPEs across 
China, with the color representing their corresponding lifespan. On average, SCEPEs in China persist for 
4.95 days and travel 1,540 km. The SCEPEs with more persistent lifespan tend to travel longer. As sown in 

Figure 1.  Definition of spatiotemporally contiguous extreme precipitation event (SCEPE) and the distribution of SCEPEs in China. (a) The spatiotemporally 
contiguous structure of an 8-day eastward-moving SCEPE occurred in northern China. (b) Sketch map of a center cell and its 26 neighbors in three dimensions. (c) 
The spatial distribution of the centroids of 364 large SCEPEs in China during 1997–2021, with size and color representing their accumulated area and magnitude, 
respectively. The shading indicates the elevation in meter, and the two blue curves indicate the Yangtze and Yellow rivers. (d) The probability density function (PDF) of 
the accumulated area and magnitude. (e) The spatial distribution of the movement of SCEPEs, with the starting and ending points representing the weighted centroids of 
the first and second halves of the event, respectively, and the colors representing the lifespan. (f) The rose diagram of the directional distribution of the moving distance 
of SCEPEs in China.
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Figure 1f, most events (252, 69.2%) in China tend to originate from the west and move eastward, possibly related 
to climatological westerly in mid-latitude and southwesterly monsoon circulation. The SCEPEs traveling longer 
distances tend to propagate from west to east. The eastward moving SCEPEs have an average traveling distance 
of 1,596 km, which is slightly longer than those moving westward (i.e., 1,514 km).

As displayed in Figures 1c and 1e, the properties of SCEPEs display obvious regional heterogeneity. The events 
moving eastward are mainly placed in the northern region, and this feature is predominantly prevailing in arid 
northwestern areas such as Xinjiang. The northeastward moving events frequently occur in Northeast China and 
the North China Plain. The southern regions and the Tibetan Plateau tend to receive SCEPEs originated from 
all directions. Also, SCEPEs in the northern region prefer traveling longer distances, compared with those in the 
south. Notably, some SCEPEs in Southwest China also exhibit long-range migration along southeastward and 
northeastward pathways (Figure 1e). To gain a comprehensive picture of the spatial distribution of SCEPEs with 
different properties, we employ the clustering method to categorize those events into different types based on 
their propagation paths (i.e., direction and distance).

3.2.  Cluster Analysis of Spatiotemporally Contiguous Extreme Precipitation in China

Five types of top 5% largest SCEPEs across China are identified by k-means clustering (Figure 2) on the basis of 
the SSE and Silhouette scores (Figure 2a). The spatial distributions of these types are mapped in Figures 2b–2f, 
and their corresponding multidimensional metrics are compared in Figure 3. The clustering results of the top 
10% SCEPEs are similar to that of the top 5% events (Figure S3 in Supporting Information S1), suggesting that 
our classing results are convincing. As shown in Figure 2b, 173 SCEPEs are classified as Type 1 (i.e., localized 
events), which accounts for 47.3% of all SCEPEs in China. They are observed in nearly all regions of China, 
especially Southwest China and the southern Tibetan Plateau. Compared with other types, these events hardly 
propagate across the space, with the shortest moving distance (1,008 km) and slowest speed (322 km/day). They 
also have the smallest areal extent (0.32 × 10 8 km 2 × mm), shortest lifespan (4.20 days), and the relatively strong 
intensity (37.40 mm/day; Figure 3).

Type 2 (southwestward-moving events) tends to travel southwestward and westward, and they are mostly seen 
in southern and southwestern China (Figure 2c). Among the five types, the SCEPEs of Type 2 have the strong-
est intensity (42.67  mm/day) and longest lifespan (5.87  days). Their moving distances are concentrated in 
1,000–2,500 km, at an average moving speed of 383 km/day (Figure 3). Spatially, these SCEPEs mainly occur 
in South China and the Tibetan Plateau (Figure 2c), while a few events are also observed in North China. In 
South China, the southwestward-moving typhoons (Xu et  al.,  2006), the westward-moving low vortex (Chen 
& Huang, 2016), and shear lines (Chen & Yuan, 2022) induced by the easterly flow are likely the main synop-
tic systems driving the southwestward-propagating SCEPEs. Similar to those in South China, the southwest-
ward SCEPEs in the Tibetan Plateau may be related to the westward-moving transverse shear lines. It is also 
known as one of the most important synoptic systems driving heavy rainfall over there (Bao & Yao, 2022; Zhang 
et al., 2017). In contrast, southwestward-propagating SCEPEs in North China with large moving distances may be 
affected by the westward movement of the western North Pacific subtropical high (WNPSH), which significantly 
modulates the position of rain belts over China (Liang & Tao, 2007; Zhao et al., 2012).

Types 3 (short eastward-moving) and 4 (long eastward-moving) both signal an eastward-moving tendency, and 
most of these events occur in the north of 30°N (Figures 2d and 2e). They are relatively long-lived, covering 
large areal extent and traveling at long distances (Figure 3). Compared with Type 3, Type 4 has lower intensity, 
but exhibits larger area, longer lifespan, and longer moving distance at faster moving speed (i.e., 2.26 × 10 6 km 2, 
6.48 days, 2,744 km, and 567.71 km/day, respectively). Spatially, these events can be divided into four categories 
based on their moving destinations, including (a) the SCEPEs moving from Northwest China to North–Northeast 
China, (b) the SCEPEs moving from the eastern edge of Tibetan Plateau to the Yangtze River Basin, (c) the 
SCEPEs moving from the eastern edge of Tibetan Plateau to South China, and (d) the SCEPEs moving from the 
western–central Tibetan Plateau to Southwest China.

The SCEPEs moving from Northwest China to North–Northeast China are likely related to the eastward prop-
agation of the Rossby waves (i.e., the Silk-Road wave-train) in the upper atmospheres over the mid-latitudes 
(Ning et al., 2021; Zhang et al., 2020). These Rossby waves drive the low-pressure systems moving eastward 
along with the westerlies of the East Asian jet stream, resulting in the sequential precipitation processes that 
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occur in Northwest, North, and Northeast China in turn (Orsolini et  al.,  2015). Also, He et  al.  (2021) found 
that the extreme precipitation moving from the Hetao region of Northwest China to the Yangtze River Basin 
and North China may be in response to the blocking high and the short wavelength trough, respectively. For 
example, eastward-moving cold vortex may make the precipitation extremes propagate from North China to 
Northeast China (He et  al.,  2021; Sun et  al.,  2017). In contrast, the SCEPEs moving from the eastern edge 
of Tibetan Plateau are closely related to the eastward- and southward-moving tracks of the southwest vortex, 
respectively (Chen et al., 2007; Fu et al., 2014). Along the eastward-moving track, the southwest vortex moves 
eastward from the eastern edge of the Tibetan Plateau to the Yangtze River Basin, driving sequential precipitation 
processes in the areas along the way (Figures 2d and 2e). The southward-moving southwest vortex can result in 

Figure 2.  Clustering results of the propagating patterns of SCEPEs in China during 1997–2021. (a) The selection of the optimal cluster number based on the sum 
of square error (SSE) and Silhouette Score. (b–f) The results of five clusters of the SCEPE patterns, with the number (percentage) in the upper-right indicating the 
frequency (proportion) of each cluster.
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Figure 3.  Boxplots of the multiple metrics of five clusters of SCEPEs in China during 1997–2021: (a) magnitude, (b) intensity, (c) lifespan, (d) mean duration, (e) 
accumulated area, (f) mean area, (g) moving distance, and (h) moving speed. The box is drawn from its first quartile (Q1) to its third quartile (Q3), with a horizontal line 
drawn in the box representing the median. The lower limits indicate Q1 less 1.5 times the interquartile range (IQR), and the upper limits indicate Q3 plus 1.5 times IQR.
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sequential rainfall events occurring in Southwest and South China (Figure 2d). The SCEPEs moving from the 
western–central Tibetan Plateau to Southwest China (Figures 2d and 2e) are consistent with previous studies 
(e.g., Nie & Sun, 2021). In such a case, a Rossby wave-like pattern originated from Northeast Atlantic induces 
upper-atmospheric low over the Tibetan Plateau and upper tropospheric divergence and rising motion over South-
west China (Huang & Cui, 2015).

Compared with other types, only 19 events are identified as Type 5 (northward-moving events, Figure 2f). These 
events feature a northward moving pattern and have the lowest magnitude (0.37 × 10 8 km 2 × mm) and intensity 
(25.1 mm/day), and the shortest lifespan (4.68 days), moving at a relatively fast speed and traveling at 511.76 km/
day on average (Figure 3). Moreover, more than half of the SCEPEs are observed in Northeast China and may 
be related to the northward-moving WNPSH. The movement direction of WNPSH significantly modulates the 
location of the Northeast China cold vortex that plays a key role in precipitation in Northeast China (Wang 
et al., 2007). Notably, the northward movement of tropical cyclones (TCs) can also induce the sequential precip-
itation occurring from the south to north of Northeast China and thus is also another key factor contributing to 
SCEPEs (Zhang et al., 2018; Han et al., 2019). There is a noticeable difference in the intraseasonal-scale tempo-
ral distributions between Type 5 and Type 2. Type 5 tends to occur earlier than Type 2 does. The occurrence 
proportion of Type 5 in June is higher than that of Type 2, while the proportion of Type 5 is smaller (Figure S4 
in Supporting Information S1). It suggests that compared with Type 5, Type 2 is more likely to occur in later 
subperiod of the rainy seasons. This is consistent with the southward retreatment of WNPSH in later summer.

3.3.  Temporal Changes of Contiguous Extreme Precipitation in China

Figure 4 shows the yearly evolution of frequency and multidimensional metrics of SCEPEs in China since 1997. 
The yearly metrics are compared by averaging all SCEPEs in the same calendar year. The SCEPE frequency has 
been increasing from 8 in 1997 to 31 in 2020, at a rate of 4.28 events per decade (p-value < 0.05; Figure 4a). 
Significant growing trends are also seen in the occurrence frequency of all five clustered SCEPE types (Table S3 
in Supporting Information S1). These increasing trends are consistent with previous studies (Ding et al., 2019; 
Shi et al., 2018; Zhang & Zhou, 2020), and are likely due to the increasing water vapor content in the atmosphere 
under global and regional warming (Chen et al., 2022; Wang et al., 2018). According to the CC relationship, the 
water vapor saturation concentration will increase by 6%–7% per °C of warming, and the median precipitation 
is predicted to increase by 2%–3% per °C (Ingram, 2016). The rapid increases in extreme precipitation events in 
China over the past two decades are possibly linked to the Atlantic Multidecadal Oscillation (AMO) shift to a 
warm phase (Ding et al., 2019; Gu et al., 2022). This shift has a strong modulation on the Mongolia anticyclone 
activity and the East Asian summer monsoon circulation (Ding et al., 2019; Gu et al., 2022).

Slight increasing trends are seen in magnitude, intensity, lifespan, mean duration, accumulated and mean areas 
(Figures 4b–4g). The median area of the events has been enlarged significantly at a trend of 22,409 × 10 5 km 2 
(p-value < 0.1). It is especially noticed that the moving distance and speed of SCEPEs in China have been declin-
ing since the late 1990s (Figures 4h and 4i). In particular, the moving speed has been slowed down by 5.22 km/
day per decade, and the total moving distance has been shortened by 100.26 km per decade.

4.  Conclusions and Discussions
Extreme precipitation events have been one of the most important issues in climate studies. Precipitation extremes 
often evolve jointly in both space and time, and exhibit 3D (latitude × longitude × time) spatiotemporal connec-
tivity. However, how these spatiotemporally contiguous events are distributed and changed over the past decades 
has not been fully investigated, as most existing studies focused on either only temporal change in a fixed area or 
spatial extent within a specified period by reducing three dimensions to one dimension or two dimensions. Our 
current study introduces a 3D stracking method to characterize the extreme precipitation events that are contigu-
ous in both time and space (i.e., SCEPEs).

A total of 364 large SCEPEs across China during 1997–2021 are identified and their changes are examined. It is 
found that SCEPEs are distributed throughout China and exhibit regional features. They have a relatively longer 
moving distance and an eastward moving trend in the northwest, and higher intensity and stronger localization 
in the southeast. Five different categories of SCEPEs are identified, namely, localized, southwestward-moving, 
short eastward-moving, long eastward-moving, and northward-moving events. Further examinations suggest that 
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the frequency of SCEPEs in China has been significantly increased during 1997–2021, and the overall moving 
distance and moving speed have been decreased.

Our study provides the first comprehensive assessment of the multi-dimensional characteristics of contiguous 
extreme precipitation events that occur simultaneously in adjacent areas and neighboring days. The eastward 
moving patterns of SCEPEs (e.g., Type 2 and Type 3) revealed in our studies are consistent with previous stud-
ies. For example, He et al. (2021) noticed extreme precipitation moving from North China to Northeast China, 
and from the Hetao Area to North China and the Yangtze River Basin. Orsolini et al. (2015) also explored a link 
between eastward propagating extreme precipitation in North China and the Silk-Road wave-train. Our further 
examinations demonstrate significant increasing trend in the frequency of SCEPEs since the late 1990s. The 
increasing frequency in precipitation extremes in China has also been noticed by many previous studies (Ding 
et al., 2019; Shi et al., 2018; Zhang & Zhou, 2020). This increase is likely caused by the increasing water vapor 
content in the atmosphere under global and regional warming (Chen et al., 2022; Wang et al., 2018). These rapid 
increases (especial in past two decades) are linked to the shift of AMO to a warm phase (Ding et al., 2019).

Our results also reveal decreases in the moving distance and moving speed of SCEPEs, which have not been 
revealed in previous studies. This slowing movement is possibly related to the weakening of the upper atmos-
pheric westerlies and storm track activities over the mid-latitudes in recent decades under global warming 
(Coumou et  al.,  2015; Dong et  al.,  2022; Lehmann et  al.,  2014). Recent studies by Kossin  (2018) and Lai 
et  al.  (2020) showed that the translation speed of TCs and TC-induced extreme precipitation has also been 
slowed. The reductions in the moving speed and distance of SCEPEs in China have important implications, as 
a slowing movement in extreme precipitation events could have a profound effect on local residents and their 
activities (Fowler et al., 2021; Kossin, 2018). Under continuing climate change, the locally accumulated impacts 

Figure 4.  Yearly series of the frequency and the median values of SCEPE metrics in China during 1997–2021: (a) frequency, (b) magnitude, (c) intensity, (d) lifespan, 
(e) mean duration, (f) accumulated area, (g) mean area, (h) moving distance, and (i) moving speed. The number in the upper-left corner shows the unit of the metric. 
The straight line indicates the corresponding linear trend, with the blue shading indicating the 95% confidence interval. The annotation number denotes the magnitude 
of the trend in per decade, and the number in the parentheses indicates the corresponding significance of the trends in terms of p-value evaluated by the modified 
Mann-Kendall test.
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by extreme precipitation would be exacerbated, and vulnerable population exposure to such events are expected 
to increase. Although the population exposure to precipitation extremes has been assessed in previous studies 
(Zhang et al., 2018), the exposure to contiguous extreme precipitation events under past and future global change 
has not been assessed and warrants further investigations.

Our investigations of the SCEPEs in China in the current study are based on an observational data set (i.e., 
GPCP). Also, it is of interest to examine the SCEPEs and their behaviors in model simulations. Our analysis 
results suggest that the 3D tracking method can well capture the dynamic evolution patterns of the contiguous 
extreme precipitation events. This method can thus be employed in other regions that severely suffer from frequent 
precipitation extremes. In addition, our scheme can be applied to probe into the 3D structure and moving patterns 
of other types of extreme weather and climate events such as droughts and heat stress extremes (Herrera-Estrada 
et al., 2017; Luo & Lau, 2017, 2021).

Data Availability Statement
The data set used in this study is available to the public. Daily precipitation data are collected from the Global 
Precipitation Climatology Project (GPCP) data set, which is available at https://www.ncei.noaa.gov/data/
global-precipitation-climatology-project-gpcp-daily/access/. The spatiotemporally contiguous events tracking 
approach based on the connected component 3D labeling algorithm was implemented in the Python package 
connected-components-3d (https://pypi.org/project/connected-components-3d; Silversmith, 2021).
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