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Abstract: A silent monster, breast cancer, is a challenging medical task for researchers. Breast cancer is a lead-
ing cause of death in women with respect to other cancers. A case of breast cancer is diagnosed among women
every 19 seconds, and every 74 seconds, a woman dies of breast cancer somewhere in the world. Several risk
factors, such as genetic and environmental factors, favor breast cancer development. This review tends to pro-
vide deep insights regarding the genetics of breast cancer along with multiple diagnostic and therapeutic ap-
proaches as problem-solving negotiators to prevent the progression of breast cancer. This assembled data main-
ly aims to discuss omics-based approaches to provide enthralling diagnostic biomarkers and emerging novel
therapies to combat breast cancer. This review article intends to pave a new path for the discovery of effective
treatment options.
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1. INTRODUCTION

Breast  cancer  has  been  described  as  the  most  prevalent  life-
threatening  cancer  in  women.  Worldwide,  breast  cancer  causes
more than 50,000 deaths annually, accounting for 18% of all wom-
en deaths [1-4]. A recent publication has estimated that approxi-
mately 80% of women diagnosed with breast cancer each year are
aged > 45. In the USA, the health burden of breast cancer is increas-
ing at  a  drastic  rate,  with  232,240 newly diagnosed patients  and
39,620 deaths per year [5, 6].

Male breast cancer is a rare disease accounting for only 0.5-1%
worldwide. The main reason for the low mortality rate in males is a
low concentration of breast tissue and the difference in the milk en-
docrine environment. The milk glands comprise multiple compo-
nents like milk storage gland, milk duct, adipose tissue, and stro-
mal tissues [7]. The high mortality rate in the females is due to the
compact and dense quantity of epithelial and stromal tissues that
have less fatty tissue [8]. All stages of breast cancer are displayed
in Fig. (1).

Breast cancer is a heterogeneous disease and consists of vari-
ous subtypes linked with multiple clinical outcomes. The aggres-
sive nature of breast cancer, high metastatic rate, multifactorial oc-
currence, and poor diagnostic and prognostic options have limited
the development of promising therapies. Breast cancer may there-
fore be considered as a complex and multifactorial disease that is at-
tributed to both sporadic and familial factors. In terms of family his-
tory,  only  up  to  20%  of  patients  may  transfer  breast  cancer,  al-
though its tendency depends on genes [9].
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Somatic and germline mutations lead to instability in chromo-
somes,  abnormality  in  cell  cycle  regulation,  and  inappropriate
DNA repairing [10]. Thus, all these DNA disintegrations, unfortu-
nately, lead to breast cancer [11, 12]. It is diagnosed that BRCA1,
BRCA2, TP53, SKT11, PTEN, CDH1, MSH12, chek2, palb2, and
ATM are major germ lines that become altered in breast cancer in-
heritance.  BRCA1 and BRCA2 germ lines are more predisposed
due to their high penetrance. Almost 40% of inherited breast can-
cer occurs by alteration in BRCA1 and BRCA2 germ lines. Breast
cancer risk due to BRCA1, BRCA2, BRCA1/2 genes is 36- 90%,
but at the age of 80-years, this risk accounts for 72% and 69%, re-
spectively [13].

HER2-positive  breast  cancer  patients  have  extra  copies  of
genes in their cells that encode a protein known as Human epider-
mal  growth  factors  receptor  2  (HER2-Positive).  This  protein  in-
creases by two-fold the rate of division of cells in cancer cells and
enhances metastatic nature. Thus, HER2-positive breast cancer is a
second lethal cause of death after lung cancer [14] and is common-
ly found in females [15].

Etiological studies prove that the pathogenicity of breast can-
cer varies from its types to subtypes [5]. BRCA1 [16] and BRCA2
are  the  most  disposed  genes  involved  in  breast  cancer  [16],  but
there  are  several  genes  according  to  their  penetrance,  including
Tp53, ATM, PTEN, LKB 1, HRAS1, NAT1, NAT2, GSTM1, GST-
P1,  GSTT1, CYP1A1, CYP1B1, CYP2D6, CYP17, CYP19, ER,
AR,  AR,  COMT,  UGT1A1,  TNF  α,  HSP70,  HFE,  TFR,  VDR,
APC, APOE, CYP2E1, EDH17B2, HER2, and TβR-I (Table 1).

This is a review of the current literature/landmark trials in the
diagnosis and treatment of breast cancer. We have attempted to cov-
er this vast topic in this review and hope that it will serve as a refer-
ence for clinicians who treat patients with breast cancer.
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Fig. (1). Schematic representation of stages in breast cancer. (A higher resolution/colour version of this figure is available in the electronic
copy of the article).

Table 1. Genetics of breast cancer.

Gene Name
Cytogenetic

Location
Function Refs.

BRAC1 Breast cancer type 1 susceptibility gene 17q21.31 Cell-cycle control, DNA repair, and chromosomal stability [17, 18]

BRCA2 Breast cancer type 2 susceptibility gene 13q13.1 Cell-cycle control, DNA repair, and chromosomal stability [19]

Tp53 Transformation-related protein 53 17p13.1 Regulate DNA repair and cell division [20-23]

ATM Ataxia telangiectasia mutated 11q22.3
Coordinates DNA repair and maintains the stability of the cell's genetic

information
[24, 25]

PTEN Protein-tyrosine phosphatase PTEN 10q23.31
Tumor suppressor, regulation of cell cycle, modified fats and protein,
the formation of new blood vessels and maintenance of the stability of

cell
[26, 27]

LKB1 Serine/threonine kinase 11 19p13.3
Regulates cell growth, controls cell division, as a tumor suppressor,

helping in the orientation of cell, provides energy to cell, and promotes
apoptosis

[28-30]

HRAS1 Harvey rat sarcoma viral oncogene homolog 11p15.5 Regulates cell division [30, 31]

NAT1 and NAT2 N-acetyltransferases1 and N-acetyltransferases2 8p22 Activation of aryl-amine, hydrazine and carcinogens [32, 33]

GSTM1 Glutathione S-transferase mu 1p13.3 Detoxifies the electrophilic compounds [34]

GSTP1 Glutathione S-transferase pi 1 11q13
Regulation of metabolic pathway MP, detoxification of numerous

chemicals
[35]

GSTT1 Glutathione S-transferase Theta1 gene 11q
Regulation of metabolic pathway MP, detoxification of numerous

chemicals
[36, 37]

CYP1A1 Cytochrome P450 family 1 subfamily A member 1 15q24.1
Regulates the estrogen pathway, metabolism of estrogens and PAHs.

But in breast cancer, its functions are still unknown
[38]

CYP1B1 Cytochrome P450 family 1 subfamily B member 1 2p22.2
Helps in the breakdown of drug and fats and the level of this enzyme ex-

ceeds in breast tissue
[36]

CYP2D6 Cytochrome P450 family 2 subfamily D member 6 22q13.2 Involved in MP, metabolism of many commonly prescribed drugs [36]

CYP17 cytochrome P450 family 17 10q24.3 Regulates estrogen pathway [39]

CYP19 cytochrome P450 family 17 11q21.1 Catalyzing the conversion of androgens into estrogen [23]

ER-gene Estrogen receptor 6q25
Regulates estrogen pathway, binding and transfer of estrogens to the nu-

clei; ER modulates transcription of several growth factors
[40, 41]
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Gene Name
Cytogenetic

Location
Function Refs.

PR-gene Progesterone receptor 11q22-23 Regulate estrogen pathway [42]

COMT-gene Catechol-O-methyl transferase 22q11.2
Regulates estrogen pathway, conjugation and inactivation of catechol

estrogen
[43]

UGT1A1-gene Uridinediphosphateglucuronosyltransferase 1A1 2q37
Helps in the progression of metabolic pathways (MP), regulation of EP,
phase II drug metabolism, and maintains intracellular steady-state lev-

els of estrogen.
[36]

TNFα Tumor necrosis factor α 6p21
Controls immunological pathway (IP), a central mediator in the inflam-

matory response and immunological activities of tumor cells.
[41]

HSP70-gene Heat shock protein 70 6p21
Acts as a molecular chaperone, is involved in regulation of structure,

subcellular localization, and turnover of cell proteins
[44]

TFR and HFE Transferrin receptor (TFR) and haemo- chromatosis (HFE) 6p21 and 3q Take part in iron metabolism [44]

VDR Vitamin D receptor 12q Regulates the process of cell differentiation. [45]

APC Aberrant methylation of the adenomatous polyposis coli 5q22
Inhibits the progression of cells from G1 to S phase, apoptosis and cell--

cell interactions
[46]

APOE Apolipoprotein E 19q13.2 Involved in lipid metabolism [47]

CYP2E1 Cytochrome P450 2E1 10q24.3-ter
Involved in a metabolic pathway, metabolism of acetone, ethyl glycol

and ethanol
[45]

EDH17B2 17 beta-hydroxysteroid dehydrogenase 2 17q12-21
Helps in the regulation of EP, catalyzes the reaction between estrogen

and estradiol.
[45]

HER2 Human epidermal growth factor receptor 2 17q21 Involved in proto-oncogene, control of cell growth and proliferation [45]

TβR-I Transforming growth factor-β receptor-1 9q33-34 Controls cell growth [45]

2.  ADVANCEMENTS  IN  TECHNOLOGIES  TO  COMBAT
BREAST CANCER

The heterogeneous nature of breast cancer draws the attention
of researchers to find more enthralling and promising diagnostic
and treatment options. This study intends to emphasize recent ap-
proaches in breast cancer diagnosis and treatment to untangle the in-
tricate molecular mechanisms underlying and to uncover molecular
candidates with effective diagnostic and prognostic value.

2.1. Omics-based Biomarkers for Breast Cancer Diagnosis

Omics is characterized by high throughput interfaces that accel-
erate the investigation of genomics,  proteomics,  transcriptomics,
and metabolomics in an equitable manner. Omics-based approach-
es are considered as the weapon of choice to bisect the complex bio-
logical  systems  at  different  dimensions  in  the  field  of  oncology
[48, 49]. This powerful vision of omics has contributed largely to
unfold  candidate  biomarkers  for  cancer  diagnosis  and  prognosis
[49]. Within the field of omics, RNA-based transcriptome analyses
are  an  indispensable  approach  for  interrogation  of  RNA
metabolism, biogenesis, and transcriptome analysis [50, 51]. The
ncRNAs are of two types with respect to the difference in length:
one type is small ncRNAs (smaller than 200 bp) including microR-
NA, tRNA, rRNA, etc. [52], and the second type is long non-cod-
ing RNAs (greater than 200 bp) [53]. Only 2% of the genome is en-
coded into proteins and 75% of genome is transcribed into non-cod-
ing RNAs. Our study sought to highlight  role of  miRNAs, cirR-
NAs, and LncRNAs as a biomarker for the diagnosis of breast can-
cer.

2.1.1. miRNAs

One  of  the  important  master  gene  regulators,  MicroRNAs
(miRNAs) are small, non-coding, multifunctional, conserved, and
single-stranded RNA molecules ranging in length from 19-25 nu-
cleotides [54]. miRNAs have emerged as leading players in the car-
cinogenic  process  due to  post-translational  regulatory  activity  in

gene expression of many biological functions (Fig. 2) [55]. miR-
NAs perform diverse regulatory roles in the numerous aspects of
cell development, differentiation, apoptosis, and cell proliferation
[56].

Breast cancer is a growing public health threat and challenge
that imposes serious economic burdens all over the world. In breast
cancer, the tumor develops in the ductal and glandular regions of
the  breast  [57].  Altered miRNAs in  breast  cancer  have reshaped
our understanding of the regulatory role of miRNAs in a breast can-
cer cell [57-59]. miRNAs are emerging as a game-changer in the
regulation of initiation, progression, and metastasis of breast can-
cer. More than half of miRNAs encoding genes are present in can-
cer-linked regions [60]. miRNAs associated with breast cancer are
divided into oncogenic RNAs (oncomiRNAs) and tumor suppres-
sor RNAs (ts miRNAs). Both miRNAs target multiple aspects of tu-
mor development through the complex regulatory mechanism. Th-
ese mechanisms include tumor growth, proliferatory signals, metas-
tasis, invasion, apoptosis pathways, angiogenesis, and cell energy
[61, 62].

In recent years, the precise role of miRNAs in exploring cancer
malignancy has shed light on the potential use of miRNAs as a bio-
marker  for  cancer  diagnosis  (Fig.  3)  [63].  Identification of  miR-
NAs, their targets, and the function they perform has revealed their
true potential as a novel compound in cancer diagnosis and manage-
ment [64]. A different level of expression of miRNAs marks the dif-
ference  between  healthy  and  disease  clinical  trials,  which  is  of
great consideration for diagnosis of disease for which no diagnostic
marker exists [65].

2.1.1.1. miRNAs in Tumor Initiation

Cancer stem cells which are termed tumor-initiating cells con-
tribute to cancer progression. These breast cancer-initiating cells
are self-renewal due to Bmi-1 (Hedgehog pathway). Different miR-
NAs (miR-200c, Let-7, miR-30) perform regulation of Bmi-1 for
BT-IC self-renewal. Let-7 directly targets Ras, miR-30 targets
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Fig. (2). miRNAs biogenesis and its role as a biomarker in breast cancer. (A higher resolution/colour version of this figure is available in the
electronic copy of the article).

Fig. (3). Schematic representation of the role of miRNA biomarker in breast cancer. (A higher resolution/colour version of this figure is avail-
able in the electronic copy of the article).
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ubiquitin-conjugating enzyme 9 (Ubc9) and Integrin β3 (ITGB3)
and  regulates  the  self-renewal  ability  of  breast  cancer-initiating
cells in the early process of breast tumorigenesis [66, 67].

2.1.1.2. miRNAs in Cell Proliferation and Cell Cycle

One of the major hallmarks of breast cancer is cell prolifera-
tion.  By  targeting  multiple  factors  such  as  cyclin  and  kinase,
growth promoters, interruptions in the cell cycle, and cell prolifera-
tion, miRNAs perform multiple regulatory functions. One of the tar-
gets of miRNAs is the cyclin E1 gene which is an important regula-
tor of the cell cycle [68]. miR-483-3p directly targeted cyclin E1
and decreased cyclin E1 prevent cancer cells from proceeding into
the S phase for DNA synthesis. Up-regulation of miR-143 decreas-
es breast  cancer cell  viability.  Studies have shown that  miR-455
overexpression and downregulation of miR-424 impose a negative
impact on cell proliferation. Other studies also support the role of
miR-543 in inhibiting cell proliferation and cell cycle and promot-
ing apoptosis of cells. Overexpression of miR-1207-5p, miR-135b,
and miR-492 and suppressed expression of  miR-15a/16 promote
cell  proliferation  and  cell  cycle  progression.  miR-26a,  miR-30b,
miR-365, miR-22, and miR-708 are also involved in the regulation
of cell proliferation and cell cycle [58, 66].

2.1.1.3. miRNAs in Metastasis and Cell Invasion

Metastasis accounts for major deaths in breast cancer. In metas-
tasis,  the  tumor  invades  the  neighbor’s  tissues  from the  primary
site. For metastasis cancer, cells have migratory, stem-like capabili-
ties  and  invasive  abilities.  Epithelial-mesenchymal  transition
(EMT) is one of the important factors of metastasis [69]. Families
of miRNAs that contribute to metastasis and increased invasion are
miR-373/520,  miR-155,  miR-29a,  miR-10b,  miR-21,  and  miR-9
[57].

Elevated miR-200c and miR-141 both promote metastasis in
breast cancer. miR-124a and miR-26b promote anti metastasis and
anti-invasive  activities  in  breast  cancer  cells.  miR-200  family,
miR-200b and miR-200b also induce metastasis by increasing mi-
gratory  abilities  of  cancer  cells.  Up  regulation  of  miR-122  and
miR-374a expression increases migration and cancer cell invasion.
In  contrast,  miR-148a,  miR-340,  miR-340,  miR-33b  miR-497,
miR-211-5p,  miR-211-5p,  miR-494,  miR-335,  miR-133a,  and
miR-124  and  miR-240-5p,  miR-7,  miR-17/20,  miR-30,  miR-22,
miR-22,  miR-126,  miR-145,  miR-146,  miR-193b,  miR-205,
miR-206, miR-335, miR-448, miR-661 and let-7 inhibit metastasis
and invasion activity of cancer cells [57, 58].

2.1.1.4. Role of miRNAs in Hypoxia and Angiogenesis

One of the major regulators of angiogenesis is hypoxia which
promotes cell proliferation and metastasis [70]. The regulatory role
of miRNAs in hypoxia and angiogenesis provides new insight into
the mechanism of regulation of miRNAs in breast cancer [71]. Re-
cent researches have elucidated the up-regulation of miR-210 and
overexpression of miR-191 in breast cancer in hypoxic conditions.
miR-29b functions as an anti-angiogenesis and anti-tumorigenesis
agent. miR-497 targets VEGF and HIF-1α and has an anti-angioge-
nesis and anti-tumorigenesis effect. miR-24 is also hypoxia-induci-
ble miRNA. Downregulation of miR-140-5p in cancer tissues pro-
motes  anti-angiogenesis  and  anti-  tumorigenesis  effect.  Many
studies have investigated the role of miR-100 as an angiogenesis
and tumorigenesis suppressor [58].

2.1.2. Circular RNAs

Circular  RNAs,  circular,  endogenous,  and  regulatory  RNA
molecules, that were once considered extras, are in the spotlight as

a key player in the regulation of multiple diseases like diabetes and
cancer. The role of cirRNAs in recent years has directed towards
determining cancer prognosis, drug resistance and treatment effica-
cy [72]. There is a huge body of literature that supports the vital
role of cirRNAs in multiple cancer pathways, such as they act as
sponges for miRNAs which has made them a hotspot for cancer re-
search (Fig. 4) [73, 74].

Aberrant expression of cirRNAs at different stages of cancer
cell proliferation, metastasis, invasion, and apoptosis suggests their
potential role as a diagnostic and prognostic biomarker for breast
cancer [75]. The association of cirRNAs with breast cancer makes
them  ideal  candidate  biomarkers  for  cancer  diagnosis.  Studies
show  that  hsa_circ_100219,  hsa_circ_406697,  and  hsa_cir-
c_006054  are  down-regulated  and  hsa_circ_104689,  hsa_cir-
c_103110, and hsa_circ_104821 are up-regulated in breast cancer
[76]. Studies have shown a very low amount of circRNA-000911
in breast cancer cell lines. Downregulation of circTADA2A-E6 in-
hibits metastasis and progression in breast cancer cells [77].

hsa_circ_005239  is  one  of  the  cirRNAs  which  are  overex-
pressed in breast cancer and promote proliferation and colony-form-
ing ability of breast cancer cells; these cirRNAs act as a sponge to
miR-34a [78]. Elevated expression of hsa_circRNA_0005505 pro-
motes metastasis and invasion of cancer cells by acting as a sponge
to  miR-3607  for  its  action  [79].  The  upregulation  of  hsa_circR-
NA_0000479 and hsa_circ_008717 in breast cancer cells regulates
cell  proliferation  and  apoptosis.  The  upregulation  of  CircDEN-
ND4C promotes the proliferation of breast cancer cells in the hy-
poxic  environment.  The  upregulation  of  Hsa_circ_0001982  in
breast cancer cells regulates cell invasion and apoptosis by target-
ing miR-143. Upregulation of Hsa_circ_0008039 in breast cancer
cells acting as a sponge to miR-432-5p regulates cell migration and
cell cycle. hsa_circ_0011946 serves as a sponge of miR-26a/b by
targeting replication factor C subunit 3 (RFC3) and promotes mi-
gration and invasion in breast cancer cells [72].

2.1.3. LncRNAs

LncRNAs  are  an  emerging  theme  in  the  area  of  noncoding
RNAs. Recent studies have demonstrated a broad spectrum of lncR-
NAs that are involved in tumor progression, apoptosis, cell growth,
and regulation of breast cancer-driving pathways [80]. Recent syste-
matic genomic studies have revealed over 8000 lncRNAs in the hu-
man  genome,  which  perform  multiple  biological  functions  [81].
Several recent studies have shown that lncRNAs are important reg-
ulators of breast cancer pathways at epigenetic, transcriptional, and
post-transcriptional levels [82]. LncRNAs function in gene regula-
tion through a number of mechanisms (Fig. 5) which involve chro-
matin  alteration,  epigenetic  regulation,  and  marking  X-chromo-
some inactivation. LncRNAs can fix complementary RNA and dis-
turb RNA processing and localization [83]. The dealing of lncR-
NAs  with  proteins  can  disturb  protein  function  and  localization
along with facilitating the establishment of riboprotein complexes
[84].

2.1.3.1. Oncogenic lncRNAs in Breast Cancer

There have been extensive oncological studies on the role of ln-
cRNAs in breast cancer progression and metastasis. Oncogenic ln-
cRNAs are well known for their anti-apoptosis, metastasis, and an-
giogenesis activity. H19 is well characterized oncogenic RNA in
breast  epithelium  cells  which  have  been  reported  to  be  overex-
pressed in cancerous cells. H19 acts as a precursor of miR675 and
suppresses pRB expression [85, 86]. Steroid receptor RNA activa-
tor (SRA) is the first lncRNA that does not perform any catalytic
and epigenetic function. The up-regulation activity of SRA in
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Fig. (4). Overview of circular RNAs in breast cancer diagnosis. (A higher resolution/colour version of this figure is available in the electronic
copy of the article).

Fig. (5). Concise overview of LncRNA in breast cancer. (A higher resolution/colour version of this figure is available in the electronic copy
of the article).
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breast cancer cells promotes cell proliferation and differentiation,
suggesting it as an oncogenic RNA [87, 88]. LINC00324 (00324
non-long  intergenic  coding)  is  downstream  of  the  CTC1  gene
which is involved in DNA replication. Its overexpression is associ-
ated with patient survival [89]. ARA(Adriamycin resistance-associ-
ated) is an intronic lncRNA that modulates multiple cancer concern-
ing pathways like metabolic pathways, cell cycle pathways, cell ad-
hesion-related pathways, and MAPK signaling pathway [90]. AN-
RASSF1 is an antisense RNA transcribed from tumor suppressor
gene RASSF1, which promotes cell proliferation and acts as onco-
genic lncRNA [91]. Urothelial carcinoma-associated 1 (UCA1) is a
lncRNA that promotes breast cancer cell proliferation by suppress-
ing p27 [92]. PTPRG-AS1 (tyrosine phosphatase protein, receptor
type, G, antisense) is an antisense oncogenic lncRNA. Its lower ex-
pression is associated with longer life expectancy [93].

HOX transcript antisense RNA (HOTAIR) is a well-known ln-
cRNA that acts as an epigenetic regulator. Up-regulated expression
of HOTAIR in breast cancer tissue suggests it as a potential bio-
marker [94, 95]. HOTAIRM1 is overexpressed in the basal-like BC
subgroup and has recently been revealed as an lncRNA, which has
been exposed to relate with polycomb repressive complexes 1 (PR-
C1) and 2 (PRC2) [96]. SOX2OT elevates the expression of SOX2,
which  indicates  its  potential  oncogenic  role  [97].  LSINCT5  is
stress-induced antisense lncRNA transcribed by RNA polymerase
III. Overexpression of LSINCT5 promotes breast cancer cell prolif-
eration [98, 99]. CYTOR is an intergenic lncRNA that is involved
in multiple cancer concerning pathways and functions as a tumor
marker and oncogenic lncRNA [100]. ANRIL is an antisense non--
coding lncRNA that promotes cell proliferation by modulating mul-
tiple cancer concerning pathways and acts as an oncogenic lncR-
NA [101]. MALAT1 (Metastasis Associated Lung Adenocarcino-
ma Transcript 1) is an intergenic lncRNA that is highly expressed
in breast cancer cells and is associated with metastasis [93].

2.1.3.2. Tumor Suppressive lncRNAs in Breast Cancer
Some lncRNAs are cataloged as tumor suppressor lncRNAs be-

cause of their tumor repressor activity. The growth arrest-specific
5(GAS5) is best studied overlapping coding RNA, which controls
cell proliferation and apoptosis and acts as a potential tumor sup-
pressor. It is reported that the expression of GAS5 is downregulat-
ed in breast cancer cells as compared to normal cells. GAS5 is regu-
lated by miR21, an oncogenic micro RNA that regulates multiple
genes involved in cell growth and apoptosis [102, 103]. Maternal
expression 3 (MEG3) is a well-characterized lncRNA. A low ex-
pression of this lncRNA is involved in breast cancer cells, and it
plays an important role as a tumor suppressor. It acts as a sponge
for multiple miRNAs as miR-21, miR-29, miR-9, and miR- 494. Its
supportive role is due to the fact that it increases the level of nu-
clear factor expression κB (NF-κB) and expression of p53 and re-
presses the pathways that  lead to oncogenic behavior  [104-106].
LINC01355  is  a  long  intergenic  non-coding  RNA that  represses
cell proliferation, the reason for which they are called suppressor ln-
cRNAs [107]. NBAT1 Neuroblastoma associated transcript 1 is a
long intergenic non-coding RNA that interacts with PRC2 member
(complex repressive polyombomb 2) EZH2 (zeste 2 enhancer) to
suppress breast cancer cell migration and invasion [108]. Zfas1 is
an overlapping antisense novel RNA present in mammary glands,
which is expressed differently during pregnancy and lactation. Ex-
pression of this lncRNA is low in breast cancer cells and it acts as a
tumor suppressor [109].

2.2. Recent Advancement in the Treatment of Breast Cancer

The increasing prevalence of breast cancer in the world is a ma-
jor concern for women morbidity and it has gained a great deal of
attention from researchers. Different conventional treatment meth-

ods such as surgery, radiotherapy, chemotherapy, and drugs have
made a notable impact on the lives of patients, but not all are safer
[110-112]. Despite the remarkable progress in recent years, all con-
ventional methods of treatment have low specificity, cellular up-
take, and toxicity [113]. These therapies have a short and acute tox-
ic effect on normal patient cells. Even drug-based chemotherapy an-
thracyclines and taxanes have limited use in treatment [114-116].
The  dramatic  shift  from  the  use  of  conventional  treatment  for
breast cancer management to photodynamic therapy, immunothera-
py, gene therapy, nanotechnology, and computational drug design-
ing has led to improved therapeutic options for breast cancer man-
agement (Fig. 6) [117].

2.2.1. Hyperthermia or Thermotherapy

Hyperthermia is a temperature-based oncological intervention
of the 20th century for cancer management. In hyperthermia, the ar-
tificial elevation of temperature of cancer tissue causes necrosis of
cancer  cells.  Hyperthermia  may  reduce  tumor  growth  and  may
make the tumor more prone to radiation and anticancer drugs [118,
119]. Heat reduces the survival rate of cancer cells and inhibits re-
pairing DNA damage [120]. Different ablations are used for breast
cancer management as radiofrequency ablation, ethanol ablation,
cryoablation, laser ablation, and more recent microwave ablation.
The role of computation modeling in breast cancer hyperthermia
treatment is the current advancement [121].

Combinations  of  hyperthermia  with  radiotherapy  and  che-
motherapy have proven to be beneficial to improve local control of
breast  cancer  [122].  After  radiotherapy  and  chemotherapy,  ther-
motherapy  inhibits  the  growth  of  damaged  breast  cancer  cells
[120]. Although hyperthermia has the potential for cancer manage-
ment, it  still  works best in combination with other therapies, not
yet standalone therapy. Hyperthermia may lead to pain, swelling,
burns, blood clots, infections, and skin infection [123].

2.2.2. Photodynamic Therapy

Photodynamic therapy is an elegant light-based therapy that us-
es  nontoxic  photosensitizer  and  laser  light  for  cancer  cell  death.
The antitumor activity of PDT makes use of three mechanisms, (1)
direct cytotoxic effect on cancer cells, (2) indirect effect of PDT on
tumor vasculature, and (3) activation of systemic immunity [124,
125]. When the light of appropriate wavelength and energy inter-
acts with the drug, it results in the production of molecular oxygen,
which causes necrosis in targeted cancerous cells [126].

The efficient  selectivity  of  photosensitizer  and less  systemic
toxicity make them a good tool for targeting tumor cells. Photofrin,
Metvix, Levulan, Foscan, Visudyne, and Laserphyrin are some offi-
cially approved clinical trials for breast cancer management [127].
Photosensitizer targets receptors like Estradiol, Human epidermal
growth factor receptor, and gonadotropin-releasing hormone recep-
tor in breast cancer [128].

However, PDT allows heterogeneous distribution of photosen-
sitizer in tumor cells (Fig. 7) than intravenous application, and skin
sensitization must be considered before the application of photody-
namic therapy in breast cancer management [129, 130].

2.2.3. Immunotherapy

Immunotherapy has been proven to be beneficial against can-
cer  by  boosting  the  immune  system to  make  it  a  more  powerful
fighter against cancer. The relationship between the immune sys-
tem (three phases; elimination, equilibrium, escape) and tumor de-
velopment  is  supported  by  an  increasing  body  of  literature.  Im-
munotherapy works by targeting multiple regulatory checkpoints in
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Fig. (6). Advancement in Breast cancer treatments. (A higher resolution/colour version of this figure is available in the electronic copy of the
article).

Fig. (7). Overview of photodynamic therapy in breast cancer. (A higher resolution/colour version of this figure is available in the electronic
copy of the article).
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Fig. (8). A: How gene therapy works, B: Overview of gene therapy. (A higher resolution/colour version of this figure is available in the elec-
tronic copy of the article).

the immune system to treat breast cancer [131]. FDA-approved im-
mune therapies are cellular immunotherapy, molecular immunother-
apy, and vaccination therapy [132]. Three classes of immunothera-
pies are adoptive T cells transfer, bivalent antibodies, and check-
point inhibitors [133]. As compared to radiation therapy and che-
motherapy, immunotherapy is more targeted. Despite the targeted
role of immunotherapy in breast cancer,still there are some ques-
tions regarding toxicity, efficacy, and targeting, which need further
consideration [134].

2.2.4. Gene Therapy
Gene therapy has put forward numerous innovative platforms

to target multiple genes in breast cancer. A genetically unstable en-
vironment  of  tumor  cells  sparks  the  use  of  gene  therapy  to  deal
with breast cancer. In gene therapy, manipulated genetic material is
delivered to cells that affect cancer cells in multiple ways, reducing
the  growth  of  cells  and  thereby  destroying  cancer  cells  (Fig.  8)
[135].

Delivery  of  genes  and  their  controlled  expression  in  cancer
cells is a formidable task in the management of cancer [136]. Gene
therapy  works  with  protocol;  (1)  oncogenes  suppression,  (2)  in-
creased  immunological  responses,  (3)  introduction  of  suicide
genes, and (4) use of drug resistance genes for bone marrow protec-
tion [137]. The expression of therapeutic genes needs to be strictly
controlled for the regulation of the desired gene product [136]. In-
deed mounting studies on gene therapy highlight the potentiality of
gene therapy, vectors of toxicity, immunity, and multiple technical

issues that still pose limitations for effective treatment of breast can-
cer [138]. Improved vector delivery options could provide a new
paradigm for the most promising treatment options [139].

2.2.5. Dynamic BH3 Profiling
The prediction of clinical  response of specific drug dynamic

BH3 profiling is an innovative approach that measures death sig-
nals caused by a specific drug. Through interrogation of the BCL-2
family, DBP predicts chemotherapy sensitivity [140]. Cytotoxicity
prediction capacity of BH3 profiling is confirmed in five breast can-
cer cell lines treated with different agents [141]. Through the com-
parison  of  different  death  signals  induced  by  chemotherapeutics
agents, DBP will lead to the exploitation of effective drugs for pre-
cision medicine [142].

2.2.6. Nanotechnology
The use of nanotechnology opens up exciting new possibilities

in the diagnosis and treatment of leading diseases like cancer. Nan-
otechnology intends to reduce the toxic effect of conventional meth-
ods, which is the major barrier in the treatment of breast cancer. In
the last 10 decades, a variety of nanoparticles have been developed
to target metastatic breast cells and these have also proved to be
very fruitful in targeted drug delivery. The main physiological rea-
son behind these NPs is to operate molecules at nanoscale for devel-
oping  smart  active  fabricate  multifunctional  devices  (SAFMD)
which can cross the biological barrier, arrive to the target cell, and
deliver the drug [113]. In drug-based chemotherapy (DBC), the
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Table 2. The role of nanotechnology in breast cancer.

Sr.
No. Nanoparticles Therapeutic Properties Cell Lines Refs.

1 Liposomes Effective in drug-like oligonucleotides, peptides, and siRNA-based genes therapy. LNPs knockdown
microRNA to reduce breast cancer growth.

MCF-7, MDA MB, T-47D,
MCF-10 [162-164]

2
Polymer-Based Nanoparticles
(Polyhydroxy Alkonates, Cy-
clodextrins, PLGA)

PNPs Tamoxifen drug carrier and drug accumulator, having less toxicity band, high loading capacity,
and inhibition of Pro-inflammatory cytokinins, are used to target MRP1. MDA-MB-231 [165-168]

3 Gold Nanoparticles

Disulfate and thiolate coating Au, serve as a biomarker. Thesefunction as Radiosensitizer and pho-
tothermal agent, stay in blood vessel gap for phagositization, despite the presence of blood-brain barri-
er. AuNPs cause apoptosis to generate radicles. It reduces the expression of MMP, VEGFR, PIKT13,
and AKT.

MCF-7, MDA-MB-231 [169-172]

4 Iron Oxide Magnetic Nano-
particles

Eradicate tumor cell by Hyperthermia method. Used for packaging of anti-cancer drugs to reduce toxic-
ity. They function in cell death and cell cycle arrest.

MCF-7, MDA-MB-231,
MB-474, T -47D [173-175]

5 Silver Nanoparticles
These cause programmed cell death by Phosphoribosyl Transferase by increasing permeability of the
mitochondrial membrane and cytochrome C release. AgNPs also activate ER receptors and regulate
protein.

MCF-7 [176-178]

6 Quantum dots Conjugation of QD with antibodies is used to target cancer cells for drug delivery and passive target-
ing by retention effect.

MCF-7, BT-474, MAD-M-
B-231 [179-181]

7 Mesoporous Silica Nanoparti-
cles

These prevent pre-activation of the drug, especially protein/gene, and lead to better drug delivery with-
out penetrating tumor cells. They are beneficial than antibodies due to having specificity for a tumor
cell.

NDA-MB-231 [182]

8 Carbon Nanotubes and Car-
bon dots

SWNT detect breast cancer cell by Raman signal and NIP absorbance of the tumor. CNTs with oxy-
gen accelerate PTX inhibitory role in BC cell proliferation by downregulation of HCF-Iα cells and car-
bon nanotubes, reducing macrophages and blood vessels at the tumor site. Nano dots inhibit cancer
cells by lowering their viability.

MCF-7, MDA-MB-231 and
HeLa [183-185]

9 Dendrimers and micelles These surface bind with the transmembrane receptor Neuropilin-1 leading to increased targeting. MCF-7, MDA-MB-231 [186, 187]
10 Viral Nanoparticles Induce proliferation and cell death. Viral particles reduce cell division. HER2+, MDA-MB-231 [188-190]

long-term use of monoclonal antibody trastuzumab leads to an ad-
verse cardiac abnormal function. These cardiac complications, in-
cluding other physiological irregularities, demand the discovery of
novel drug delivery systems (nanoparticles) by oncologists [117,
143-145].  Consequently,  to  overcome  all  these  problems,  a  new
method is acknowledged as nanotechnology for breast cancer (Fig.
9). Most exposable organs in the human body are the liver, brain,
lungs, and bone which have cancer stem cells (CSC) or tumor imi-
tating cells (TICs) [146, 147]. Notch, hedgehog, and Wnt are stem
cells signaling pathways that play a critical role in the progression
of tumorigenesis like leukemia and breast cancer [148, 149]. Thus,
Notch  target  therapy  has  yielded  a  good  result  in  breast  cancer
[150]. Despite performing multiple outstanding roles in diagnosis
and treatment,  there are some limitations of notch-target therapy
that must be clarified to overcome this medical challenge (Table
2).

Nanotechnology is the technique of characterization of nano-
particles by improving their shapes and sizes up to the nano range
(1-100nm) [151]. FDA-approved nano platform and PEGylated li-
posomal  doxorubicin  are  elegant  milestones  in  the  “era  of
nanomedicine” [152-154].  Nanoparticles  with small  surface area
and large surface area/volume ratio possess unique biological activi-
ty for targeting mutant cells [155-157]. Metallic nanoparticles like
silver, gold, uranium, titanium, and Zinc are more successful be-
cause they have a greater surface area, and significant antifungal,
antimicrobial, anti-diabetic and anticancer activities [158, 159]. Sil-
ver nanoparticles are the most commonly used metallic nanoparti-
cles [160, 161] due to their strong polarity with the membrane and
less toxicity.

Inorganic  (Silica,  iron  oxide)  and  organic  (polymeric,  lipo-
somes, micelles) nanoparticles possess competitive features in the
era of drug therapy [191, 192]. The advanced breast cancer nan-
otechnology-based  method  of  nanomedicine  has  been  studied
which has increased the demand for  target-based drug discovery

and delivery. To avoid complications in targeting cells, different
nanoparticles (NPs) are applied for encapsulation, binding (electro-
static, covalent), or absorption of cancerous cells [193]. Reported
data reveal that several drugs are available which possess efficient
solubility and bioavailability and these have shown maximum cata-
lytic activity on the MCF-7 cell line.

The non-toxicity of nanoparticles on different breast cell lines
such as MDA-MB-231, SkBr-3, and MCF-7 has been investigated
through a number of studies [33-36]. Doxorubicin (DOX) as a che-
motherapeutic mediator is used with nanoparticles for drug deliv-
ery. “Active targeting” is the most prominent representative to treat
the tumorigenesis in a well-fashioned manner. In this method, sev-
eral ligands are used to ligate with NPS/drugs, which bind with the
specific localized receptor on tumor cells. In the world of nanotech-
nology, peptide ligands are mostly used to enhance biological activ-
ity, such as beta-alanine, gamma-aminobutyric acid, and glycine.
Active  targeting  takes  place  in  the  microenvironment  (matrix,
blood vessel) and is more advantageous than passive targeting in
terms of toxicity, cellular uptake, and specificity [195].

2.2.6.1. Liposomes

Liposomal  nanoparticles  (LNPs)  are  spherical  vesicles  of  a
phospholipid bilayer that target specific tissues and act as potential
drug carriers [189]. Liposomes are encapsulated in phospholipid bi-
layer for better delivery and to reduce the toxic effect of non-target
cells [196]. Amphiphilic LNPs, like DOX, have an aqueous inner
core with lower cytotoxicity due to strong endosomal escape capac-
ity [197]. Liposomes have a high tendency of incorporation by us-
ing a membrane layer, which improves their efficiency for treating
cytosolic carcinogens [162]. Multidrug Resistance is eliminated by
using DOX with siRNA, which promotes apoptosis in MCF-7/Adr
cancer cells by combining chemotherapy and RNA interference (R-
NAi) therapy. Thus, VEGF, siHF1-A, and siVEGF stimulate can-
cerous angiogenesis, which in turn increases the supply of nutrients
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Fig. (9). Role of nanotechnology in breast cancer. (A higher resolution/colour version of this figure is available in the electronic copy of the
article).

and oxygen for their rapid proliferation [198]. siRNA-technology
is the most promising cancer therapeutic option for silencing the
specific target gene expression, which indirectly provides a better
medium for the inhibitor to stop the translation process [163].

The  use  of  nanoparticles  for  siRNA  delivery  for  silencing
VEGF  expression  seems  to  be  a  promising  strategy  to  repress
breast cancer growth [198]. For the efficient treatment of HER2+

breast  cancer,  anti-HER2 monoclonal  antibodies  and  conjugated
nanoparticles are studied [199, 200]. Recent studies have investigat-
ed the use of nanoparticles to deliver therapeutic miRNAs in can-
cer  cells  [164].  Chitosan  covered  with  supplementary  liposomal
nanoparticles  has  upgraded  siRNAs  stability  by  protecting  them
from serum deprivation [201]. Ligand-targeted liposomes are gain-
ing recent research interest due to their improved cellular uptake
and seem to have immense therapeutic potential for breast cancer
treatment [202]. Overall, liposomes are the best nanocarrier as th-
ese are biodegradable and encapsulate therapeutic agents. The liga-
tion of Polyethylene glycol (PEGylation) with the receptor of tar-
geted cell provides safe transmission of drug into cytosolic environ-
ment.  Thus,  ligated  PEGylation  enhances  the  formation  of  lipo-
somes,  enzymes,  carbohydrates,  antibody  nucleotides,  organic

molecules, and nanoparticles in microenvironment. Monomethoxy
PEGylation has a CH3O (CH2-CH2O) n-CH2-CH2-OH structure
that is valuable for lipid molecular modification. Non-PEGylated
LNPs in combination with DOX and Cyclophosphamide are used
for metastatic breast cancer treatment [203]. Doxil and Caelyx are
the  chief  PEGylated  liposomal  nanoparticles  against  T-47  D,
MCF-10, and MCF-7 BC cells which possess anti-cancer activity
[201].  Co-delivery of  liposomes displays supreme anti-prolifera-
tion, anticancer, tumor cell apoptosis, and cytotoxicity [204]. In li-
posomes, cationic lipids cause toxicity, and nanocarrier is degraded
at  a  higher  level  by  the  Mononuclear  Phagocyte  System  (MPS)
[219].

2.2.6.2. Polymer-based Nanoparticles (PNPs)

PNPs are colloidal particles formed by copolymer and polymer
matrix. Natural polymers are most widely used and are eco-friend-
ly such as cellulose, chitosan, collagen, chitin, and sericin in nan-
otechnology.  Nano  precipitation,  emulsification,  and  salting-out
are common methods for chemical polymer-based nanoparticle for-
mation. The drugs are loaded on the surface of PNPs by conjuga-
tion, adsorption, and encapsulation which amplify the permeability
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and solubility inducing the slow release of drugs to target cells. Po-
lymer-based  nanoparticles  such  as  polyhydroxyalkanoates,  cy-
clodextrins, PLGA are used as nanocarriers. In breast cancer, PNPs
are used for tamoxifen drug carriers to treat estrogen receptor-posi-
tive breast cancers as well as to prevent the incidence of breast can-
cer  in  high-risk  populations.  N  (2  hydroxypropyls)  meth-acry-
lamide with tyrosine inhibitors are used for HER2 drug delivery.
Photodynamic therapy (PDT) [165, 166] is experiencing a great de-
mand in recent years for TNBC treatment by light radiation, which
promotes apoptosis of cancer cells.

PLGA tamoxifen has nucleus fragmentation and less toxicity
as compared to pure tamoxifen. Layer by layer DOX and siRNA
co-delivery are used to target multidrug resistance protein 1 (MR-
P1). Anticancer activity of Methotrexate (MTX) in the presence of
cytosolic enzyme and hydrofolate reductase inhibits the pro-inflam-
matory cytokinin [167, 168]. Co-encapsulation of MTX-ACL into
single lipid bilayer nanoparticles is best for breast cancer treatment,
which proves the efficiency of PNPs instead of LNPs due to easy
inoculation into the living system [205].

2.2.6.3. Metal-based Nanoparticles

Metal-based nanoparticles have been extensively investigated
due to their unique physicochemical properties in medical sciences.
The  mostly  used  metal  nanoparticles  for  breast  cancer  treatment
are gold, supra-magnetic iron oxide, silver, and quantum dots.

Gold nanoparticles have been found to be efficient for imag-
ing, treatment, and diagnosis which derive from chloroauric acid in
aqueous media as a small solid round shape particle with few nm to
more than 100 nm in size [206-208]. Surface coated thiolate or di-
sulfides can bind gold to increase the catalytic activity of the bio-
marker and drug delivery agent. Gold nanoparticles are used as dist-
inction agents of photothermal agents, drug carriers, and radiosensi-
tizers [169]. The retention effect and permeability of AuNPs on the
tumor surface are due to the selective accumulation of macromolec-
ular  drugs in tumor tissues.  The tumor vasculature is  a  foremost
constituent  of  the  microenvironment  that  can  impact  tumor  be-
havior and treatment response and can be considered over anti-an-
giogenic drugs.

Gold  nanoparticles  are  activated  with  a  ligand  or  functional
molecule that enhances their efficacy. Nanoparticles eradicate can-
cer by inducing apoptosis with the help of generated radicles. Pacli-
taxel  is  ligated with gold nanoparticles which can be useful  as a
theranostic agent for cancer therapy without having any cytotoxic
effect on normal cells. In Breast cancer, large neutral amino acid
transporter (LAT1) is used with AuNPs, which increases their accu-
mulation in tumor cells without any change in normal mammary
ducts [172]. Quercetin loaded gold nanoparticles down-regulate the
epithelial mesenchyme transition in malignancy role I MCF 7 and
MDA-MB -231 cells. AuNPs reduces the expression level of sever-
al proteins such as MMP, VEGFR, PIKT 13, and AkT [171]. Gold
nanoparticles are an efficient drug delivery vehicle to target multi-
ple cancer concerning pathways [170]. Oligonucleotide conjugated
with AuNPs acts as a gene regulatory agent to activate lymphocyte
pathways in the human body [209]. AuNPs show a hyper-thermic
effect emitting heat as a result of any light on the tumor cell in the
form of visible wavelength [210].

Superparamagnetic nanoparticles comprise of magnetic nano-
particles, which help to overcome the cytotoxic effect of therapies
and anti-cancerous drugs [211]. Iron oxide nanoparticle has an inn-
er core with magnetite Fe3O4 or maghemite Fe2O3 [173]. Direct iron
oxide  nanoparticles  do  not  spread  because  they  accumulate  in
blood plasma, so hydrophilic coating magnetic core is used for tar-
get delivery specifically. Thus, mostly used stabilizer polymers are

dextrans, PVA, magnetic nanoparticles for external magnetic field
elevation. PEG chain on the surface of magnetic nanoparticles pre-
vents  it  from steric  hindrance.  PEG and folic  acid  attachment  to
MPNs improve delivery and cellular uptake in breast cancer. Mag-
netic  nanoparticle  eradicates  tumor  cells  by  the  Hyperthermia
method. Iron oxide loaded particles with baicalein cause cell death
and  cell  cycle  arrest  in  triple  breast  cancer  therapy  [174].  Iron
oxide  nanoparticles  (IONPs)  are  used  in  drug  delivery  systems
such as Doxorubicin, TMX, quercetin, etc., by conjugating differ-
ent reagents like antigens-receptors and ligand-antibodies. IONPs
with  siRNA  also  suppress  various  cellular  growth  pathways  in
breast cancer. IONPS have cyclooxygenase 2 (COX-2) siRNA that
release COX-2 protein, which down-regulates breast cancer path-
ways and metastasis. IONPS also attach with multivalent Nucant
such as DOX, N6L that have greater cytotoxic effects [212]. SPI-
ONs are coated with lauric acid; human serum albumin has been ex-
amined in breast cancer treatment against T-47D, BT-474, MCF-7,
and MDA-MB-231 cell lines [175].

Silver  nanoparticles  cause  programmed  cell  death  by  phos-
phoribosyltransferase (UPRT) expressing cells and by non-UPRT
expressing cells [85]. Bax-Silver NPs increase the permeability of
the mitochondrial membrane to release cytochrome C which acti-
vates apoptosis pathways against MCF-7 cells [82]. Ag-NPs also
disrupt endoplasmic reticulum receptors like Orphan 7-transmem-
brane G-protein-coupled receptors which activate some regulatory
G-protein, causing apoptosis of breast cancer cells [178].

2.2.6.4. Quantum Dots

Quantum  dots  (QDs)  are  non-crystal  semiconductors  being
2-10nm in size which have a metal inner core with a narrow spec-
trum. Conjugated QDs with ligand or antibodies spread on the tar-
get cancer cells. These conjugated QDs have optical characteris-
tics, large surface area, but the major drawback is their insolubility
in water [180]. It is reported that exposure of QDs to MCF-7 and
BT-474  cell  lines  produces  five  biomarkers  ER,  PR,  EGFR,
MTOR, and HER2 [179]. ZCIS-QDs nanoparticles have been in-
vestigated  as  elegant  nanoprobes  to  target  HER2+  cancer  cells
[181]. QDs provide new directions for emerging nanoplatforms for
clinical applications [213].

2.2.6.5. Mesoporous Silica Nanoparticles

Mesoporous silica nanoparticles (MSNs) are inorganic nano-
material with high surface area, high loading capacity, porous and
modifiable surface. Due to its porous surface, it is a virtuous carrier
for the drug delivery system and averts pre-maturation of medicine,
specifically degradable reagents including protein or gene. Multi-
functional MSNs are prepared by conjugation of poly-ethylenimine
poly-lysine copolymer through disulfide bond with folate-linked po-
lyethylene glycol (PEG). The multifunctional MSNs also encapsu-
late  DOX into  mesoporous  channels  carrying  siRNA [182].  Ap-
tamer conjugated MSNs form a disulfide bond through gel retarda-
tion to deliver epirubicin to breast cancer cells [214].

2.2.6.6. Carbon-based Nanoparticles

Carbon-based nanoparticles are graphene carbon nanotube and
fullerene dots which replace QDs with other metal-based nanoparti-
cles  with  the  best  mechanical,  optical,  and  biological  properties
[214-216]. Carbon nanotubes are allotropes, benzene rings, having
inner graphene sheets and cylindrical long hollow structures. There
are two major types of nanotubes, single-walled (SWNPs) and mul-
tiwalled (MWNTs), for drug delivery systems [183]. By conjuga-
tion with HRR2 and IgY, carbon nanotubes perform both detection
and destruction in the cancer cell.  Annexin V protein binds with
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phospholipid and endothelial tumor-derived cell lines [217].

CNTs with oxygen perform PTX inhibitory role in BC cell pro-
liferation by the downregulation of HCF-1α under hypoxia condi-
tions. MWCNTs have better drug loading and target drug delivery
in breast cancer treatment in terms of reduction of macrophages as
well  as  blood  vessel  density  [218].  MWNTS  bind  with  glu-
cosamine and accelerate membrane permeability with the eradica-
tion of tumor cells. The inhibition of tumor formation is directly
proportional to MWNTS bonding.

In  2010,  new  Carbon  dots(CDs)  reported  from  green  tea
showed inhibition of cancer cells in MCF-7, MDA-MB-231, and
HeLa cells of humans. Dox-CDs reduced tumor cells by lowering
viability and accelerating treatment effect by accumulation to en-
hance the anti-tumor efficiency [184, 185].

2.2.6.7. Dendrimers and Micelles

Dendrimers are small artificial molecules like liposomes with a
hydrophobic core and hydrophilic periphery. They are formed by
the convergent or divergent synthesis of monomers. Micelles have
a  colloidal  shape  (5-100  nm)  with  a  hydrophobic  core  and  hy-
drophilic shell. These can allocate both water-soluble and hydro-
phobic drugs in therapy [186]. Micelles involve surface modifica-
tion, such as surface binding for active targeting of transmembrane
receptors Neuropilin -1(Np-1) in breast cancer [187]. Efficacy of
Dendrimers  and  Micelles  has  been  reported  against  MCF-7  and
MDA-MB-231 cell lines.

2.2.6.8. Viral Nanoparticles

VNPs are best for uptake, penetration, and targeting as com-
pared to liposomes. Plant-based nanoparticles possess strong benefi-
cial activity against HER2+ cell lines [189]. Viral protein nanoparti-
cles exhibit potential efficiency in breast cancer treatment due to
their biological properties. Virus from potato accelerates the eradi-
cation of cancer and reduces the mitotic phase of BC cells with up-
regulation  of  the  apoptotic  factors.  To  overcome  multiple  resis-
tance in therapies, a nano bomb-like targeting system has been re-
cently investigated, in which antitumor drug DOX is loaded in am-
munition (MTN) part that controls the unnecessary release of drug
for targeted drug delivery [190].

In breast cancer treatment, nanoparticles (synthetic and viral)
have offered drug delivery options to pave a new path for targeted
therapeutic options. Mostly used Chemotherapeutics in breast can-
cer treatment that  are allocated to nanoparticles are Doxorubicin
(DOX), Paclitaxel (PTX), and Docetaxel (DTX) [188]. Drawbacks
of nanomaterials like cellular uptake, long-term toxic effect, and ex-
cretion  mechanism  are  needed  to  be  investigated  for  future  use
[143].  To  outweigh  the  benefits  of  nanotechnology,  these  chal-
lenges must be overcome [177].

2.2.7. Computational Drug Designing

The discovery of drugs without computational aid is problemat-
ic [220]. Conventional drug designing is a very lengthy and time--
consuming  process  as  it  still  requires  a  long  time  to  introduce  a
new drug. Extreme side effects and toxicity of conventional drug
designing can be avoided by using in silico approaches to introduce
novel targets for drug designing [221]. Any gene that is essential to
support cellular growth can perhaps be a drug target [222]. Signifi-
cant advances in Bioinformatics and computational biology have
contributed  considerable  progress  in  the  area  of  drug  designing.
This is an era of big data with scientists using different sequence
technologies for identifying new drug targets using computational
approaches [223-225].

Bioinformatics enables researchers to determine the structure
of a protein involved in a particular disease. In structural bioinfor-
matics,  different  structural  modeling  and  molecular  docking  ap-
proaches are used to determine the structure of the protein (Fig. 10)
and thus provide a framework to the medicinal chemist to design
potential drugs [226-229]. Computational drug designing is a new
paradigm for the treatment of breast cancer. Structural bioinformat-
ics is very helpful to discover computationally derived inhibitors
against breast cancer [230, 231] and many other diseases like neu-
rodegenerative disorders [232, 233].

Almost 90 genes have been reported that are involved in breast
cancer, but much less computational work has been done on them
yet.  However,  there are some computationally derived inhibitors
available for some gene variants of breast cancer.

BRAC1 (Breast cancer type 1 susceptibility gene)  is a tumor
suppressor gene that comprises 22 exons that form 200kDa protein
with 1863 amino acids. The BRAC1 gene is located on q-arm of
chromosome 17 at position 21.31 [234] from base pairs 43,044,295
to 43,125,364 [17]. BRCA1 protein may play a critical role in cell
division, DNA repairing, and in regulating the functional ability of
other genes, which help in the embryonic development of the fetus
[18]. Nearly 1600 mutations have been discovered in the BRCA1
gene, and many of these mutations result in the non-functional pro-
tein. In the case of females, BRAC1 gene mutation leads to breast
cancer, while in males, it results in prostate cancer [16].

BRCA2 (Breast Cancer Type 2 susceptibility gene) is another
tumor suppressor gene. BRCA2 gene is located on the long q-arm
of chromosome 13 at position 13.1, from base pairs 32,315,508 to
32,400,268. BRCA2 gene controls the proper cell division by moni-
toring different checkpoints that are involved in the cell cycle. This
gene is also responsible for repairing damaged DNA that occurs as
a result of various factors such as exposure to radiation, carcino-
gens, mutagens, environmental factors, and recombination of genet-
ic material. The repairing of damaged DNA is accomplished by the
formation of BRCA 2 proteins that interact with other proteins in-
side the nucleus and maintain the genetic identity of the cell. BR-
CA 2 gene is quite bigger than BRCA1. Recent studies have shown
that 1800 mutations account for the BRCA2 gene that disrupts the
functions of the protein. Olaparib (active poly (ADP-ribose poly-
merase (PARP)) inhibitor  has been found to be effective against
BRCA1/2-Malformed  Protein  [19].  On  the  computational  level,
more efforts are being made to target BRC1/2 interacting proteins
for the development of computationally derived inhibitors.

Tp53 gene (transformation-related protein 53) is present at the
short (p) arm of chromosome 17 at position 13.1 from base pairs
7,668,402 to 7,687,550 [22]. The function of this gene is to make
tumor suppressor protein p53 which helps in the regulation of cell
cycle and DNA repair in the nucleus [23]. It also helps to prevent
the proliferation of tumors by inducing cell apoptotic process [20,
21]. Due to the uniqueness in terms of the functionality of p53, it is
also known as Guardian of Genome [235]. SP600125 inhibits the
progression of cancerous cells by targeting the mitotic checkpoint
1 at the BC-cell line [236].

ATM  gene  (ataxia  telangiectasia  mutated)  is  located  on
11q22.3 chromosome from base pairs 108,222,484 to 108,369,102
[25]. This gene encodes ATM-Protein, which controls the rate of
cell growth and cell division in the nucleus. ATM-Protein regulates
cellular development by repairing the damaged DNA and activat-
ing the repairing enzyme factory (REF). Germline and somatic mu-
tations  in  ATM genes,  unfortunately,  lead  to  breast  cancer  [24].
However, the exact role of this gene is unknown yet. KU59403 is a
potential  ATM inhibitor  with  potency,  selectivity,  and solubility
for breast cancer [237].
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Fig. (10). Overview of computational drug designing. (A higher resolution/colour version of this figure is available in the electronic copy of
the article).

PTEN gene (protein-tyrosine phosphatase PTEN) is present on
10q23.31, from base pairs 87,863,625 to 87,971,930 on chromo-
some 10 [27]. PTEN gene provides instruction for making PTEN-
Enzymes that perform multiple functions; for e.g., they act as a tu-
mor suppressor,  control the migration of cells,  activate the other
metabolic pathways for the regulation of cell cycle, modified fats,
and protein by removing phosphate [26], and maintain the stability
of cell [238]. Germline mutations in the PTEN gene lead to breast
cancer which also reduces the sensitivity of genes for drugs, specifi-
cally cancer-treating drugs (Herceptin). NAUK1 is a potential in-
hibitor  that  targets  the  PTEN  synthetic-sick  or  synthetic-lethal
(PTEN-SSL) gene for treating PTEN deficient breast cancer [239].

LKB1/STK11 gene (serine/threonine kinase 11 (Peutz-Jeghers
syndrome)  is  present  on  19p13.3,  from  base  pairs  1,205,778  to
1,228,431 on chromosome 19.  STK11 gene encodes  the  instruc-
tions for the formation of an enzyme called serine/threonine kinase
11 [240]. SKT11 enzymes perform various important functions in-
side the cells, including regulation of cell growth, control of cell di-
vision, acting as a tumor suppressor, helping in the orientation of
cell, providing energy to the cell, promoting apoptosis and the de-
velopment  of  the  fetus  [28,  29].  Germline  mutations  in  SKT11
genes activate the breast  cancer process and transfer it  from one
generation to another. Honokiol (HNK) is a bioactive inhibitor in
breast cancer that enhances the expression of the LKB1 gene to re-
duce the symptoms of the disease [241].

NAT1 and NAT2 are located on 8p22 loci on the short (p) arm
of  chromosome  8  at  position  22  from  base  pairs  18,386,585  to
18,401,219 [33]. NAT1 and NAT2 encode an enzyme that helps in
the activation of aryl-amine, hydrazine, and carcinogens. Polymor-
phism  in  NAT1  and  NAT2  leads  to  the  deposition  of  the  drug,
which converts the normal cell into a cancerous cell, specifically in
breast cancer. Naphthoquinone acts as as an inhibitor to control the
accumulation of the drug and also degrade the stored drug in breast
tissues [32].

GSTM1 gene is found on 1p13.3 (short (p) arm of chromosome
1 at  position  13.3)  from base  pairs  109,687,817  to  109,693,745.
GSTM1 gene has two supergene families with eight classes as fol-
lows: alpha, kappa, mu, omega, pi, sigma, theta, and zeta. GSTM1
translates  an  enzyme glutathione  S-transferase  which  belongs  to
the mu class. These enzymes are concerned with the detoxification
of electrophilic compounds such as carcinogens, therapeutic drugs,
and  environmental  toxins  with  the  help  of  glutathione.  This  mu
class gene performs crucial functions; any change in its function
may lead to cancer  due to malformed toxins,  drugs and carcino-
gens.  To  overcome  this  condition,  ethacrynic  acid  is  effectively
used as an anticancer inhibitor in breast cancer [34].

Much less work has been done on the above-mentioned genes.
Researchers are trying to figure out pathways and possible inhibi-
tion involved in their mutated expression. Further progress like the
Quantitative structure-activity relationship (QSAR) and availability
of computational tools has enabled researchers to discover ligands
and novel inhibitors [242-245]. Shortly, it is hoped that convention-
al drug designing would be replaced by computational drug design-
ing as it has emerged as an advanced and powerful approach.

CONCLUSION

Breast cancer constitutes an alarming burden worldwide that
may arise due to an increase in growth and aging of the population.
This review aimed to summarize novel updates of the 20th century
regarding breast cancer diagnosis and treatment. Major novel con-
cepts discussed in the review article are computationally derived in-
hibitors,  biomarkers,  nanotechnology,  and  recent  therapies  for
breast  cancer  diagnosis  and  treatment.  Although  chemotherapy,
gene therapy and immunotherapy are possible treatment options for
breast cancer treatment, at the moment, computationally derived in-
hibitors  and  nanoparticles  are  new  strategies  for  prognosis  and
breast cancer management. Although many studies have validated
these  emerging  technologies,  still  there  is  a  need  for  further  re-
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search to figure out their efficacy and precision. Side effects of ther-
apies must be considered before clinical application for achieving
fascinating results in the future.
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