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ABSTRACT—Architectures capable of using an algorithm to 
modify actuation based on measured signals are often called 
“closed-loop” systems. While such systems are traditionally 
thought to rely on algorithms residing in device firmware, these 
may also reside outside the device in a host processor located 
physically nearby, or on a cloud-based architecture. In order to 
serve the potentially broad array of data processing modalities, 
we have developed an application programming interface 
(API). The API enables access to the sensing and stimulation 
capabilities of an implantable bi-directional neural interface. 
Systems using the API on different hardware/software 
platforms could measure neural signals, process signals in real­
time, and modulate stimulation parameters using a variety of 
algorithms. This flexibility allows increased algorithm access 
and enables rapid prototyping for potentially improved 
technology solutions. The system performance was 
characterized using a signal generator to input square wave 
pulses to a Simulink model via the API. Closed-loop stimulation 
latencies of around 600ms were achieved. 

I . NEED FOR PROTOTYPING SYSTEMS FOR CLOSED-LOOP 
NEUROMODULATION 

Neurostimulation is used to treat a variety of neurological 
diseases such as Parkinson’s disease, essential tremor, 
urinary incontinence, and chronic pain. To function properly, 
these technologies require both accurate hardware placement 
(e.g., placing leads in the correct nervous system location) as 
well as therapy parameter setting optimization (e.g. electrode 
selection, stimulation amplitude, pulse width, and frequency). 

Selection of optimal parameters is largely an empirical 
process that may involve multiple, time-consuming device 
programming sessions spread apart by weeks or months. 
Outside of these sessions, the ability to make stimulation 
parameter adjustments is generally limited. 

Algorithms for parameter adjustment might provide an 
opportunity to improve efficiency, efficacy, and access to 
parameter modifications in neurostimulation. Examples of 
algorithmic automation concepts in healthcare devices can be 
found in cardiac pacing [1], diabetes [2], and respiration [3]. 
The exploration of closed-loop therapies is motivated by a 
number of potential advantages: 

1. Reduced intervention response time: This is the ability to 
respond to an episodic disease state (e.g., seizure onset in 
epilepsy) without manual intervention 

2. Personalized parameter adjustment: This is the use of the 
subject’s particular natural history of disease to drive 
intervention rather than relying on potentially imperfect 
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subject population groupings to determine optimal 
parameters. 

3. Reduced healthcare burden: This is the ability to change 
parameters to adjust to a subject’s evolving disease state with 
less clinical burden. Also, titrating therapy parameters that 
are delivered to the patient might optimize implant energy 
usage, thereby potentially increasing device longevity and 
reducing the need for burdensome battery replacement 
surgery. 

A closed-loop design (Fig. 1) relies on the following 
critical components: sensors to measure biomarkers of 
disease such as inertial (e.g., posture and activity) or 
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Figure 1: Closed-loop neural interface elements 

bioelectric measurements (e.g., local field potentials (LFP), 
electrocorticography (ECoG), and electromyography 
(EMG)); classifiers and control policies to provide an 
algorithm to interpret the biomarkers and determine an 
appropriate response, and effectors to deliver a response that 
potentially modifies the disease state. 

An important step in developing these systems is the 
ability to determine algorithms: both appropriate classifiers 
and control policies. These algorithms may have myriad 
forms, including requiring spectral energy extraction and 
processing [4], coherence calculation [5], phase-amplitude 
coupling calculation [6], and evoked-potential measurement 
[7]. Furthermore, these algorithms may require the ability to 
access persistent data storage for signal averaging, learning 
algorithms, and machine learning classification. And there 
may be more, yet undiscovered, signal relationships that 
could be relevant for neurologic diseases. 
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Figure 2: Partitioning of Closed Loop Neuromodulation Systems 

While it is possible to store data and perform computation 
inside a device [8,9], it may not be feasible to experiment 
with a broad range of algorithms rapidly due to complexity 
involved in implementing these algorithms in device 
firmware. 

One method to accelerate algorithm development for 
closed loop systems is by performing processing and storage 
of data external to the implantable device. This approach 
enables algorithms to be more rapidly prototyped in order to 
better characterize the trade-offs between algorithmic 
complexity, system performance, power consumption, etc. 
With this understanding, appropriate algorithms could be 
embedded in device firmware for chronic operation. 

II. INTERFACE FEATURES FOR ALGORITHM PROTOTYPING 

There are 3 key desirable features in designing system 
interfaces that enable data processing and storage external to 
an implantable device. 

1. Platform independence: Allow for use with multiple 
computational packages such as MATLAB/Simulink, 
Lab VIEW, mobile applications, etc. 

2. Low communication latency: A usable interface must 
add minimal latency from signal detection to actuation. 

3. Data security and privacy: The system architecture will 
need to consider requirements for the confidentiality, 
integrity, availability, authentication and authorization of data 
when outside the implantable device, and also disallow a host 
application from misusing the implantable device. 

One way to realize these features is by using an 
application programming interface (API). The API resides 
on a host processor (e.g., desktop computer, mobile device) 
and serves as a communication layer between the host 
processor and the hardware that communicates with the 
implantable device (Fig. 2). Its function is to translate 
commands from the host processor into low-level commands 
interpreted by the implantable device. 

In addition to addressing the features discussed above, the 
API hides complexity involved in low-level hardware 
communication from algorithm developers. It can also be 
updated independently of host processor applications. A 
similar approach has been adopted in developing APIs 
focused on similar pre-clinical research [10]. 

III. SYSTEM DESIGN 

The prototype system designed to explore rapid algorithm 
prototyping has the following components: 

A. Bi-Directional Neural Interface 
The bi-directional neural interface (BNI) used has the 

capability of streaming data at 200 or 422 Hz in time 
domain, and at 5Hz when transmitting power in a pre­
defined frequency band. For the results in this paper, 422 Hz 
sampling was used. Details of the bi-directional neural 
interface may be found in Stanslaski et al., 2012 [12]. 
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Figure 3: Test Setup. The system was tested by processing signals 
input into the bi-directional neural interface (BNI) from a signal 
generator which were then communicated via the API to the host 
processor running MATLAB and Simulink 

B. Telemetry device 
Data packets from the BNI were transmitted through a 

low-frequency proximal (~4 cm) inductive telemetry device 
to the host processor. Stimulation programs on the BNI were 
setup by the standard clinician programmer (Medtronic, Inc. 
model 8840). The closed-loop system could only vary 
stimulation parameters within the bounds set by the clinician 
programmer. 

C. Application Programming Interface (API) 
The API, written in Java, utilized a multithreaded 

telemetry execution engine to process the transfer and 
receipt of commands over a generic connection interface 
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which was implemented using various physical layers (e.g., 
USB, Bluetooth, etc.). The host processor instantiated an 
instrument instance, requested data from and sent 
stimulation updates to the BNI. 

D. Host Processor and A Igorithm 
For this work, a PC-based host processor running 

MATLAB and Simulink (Mathworks) for algorithm 
development was selected. The algorithm consisted of a 
classifier to identify states of interest from the input signal 
and a control policy to modify stimulation based on identified 
state. The classifier was an empirically-derived linear 
threshold on the amplitude of the raw signal. The 
corresponding control policy toggled stimulation OFF (0V) 
and ON (6V) based on the classifier output. 

IV. TEST SETUP 
The system was validated using a test setup as illustrated 

in Fig 3. Signals from a signal generator were input to the bi­
directional neural interface (BNI) and telemetry was used to 
stream data from the BNI to the host computer running the 
API and algorithm software. For the experiments performed 
in this paper, data from the BNI were sent in packets of 400 
ms to the host processor. 

Sixty-six square pulses from a signal generator, each 20 
Hz at 50% duty cycle and 60 uV were input to the BNI and 
retrieved by the host processor through the API. The pulses 
were distributed over 10 minutes and the spacing between 
them was chosen to randomly position them in the 400 ms 
data packets sent from the BNI to the host processor through 
telemetry (Oscilloscope screenshot in Fig 4 A shows the 
distribution of the pulse positions within the 400 ms data 
packets). 

V. RESULTS 

For the system described in this paper, latencies were 
introduced by numerous individual system elements such as, 
telemetry, detection, API latency, etc. Latency was 
calculated separately for sensed data retrieval commands and 

for stimulation control. Sensing latency was computed by 
measuring the time elapsed between the occurrence of the 
signal on the electrodes and its detection by the host 
processor (time between 1 and 3 in Fig 4B). Stimulation 
latency was computed by measuring the time between 
detection/issuing a command to change stimulation and the 
stimulation change at the electrode (time between 3 and 5 in 
Fig 4B). All latency measurements and statistics 
computations were automated using a Tektronix MSO 4034 
Mixed Signal Oscilloscope. 

Table 1 shows the latencies for the system from signal 
input to stimulation on the lead. Section A in table 1 contains 
Sensing latency statistics and Section B contains Stimulation 
latency statistics. To get the entire closed-loop system 
latency, numbers in Section A should be added to the 
appropriate latency numbers in Section B. For example, when 
the Inc/Dec (increment/decrement) command is used to 
adjust stimulation amplitude, the mean closed loop system 
latency from Signal to Stimulation would be 508.6 ms + 
80.86 ms ~ 590 ms. Fig 4 B is an oscilloscope screenshot 
illustrating the different latency steps from signal to 
stimulation in a randomly selected trial. Table 2 shows the 
latencies that are introduced by the API alone. Note that the 
API has minimal contribution to the overall system latency. 

Table 1 (A): Sensing Latency 

Command 

Get Data 

Description 

Get data 
packets from 

the INS 

Mean 
(ms) 

508.6 

Min 
(ms) 

311.2 

Max 
(ms) 

716.9 

Std 
(ms) 

116.2 

Table 1 (B): Stimulation Latency 

Command 

Therapy 
On 

Description 

Switch ON 
stim engine 

Mean 
(ms) 

354.6 

Min 
(ms) 

343.9 

Max 
(ms) 

372.4 

Std 
(ms) 

7.1 
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Therapy 
Off 

Group 
Switch 

Inc/Dec 
(Amp,P 

W,Freq.) 

Switch OFF 
stim engine 

Change 
multiple stim 
parameters 

Increase/decre 
ase 

stimulation 
amplitude, 

pulse width or 
frequency 

52.4 

495.9 

80.9 

45.1 

490.5 

76.0 

61.1 

505.1 

84.6 

4.3 

3.7 

2.6 

Note: To get full closed-loop system latency, add Sensing 
latency to latency associated with appropriate command from 
the Stimulation Latency table. 

Table 2: API only latency 

Command 

Get Data 

Therapy On 

Therapy Off 

Group Switch 
Inc/Dec 

(Amp; PW;Freq) 

Mean 
(ms) 
3.3 

2.9 

2.9 

2.7 

2.9 

Min 
(ms) 
2.6 

1.8 

2.1 

1.3 

1.8 

Max 
(ms) 
8.6 

2.7 

3.2 

6.8 

4.0 

Std 
(ms) 
0.7 

0.3 

0.2 

0.6 

0.3 

V I . DISCUSSION AND CONCLUSION 

For the system described in this paper, the closed-loop 
latency from signal occurrence to stimulation at electrode is 
~600 ms. The main contribution to the total latency comes 
from the packaging of data samples in 400 ms packets and 
transmission of these packets via telemetry (sensing latency). 
The large variance in this sensing latency (~ 400 ms; table 
1A) is due to the variance in the position of the signal of 
interest (pulse signal in this study) within the 400 ms data 
packets (Fig. 4A). Pulse signals occurring at the very end of 
the data packet result in total closed-loop system latency of ~ 
390 ms when the Inc/Dec command is used. On the other 
hand, pulse signals occurring at the very beginning of the 
data packet result in total latency of ~ 790 ms. 

Although the telemetry used introduced communication 
latency, the leveraging of an existing platform simplified the 
development process of the A P I and host application. The 
telemetry technology used in this prototype concept is 
leveraged from systems with C E mark approval (not 
approved for commercial use in the U.S. ; investigational use 
only). A future improvement could be to update device 
firmware to have shorter data packets or implement faster 
telemetry hardware and thus gain an advantage on signal 
detection latency. 

In spite of telemetry latency, the ability to run an algorithm 
on an entire data packet, accelerated with a powerful external 
computer, can help compensate for some of the latency 
disadvantage. In the current system an algorithm that 
performs batch processing on incoming data packets can 
output a result every 400ms (data packet length), which is 
comparable to pilot data on closed-loop neurostimulation 
systems that perform a moving average of 400ms sensed 
signals [11].The A P I described in this work provides 

simplicity, flexibility, and security for researchers interested 
in prototyping algorithms. This approach allows for rapid and 
broad algorithm development. Algorithms that meet 
performance needs for closed-loop systems may then be 
implemented in device firmware optimizing for computation 
and power consumption. Proximal telemetry, the host 
application modifying stimulation parameters only within 
boundaries set by clinical programmers, and the ability of the 
A P I to detect data loss or corruption make for a robust setting 
for developing closed-loop neurostimulation algorithms 

Biomarkers extracted from multiple signal sources 
representative of disease state or through other processing 
methods are convenient to explore with the flexibility on the 
host processor that the A P I enables. The Java implementation 
of the A P I also opens the possibility for mobile applications 
to interact with devices so long as data security and privacy 
are maintained, which in the future could allow for greater 
collaboration between researchers and reduce the learning 
time for understanding neural mechanisms. 
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