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Abstract: Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity world-
wide. This work aims to investigate the translational potential of a multi-omics study (comprising
metabolomics, lipidomics, glycomics, and metallomics) in revealing biomechanistic insights into AMI.
Following the N-glycomics and metallomics studies performed by our group previously, untargeted
metabolomic and lipidomic profiles were generated and analysed in this work via the use of a
simultaneous metabolite/lipid extraction and liquid chromatography–tandem mass spectrometry
(LC–MS/MS) analysis workflow. The workflow was applied to blood plasma samples from AMI
cases (n = 101) and age-matched healthy controls (n = 66). The annotated metabolomic (number of
features, n = 27) and lipidomic (n = 48) profiles, along with the glycomic (n = 37) and metallomic
(n = 30) profiles of the same set of AMI and healthy samples were integrated and analysed. The
integration method used here works by identifying a linear combination of maximally correlated
features across the four omics datasets, via utilising both block-partial least squares-discriminant
analysis (block-PLS-DA) based on sparse generalised canonical correlation analysis. Based on the
multi-omics mapping of biomolecular interconnections, several postulations were derived. These
include the potential roles of glycerophospholipids in N-glycan-modulated immunoregulatory effects,
as well as the augmentation of the importance of Ca–ATPases in cardiovascular conditions, while
also suggesting contributions of phosphatidylethanolamine in their functions. Moreover, it was
shown that combining the four omics datasets synergistically enhanced the classifier performance
in discriminating between AMI and healthy subjects. Fresh and intriguing insights into AMI, other-
wise undetected via single-omics analysis, were revealed in this multi-omics study. Taken together,
we provide evidence that a multi-omics strategy may synergistically reinforce and enhance our
understanding of diseases.

Keywords: multi-omics; metabolomics; lipidomics; glycomics; metallomics; acute myocardial infarction

1. Introduction

Acute myocardial infarction (AMI), a condition classified under coronary heart disease
(CHD), is one of the leading causes of mortality and morbidity worldwide [1–3]. Novel
and reliable biomarkers are needed to assist in risk assessment, accurate diagnosis and
prognosis, and may also act as mediators of disease. Thus, more in-depth research, es-
pecially using ‘omics’ tools, is needed to better understand the biology of these novel
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biomarkers. For example, as shown by a recent bibliometric study, metabolomics and
lipidomics have already been widely applied to study CHD, utilising targeted and/or
untargeted methods [4].

Meanwhile, to build upon the large volumes of “single-omics” datasets that are already
widely available, recent research trends highlight that there is a shift from a reductionist to a
global approach regarding the application of omics approaches [4]. The exciting emergence
of the data science field and the development of bioinformatics tools have made it possible
to integrate data across various omics levels. When considering the four omics strate-
gies selected here, metabolomics and lipidomics can be considered the “glue” between
them, as their alterations may reflect modulations by both glycomics and metallomics
as a downstream effect of impaired protein synthesis, enzyme/substrate activities, etc.
Previous reports on metabolomics/lipidomics–glycomics and metabolomics/lipidomics–
metallomics data, albeit very few in number, have shown promise [5–7]. The first benefit
that can be reaped is the improved performance of discriminant models for disease predic-
tions [8,9]. Pathway-centric and network-based approaches could also return the second
benefit of revealing inherent chemical connections between the different biomolecules [5–7].

There is an opportunity and demand for integrative analysis of multi-omics data for
heart disease research. In our previous works, comprehensive glycomic [10] and metallomic
profiles [11] had been generated. In the current work, metabolomics and lipidomics datasets
are supplemented through untargeted studies that will allow the exploration of multi-omics
connections without restrictions. As a multi-omics study, any attempt to minimise sample
consumption and optimise an efficient analytical workflow has merit. A lateral objective
of this work is thus to capitalise on existing simultaneous extraction methods, with an
application at a higher, multi-omics level. A Matyash-based method was utilised [12], as it
has been previously shown to be optimal and suitable for untargeted extraction of lipids
and metabolites in human blood plasma/serum [13,14].

Overall, this work aimed to enhance the process of biomarker discovery and provide
insights into the biological pathways/networks of AMI via a multi-omics approach [15–19].
Such an ability to synergistically reprocess single-omics datasets in an integrative manner is
enabled by using the same set of patient and control samples [9]. Since a multi-omics integra-
tion involving the combination of metabolomics, lipidomics, glycomics, and metallomics has
yet to be endeavoured, this study can be considered a fresh and novel attempt to decipher the
interconnected disturbances among the downstream omics levels which are pertinent to AMI.

2. Materials and Methods
2.1. Biospecimens from Clinical Studies

This study was approved by the National Healthcare Group Doman Specific Review
Board (NHG DSRB; REF NO. 2013-00248 and 2016-00210), and all subjects gave their
informed consent to participate prior to the inclusion. All experiments were performed
in compliance with the relevant laws and institutional guidelines. Blood plasma samples
from 101 AMI patients were collected from the National University Heart Centre, Tan
Tock Seng Hospital, Changi General Hospital, Sarawak General Hospital Heart Centre,
and Christchurch District Hospital. AMI plasma samples were collected 24–48 h post-
percutaneous coronary intervention (PCI). Blood plasma samples from 66 matched healthy
community-dwelling controls were collected from Singapore.

The details for sample collection and processing are as follows. From each subject,
18 mL of blood was drawn into labelled 3 × 6 mL K2-EDTA tubes. The blood in the tubes
was immediately mixed by inversion 8–10 times. Blood collected in K2-EDTA tubes was
then immediately centrifuged for 10 min at 4000 rpm at 4 ◦C to collect the plasma portion.
Plasma samples collected from all three K2-EDTA tubes were pooled before aliquoting into
2 mL storage tubes for different experiments. All samples were stored at −80 ◦C prior to
the various omics extraction experiments.
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2.2. Untargeted Metabolomics and Lipidomics Analysis and Data Acquisition
2.2.1. Reagents and Chemicals

The following comprises chemical/reagent information for the metabolomics and
lipidomics analysis. As for the glycomics and metallomics analysis, details regarding the
materials used can be found in their respective publications [10,11]. All reagents used were
of analytical grade unless otherwise stated. Ultrapure water (18.2 Ω) used for all chemical
and sample preparation was obtained from an Ultra ClearTM water purification system
by Siemenssie (Munich, Germany). For the mobile phases and extraction solvents used in
the liquid chromatography–mass spectrometry (LC–MS)-based metabolomics/lipidomics
analysis, LC–MS grade isopropanol, acetonitrile, methanol and formic acid were purchased
from Fisher Chemicals (Waltham, MA, USA), and HPLC Plus grade tert-butyl methyl
ether (MTBE) was purchased from Sigma Aldrich (St. Louis, MO, USA). For the internal
standards used, SPLASH II Lipidomix Mass Spec Standard was purchased from Avanti
Polar Lipids (Birmingham, AL, USA), and BOC–Leucine (99% for HPLC) standard was
purchased from Sigma Aldrich.

2.2.2. Sample Extraction and Preparation

The polar metabolite and non-polar lipid extracts used for the untargeted analysis
were obtained simultaneously using the Matyash extraction method [12]. Prior to the
extraction, 40 uL of blood plasma sample was thawed on ice. This was followed by the
addition of extraction solvents: 300 µL of methanol containing SPLASH II Lipidomix
as well as BOC–Leucine as internal standards, and 1 mL of MTBE. Samples were then
incubated at room temperature in a Vortemp Shaking Incubator from UniEquip (Munich,
Germany) (Munchen, DE) for 1 h. Next, 250 µL MS grade water was then added to induce
phase separation, before centrifugation at 1000× g for 10 min. After phase separation, the
upper organic phase was transferred to a new tube while the bottom layer was re-extracted
with extraction solvents. After centrifugation, the two phases were carefully separated
and dried at 4 ◦C in a SpeedVac Concentrator until the solvents were fully evaporated. A
process blank was also prepared with the same preparation steps, with the use of ultrapure
water in place of blood plasma.

Before the sample run, dried non-polar extracts used for lipidomics analysis were
reconstituted in 300 µL of isopropanol, while dried polar extracts used for the metabolomics
analysis were reconstituted in 50 µL 50% acetonitrile. Quality control (QC) samples were
prepared by mixing 10 µL of each plasma sample and aliquots of the pooled QC sample
were subjected to the same sample preparation procedure. This pooled QC sample also
provided a representation of all the analytes present in the samples.

2.2.3. LC-QTOF Analysis

For both the polar metabolite and non-polar lipid fractions, the samples were anal-
ysed on an Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS coupled with an Agilent
1290 Infinity LC system and operated using the B.08.00 Agilent Mass Hunter Software from
Agilent Technologies.

For the chromatographic separation, the columns and LC conditions that were used
were different for the polar metabolite fraction versus the non-polar lipid fraction. For the
polar metabolite fraction, 5 µL injections on a Kinetex Polar C18 column (100 mm× 2.1 mm,
2.6 µm) from Phenomenex (Torrance, CA, USA) at a flow rate of 0.3 mL/min at 40 ◦C were
done. Mobile phase A consisted of 0.1% formic acid in water, and mobile phase B was
0.1% formic acid in acetonitrile. The gradient was as follows: 5% B at 0–2 min, 77% B at
8 min, 95% B at 12–14 min, and 5% B at 14.2–18 min. As for the non-polar lipid fractions,
chromatographic separations of 5 µL injections were performed on an XSelect Acquity CSH
C18 column (100 mm × 2.1 mm, 3.5 µm) from Waters Corporation (Milford, MA, USA) at a
flow rate of 0.35 mL/min at 40 ◦C. Mobile phase A consisted of 60:40 acetonitrile/water
with 10mM ammonium formate and 0.1% formic acid, and mobile phase B consisted of
90:10 isopropanol/acetonitrile with 10mM ammonium formate and 0.1% formic acid. The
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gradient was as follows: 10% B at 0–2 min, 40% B at 4.5 min, 79% B at 9.5 min, 95% B at
18.5–21.5 min, and 5% B at 21.6–25.1 min.

For the MS data acquisition after chromatographic separation, compounds were ionised
with both polarities (i.e., positive and negative) using Dual Agilent Jet Stream Electrospray
Ionisation with the following source conditions for the Q-TOF mass spectrometer system: a
positive capillary voltage of 4 kV in positive ion mode, negative capillary voltage of 3.5 kV
in negative ion mode, drying gas flow of 10 L/min, and the gas temperature of 320 ◦C. The
nebuliser pressure was set at 35 psi. The Fragmentor voltage of the method was set at 75 V.
Data was acquired over a mass range of 50–1000 m/z. Agilent Masshunter Auto MS/MS
mode were used for MS/MS data acquisition. A collision energy of 10, 20, and 40 eV was
applied for Data Dependent Acquisition (DDA) for both positive and negative modes, with
an acquisition rate of 4 spectra/s. A maximum of 10 precursors were selected for each MS
cycle for MS/MS acquisition. ‘Iterative’ mode was applied, in which MS precursors selected
for a particular run were not selected for subsequent duplicate MS/MS runs.

After data acquisition, raw data files were converted to the mzXML format with
the open-source ProteoWizard software [20], before processing with the XCMS Online
program (https://xcmsonline.scripps.edu (accessed on 30 June 2022)). In XCMS, blanks,
QC and plasma samples were uploaded for pre-treatment, including procedures such as
peak picking and grouping, retention time correction, peak alignment, and annotation of
isotopes and adducts. Specifically, we followed and adapted the recommended parameters
for the UPLC/QTOF mode for untargeted metabolomics works available in XCMS to
ensure accuracy and consistency of the integration of peaks. For feature detection, 15 ppm
was set as the maximal tolerated m/z deviation in consecutive scans, with minimum and
maximum peak widths of chromatographic peaks being 5 and 20 s respectively. Retention
time was corrected by using 1 m/z step size for profile generation from the raw data files
using the ‘obiwarp’ method. Alignment of the peaks across samples was done with the
following parameters: (a) 5 s allowance for retention time deviations and (b) half of the
samples in at least one sample group must have the peak for it to be valid. The adducts
included during the annotation step include [M+H]+ and [M+Na]+ for the positive mode,
and [M-H]− and [M+FA-H]−, which are potentially key ESI adducts formed based on the
mobile phases used. After checking for the accurate and consistent integration of peaks
across samples, information containing the sample retention times, m/z, peak abundance
and isotope ions was downloaded from XCMS to be used for further data clean-up. Isotope
ions were filtered and only the main isotope was retained for each feature.

2.2.4. Identification of Highly Contributing Features and Pathway Analysis

Identification of highly contributing features for the untargeted metabolomics and
lipidomics datasets was based on the criteria considering both univariate and multivari-
ate results obtained from MetaboAnalyst (http://www.metaboanalyst.ca (accessed on
30 June 2022)). Univariate tests for comparing mean peak areas between subject groups
were done using the Mann–Whitney test. p-values obtained were false-discovery rate
(FDR)-adjusted. Principal component analysis (PCA) and projection to latent structures–
discriminant analysis (PLS–DA) were then performed. The PLS–DA model was validated
with 10-fold cross-validation and a 100-iteration permutation test. The criteria for selecting
important features for identification were as follows: a variable importance in projection
(VIP) score > 2.0 (includes metabolites/lipids identified in both principal components (PC)
1 and 2) and a univariate test p-value of <0.05 with fold-change >1.5 or <0.67.

For those significant features based on the aforementioned criteria, a further structural
identification step was required. For that purpose, a 3-step process was employed for puta-
tive identification. Firstly, matching of accurate m/z (accuracy threshold = 10 ppm) to online
databases was done. The Human Metabolome Database (HMDB; http://hmdb.ca (accessed
on 30 June 2022)), was used for the majority of the matches and class identifications. This
was supplemented with matches using the METLIN database (https://metlin.scripps.edu
(accessed on 30 June 2022)). Secondly, MS/MS spectra were obtained either from DDA-
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based results or additional MS/MS runs, and final identities were determined by comparing
our MS/MS spectra with the in silico fragmentation spectra of potential molecular identities
shortlisted from the first step. Thirdly, a final validation was done by checking that the
retention time was reasonable based on the polarity of a proposed structure. As such, a
level 2 metabolite identification confidence level may be achieved, according to the Metabo-
lite Standards Initiative [21]. For features with no matching MS/MS spectra, they were
grouped under the level 4 identification level, and are left out from network analysis due
to insufficient molecular information.

2.3. Glycomics and Metallomics Analysis and Data Acquisition

N-glycan extracts and elemental digestates from blood plasma samples were obtained
as described in our previous works [10,11], and also presented in the “Supplementary
Methods” section found within the Supplementary Material file available online. Briefly,
2 µL blood plasma was treated with PNGase F and digestion buffer for the release of
N-glycans. Before instrumental analysis, the N-glycans were reduced with 2-picolane
borane and labelled with a fluorescence tag (8-aminopyrene-1,3,6-trisulfonic acid (APTS)).
The APTS-labelled glycans were then purified via the use of a magnetic stand-enabled
solid phase extraction step. As for the elemental digestates, briefly, equi-volumes of
ultrapure nitric acid and ultrapure water were added to 80 µL blood plasma. Acid digestion
proceeded on a hotplate at 98 ◦C for 2 h. The glycan extracts and elemental digestates
were then subsequently diluted to suitable levels and analysed by capillary electrophoresis-
laser-induced fluorescence (CE-LIF) and inductively coupled plasma-mass spectrometry
(ICP-MS) respectively, again as described in our previous works [10,11]. For the glycomics
dataset, peak areas were obtained for each N-glycan variable, while concentrations were
obtained for the metallomic variables via the building of external calibration curves with
appropriate standards.

2.4. Data Processing

Data pre-processing was done to filter out low-quality metabolite/lipid/glycan/element
peaks/concentrations via the following criteria: (1) peaks with less than 3-fold average
intensity in the samples compared to the blanks; (2) peaks present in less than 75% of the
samples in either patient/control group; (3) relative standard deviations (RSD) of intensities
more than 20% in pooled QC samples (except for RSD threshold of 30% for the untargeted
metabolomics portion). After filtering, any missing values were replaced with half the
minimum value of each respective feature.

For the glycomics dataset, normalisation of peak areas was done with respect to the
sum of peak areas as per the glycomics convention. On the other hand, for the metabolomics
and lipidomics datasets, normalisation was done with respect to the QC samples by the
internal standard [22]. No normalisation was done for the metallomics dataset as accurate
concentrations were measured.

To prepare the four omics datasets for cross-omics multivariate analysis, log-transformation
and scaling via Pareto scaling were done as appropriate.

2.5. Statistical Analysis and Multi-Omics Integrative Analysis

All statistical analyses were conducted in R (version 4.04, R Core Team, Vienna, Austria) [23].
The normality of all metabolites, lipids, and glycan features was first assessed via the Kolmorov–
Smirnov test. Since non-normal distributions (p < 0.05 based on the Kolmorov–Smirnov test)
were found with some of the features, non-parametric tests were done subsequently. Baseline
characteristics among patients and controls were compared using the Mann–Whitney test for
continuous variables, and Fisher’s Exact test for categorical variables. Differences in plasma
levels of the various omics features between patient groups were also assessed using the
Mann–Whitney test (with a Benjamini–Hochberg multiplicity correction if comparisons between
multiple patient groups were endeavoured).
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For the multi-omics analysis, the ‘mixOmics’ package (version 6.0.0) was used and
implemented in R [24]. The DIABLO framework from the ‘mixOmics’ package was used
to integrate the metabolomics and glycomics datasets via block-PLS-DA based on sparse
generalised canonical correlation analysis (CCA). The PLS-DA model was tuned and
performed with 10-fold validation and using centroid distance for estimating the error rate.
The visualisation of the relationships between variables from all four omics layers (based
on results from the DIABLO framework’s block-PLS-DA analysis) was done by plotting
relevant correlation plots and relevance network maps using the ‘mixOmics’ package.

Classification modelling was done on MetaboAnalyst (http://www.metaboanalyst.ca
(accessed on 30 June 2022)). The receiving operating characteristic (ROC) curve for biomarker
identification and performance evaluation was generated based on random forest classification
modelling with repeated random sub-sampling cross-validation (30 iterations; each iteration
uses 2/3 samples for feature selection and model training, and the remaining 1/3 for testing).

3. Results and Discussion
3.1. Demographic Information and Baseline Characteristics

Table 1 summarises the baseline characteristics such as demographic information (i.e.,
age, gender, race), medical history related to the disease, as well as traditional cardiovascu-
lar risk factors and predictors of AMI and adverse events of the study populations. The
following discussion regarding the demographic information and baseline characteristics of
the samples had been mentioned in our previous works [10,11]. They are briefly reiterated
in this work. Firstly, we observed no significant differences in the distributions of patient
ages between the AMI and healthy groups, as they were age-matched in the study. On the
other hand, other demographic characteristics such as gender, smoking status, and race
were found to be significantly different between the two groups (p < 0.0001).

Table 1. Demographic characteristics of the study populations. Significant p-values are underlined.

Characteristic AMI (n = 101) Control (n = 66) p-Value

Demographic variables

Age (Median (Min–Max)) 57
(33–81)

54.5
(40–71) 2.7 × 10−1

Gender (Female) (%) 12.9 40.9 6.3 × 10−4

Smoking status (%)
Non 37.6 90.9

Current 35.6 3.0
Ex 26.7 6.1

Race (%) 1.0 × 10−14

Chinese 27.7 60.6
Malay 21.8 9.1
Indian 6.9 30.3
Others 43.6 0.0

Cardiovascular risk factors based on medical history
Prior MI (%) 4.0 0.0 1.5 × 10−1

FH of CHD (%) 20.8 10.6 9.4 × 10−2

Diabetes (%) 20.8 12.1 2.1 × 10−1

Hypertension (%) 43.6 28.8 7.2 × 10−2

Dyslipidemia (%) 42.6 77.3 3.3 × 10−5

Other cardiovascular risk factors, predictors of AMI and adverse events (Median [Min–Max])

DBP, mm Hg 83.50
(39–138)

74
(53–107) 1.6 × 10−4

SBP, mm Hg 140
(74–241)

127
(97–175) 8.2 × 10−6

http://www.metaboanalyst.ca
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Table 1. Cont.

Characteristic AMI (n = 101) Control (n = 66) p-Value

Triglyceride, mmol/L 1.50
(0.35–5.58)

1.38
(0.37–4.37) 5.1 × 10−1

Cholesterol, mmol/L 5.01
(3.20–7.40)

5.32
(4.05–7.37) 1.5 × 10−3

HDL-C, mmol/L 1.03
(0.67–9.40)

1.34
(0.80–2.31) 6.6 × 10−10

LDL-C, mmol/L 3.20
(1.60–5.51)

3.27
(2.19–5.25) 1.1 × 10−1

WBC, ×109/L
10.85

(4.40–25.90)
5.50

(2.60–9.0) 1.5 × 10−20

Platelet, ×109/L
250.5

(134–649)
258

(165–599) 3.8 × 10−1

Creatinine, mmol/L 88.5
(51–142)

69
(42–97) 3.9 × 10−13

hsTnT, pg/mL 1726
(62–9819)

6
(3–18) 8.8 × 10−28

NTproBNP, pg/mL 718
(68–6819)

36
(7–150) 3.0 × 10−27

Secondly, with reference to Table 1, we confirmed that the medical history for CHD
was also closely matched between AMI and healthy groups, with the only exception
being dyslipidaemia (p < 0.001). Differences in high-sensitive Troponin T (hsTnT) and
N-terminal-pro hormone brain natriuretic peptides (NTproBNP) levels were found to
be highly significant between patient groups (p < 0.0001). Nonetheless, this observation
was expected as they are biomarkers of AMI, and raised troponin was also an inclusion
criterion for the AMI cases in this study. As for other traditional cardiovascular risk factors,
several of them (diastolic blood pressure (DBP), systolic blood pressure (SBP), high-density
lipoprotein-cholesterol (HDL-C), white blood cell count (WBC), and creatinine levels) are
also statistically significant variables (p < 0.0001), which again was expected due to their
associations with CHD.

3.2. Analytical Validation for Untargeted Metabolomics and Lipidomics Analysis

Prior to the formal analysis of study samples, the combination of the extraction method
with our LC-QTOF analytical workflow for metabolomics and lipidomics analysis was
validated by assessing instrumental analytical precision, and inter-day method repeatability.
As for the glycomics and metallomics analytical workflows, again, they were validated and
relevant figures-of-merit had been presented in our previous works [10,11].

Firstly, for checking the instrument’s analytical precision, especially necessitated by LC-
MS’s known signal drift and batch issues, a single extract was injected 10 times in succession,
in both positive and negative modes. RSDs of 7.9% (positive mode) and 5.5% (negative mode)
were obtained for the 10 consecutive injections, indicating satisfactory instrument precision.
As such, for the actual analysis of study samples, the following run conditions were set:
(1) 10 consecutive injections of a QC sample prior to sample injections for conditioning, and
(2) one QC injection between every 10 sample injections for quality control.

For assessing inter-day repeatability/precision, three independent sets of extractions
were done using the same pooled plasma sample, and they were analysed over different
days to evaluate any significant batch effects and uncertainties in the overall workflow.
Extraction and analysis of both the metabolite and lipid fractions were done in both
positive and negative modes (four sets in total). A threshold of up to 30% RSD was used
for reference, as it is commonly accepted as a standard when filtering samples based on QC
in metabolomics works [25]. For the metabolite fraction, 58.0% of peaks from the positive
mode and 88.0% of total peaks from the negative mode had an RSD < 20%. As for the
lipid fraction, median inter-day RSDs of 14.0% (positive mode) and 12.9% (negative mode)
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were achieved. Additionally, 79.0% of the total peaks from the positive mode and 86.2% of
total peaks from the negative mode had RSDs of <20%, indicating great precision, which is
beyond comparable with the standard. While the results for the polar metabolite fraction
in the positive mode are less desirable, the overall results for all four sets gave satisfactory
intra-day precisions. Based on these results, we thus also set the RSD threshold during
QC filtering of the actual sample run to be at 30% for the metabolomics analysis and 20%
for the lipidomics portion, i.e., features with more than 20% RSD in QC samples for the
lipidomics portion were removed.

3.3. Generation of Untargeted Lipidomics and Metabolomics Datasets and Identification of
Significant Features

Firstly, the human plasma untargeted metabolomics and lipidomics profiles were
generated as described, based on the Matyash extraction method, and according to the
run/QC conditions ascertained in the previous section. Metabolite/lipid features extracted
using XCMS were first defined by their LC retention time and accurate mass-to-charge
ratios (m/z), as their structural identities were unknown at this point. For the metabolite
fraction, 6361 and 4228 features were extracted from the positive and negative modes’
results, respectively. For the lipid fraction, 15,968 and 3366 features were extracted from
XCMS from the positive and negative modes’ results, respectively.

Secondly, data clean-up such as the removal of features with RSDs of >20 or 30% in the
QC, as well as filtering after data normalisation, was performed as described in the methods
Section 2.4. Based on these data processing steps, the following number of features were left
for further statistical filtering: 319 (positive mode) and 1420 (negative mode) for the metabolite
fraction, and 3292 (positive mode) and 973 (negative mode) for the lipid fraction.

Thirdly, these validated and “cleaned-up” datasets were then further filtered based
on statistical criteria as described in the methods Section 2.2.4. This process served to
generate a focused list of highly contributing features in differentiating AMI and healthy
patients, for further structural identification. A total of 40 metabolomic and 99 lipidomic
significant (p < 0.05) features were filtered. Since one of the criteria for the filtering of
significant features is based on the VIP score generated from PLS-DA modelling, the models’
performances were checked. Figure 1A,B show the constructed three-dimensional PLS-
DA models (with 10-fold cross-validation) for the metabolomics and lipidomics portions,
respectively. Figure 1C,D illustrate the various performance measures (accuracy, R2, and
Q2) against the number of components used in the PLS-DA models. For the metabolomics
analysis, the cumulated R2 and Q2 values at the optimal number of components were 0.79
and 0.22 for metabolomics, and 0.61 and 0.43 for the lipidomics analysis. The moderately
high R2 and closeness of Q2 to R2 values for the lipidomics analysis demonstrate good
predictive relevance and validity, based on PLS model performance standards [26]. On the
other hand, for the metabolomics portion, there may be possible overfitting, and discretion
may be advised when interpreting results generated from PLS-DA-based models for our
metabolomics dataset.

Finally, a three-step structural identification process as described in Section 2.2.4 was
applied to annotate the identities of the 40 metabolomic and 98 lipidomic features. In this
untargeted metabolomics/lipidomics study, a Level 2 metabolite identification confidence
level was achieved for most of the significant features (according to the Metabolite Stan-
dards Initiative) [21]. Unfortunately, there was difficulty identifying potential structures
based on an accurate m/z and in the matching of the MS/MS spectral patterns for multiple
features. Subsequent analyses and interpretations were thus limited to what could be
surmised from the identified features.
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Figure 1. PLS-DA score plots for the visualisation of clustering of AMI versus healthy samples based
on (A) lipidomics and (B) metabolomics analysis, and the corresponding model performance measures
across the number of components generated from (C) metabolomics and (D) lipidomics analysis.

As such, a total of 76 (27 metabolomic and 48 lipidomic) features could be success-
fully annotated, and their most pertinent details are given in Table 2 (metabolomics) and
Table 3 (lipidomics). As for those unannotated features, they continued to be included in
classification modelling. LC–MS results and statistical information on these unannotated
significant features are given in Table S1 (metabolomics) and Table S2 (lipidomics) in the
Supplementary File, together with the additional structural information and the VIP scores
of the identified features. However, they were excluded from multi-omics integration due
to insufficient information.

Table 2. List of annotated significantly altered metabolomic features.

Compound Class Compound Name RT|m/z Regulation
(Up/Down) a Fold-Change b p-Value c

2-Arylbenzofuran
flavonoids Lixivaptan 6.83|472.29 DOWN 0.39 6.0 × 10−5

Alkyl halides Perfluorododecanoic acid 6.41|613.36 UP 1.85 7.6 × 10−9

Benzene & substituted
derivatives

1-Piperazinecarboxylic acid,
4-((3,4-dichlorophenyl)acetyl)-3-(1-
pyrrolidinylmethyl)-, methyl ester,

(3R)-

10.18|413.33 DOWN 0.64 2.1 × 10−6
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Table 2. Cont.

Compound Class Compound Name RT|m/z Regulation
(Up/Down) a Fold-Change b p-Value c

D-Vacciniin 4.57|283.08 UP 1.86 1.3 × 10−5

Carboxylic acids &
derivatives S-Cysteinosuccinic acid 4.92|236.09 UP 1.84 8.3 × 10−10

N-Acetyl-L-phenylalanine 4.60|208.13 UP 0.51 5.9 × 10−6

Diisodityrosine 5.07|716.85 UP 2.06 3.1 × 10−7

Coumarans Carbosulfan 4.84|379.16 UP 4.00 2.5 × 10−9

Fatty Acyls 15-Palmitoylsolamin 4.33|801.42 UP 2.63 2.7 × 10−4

Stearoyllactic acid 9.41|355.29 DOWN 0.59 3.5 × 10−7

4,7,10,13-Hexadecatetraenoate 10.72|251.20 UP 0.60 4.1 × 10−5

Flavonoids Eriodictin 5.70|433.21 UP 4.81 5.2 × 10−11

7-Chloro-3,4′,5,6,8-pentamethoxyflavone 5.24|405.18 UP 4.58 5.3 × 10−10

Indoles & derivatives Bismurrayafoline E 4.59|723.37 UP 1.99 5.4 × 10−7

Indolepyruvate 4.84|204.10 UP 1.62 8.5 × 10−4

Organooxygen
compounds Salicyluric beta-D-glucuronide 3.90|370.08 UP 9.00 1.1 × 10−15

Aldehydo-N-acetyl-D-glucosamine 5.38|219.95 UP 5.37 3.8 × 10−10

N-Acetylgalactosamine 4-sulphate 4.99|302.20 UP 0.64 2.9 × 10−4

alpha-Furyl methyl diketone 5.38|137.02 UP 7.18 3.2 × 10−10

Oxazinanes Molsidomine 8.02|241.18 DOWN 0.53 3.9 × 10−10

Prenol lipids 15-cis-Phytoene 5.34|543.28 UP 2.18 6.1 × 10−10

′-6′-O-(4-Geranyloxy-2-
hydroxycinnamoyl)-marmin 5.08|631.35 UP 1.54 9.4 × 10−5

Pyrimidine nucleoside’ 2′,2′-Difluorodeoxyuridine 4.66|264.01 UP 5.39 6.0 × 10−13

Pyrroles O-Hydroxyatorvastatin 7.45|573.24 UP 2.98 1.6 × 10−12

Steroids & steroid
derivatives Etiocholanolone 10.39|241.18 UP 0.57 1.6 × 10−5

Tetrapyrroles &
derivatives L-Urobilin 5.73|593.34 UP 3.39 5.0 × 10−4

a “UP” denotes presence of higher amounts of the analyte (i.e., up-regulated) in AMI patients as compared to
healthy volunteers, while “DOWN” denotes the presence of lower amounts of the analyte (i.e., down-regulated)
in AMI patients. b Fold-change was calculated by dividing the mean peak area of analyte in AMI patients over the
mean peak area of analyte in healthy volunteers. A fold-change > 1 also implies up-regulation in AMI patients,
while a fold change < 1 implies down-regulation. c p-value was FDR-adjusted.

Table 3. List of annotated significantly altered lipidomic features.

Class Compound Name RT|m/z Regulation
(Up/Down) a Fold-Change b p-Value c

Carboxylic acids &
derivatives Pentasine 11.02|654.6 UP 1.51 4.7 × 10−6

Cholesteryl esters CE(18:2(9Z,12Z)) 14.7|666.62 DOWN 0.53 5.6 × 10−6

Diacylglycerols DG(18:0/18:1(9Z)/0: 0) 15.39|605.55 UP 1.69 1.8 × 10−6

DG(20:0/20:5(5Z,8Z,11Z,14Z,17Z)/0:0) 14.68|671.57 DOWN 0.39 9.9 × 10−7

DG(24:1(15Z)/14:1(9Z)/0:0) 15.34|631.57 UP 1.89 1.4 × 10−4

Fatty acids &
acylcarnitines

Decanoylcarnitine 1.12|316.25 DOWN 0.58 9.4 × 10−7

Tetradecanal 1.54|230.25 DOWN 0.45 6.5 × 10−7

Docosatrienoic acid 14.69|299.27 DOWN 0.36 4.1 × 10−6
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Table 3. Cont.

Class Compound Name RT|m/z Regulation
(Up/Down) a Fold-Change b p-Value c

Oleic acid 2.51|302.3 DOWN 0.32 9.5 × 10−10

Palmitic acid 10.64|615.5 UP 1.66 2.8 × 10−6

9-Decenoylcarnitine 1|314.23 DOWN 0.61 3.0 × 10−6

Dodecanoylcarnitine 1.68|344.28 DOWN 0.64 8.2 × 10−6

(5Z,8Z)- Tetradecadienoylcarnitine 1.58|368.28 DOWN 0.58 3.9 × 10−7

O-Linoleoylcarnitine 4.06|424.34 DOWN 0.60 6.7 × 10−9

Fatty acyls Cohibin D 10.99|577.52 UP 1.51 1.9 × 10−5

Flavonoids
Apigenin 4′-[p-coumaroyl-(->2)-glucuronyl-(1-

>2)-glucuronide]
7-glucuronide

14.66|944.87 UP 1.53 1.2 × 10−6

Malvidin 3-(6”-p-coumarylglucoside) 11.48|640.59 UP 1.57 2.5 × 10−5

Glycerolipids MG(18:1(11Z)/0:0/0: 0) 11.02|339.29 UP 1.66 6.5 × 10−5

MG(20:4(5Z,8Z,11Z, 14Z)/0:0/0:0) 2.44|396.31 DOWN 0.53 8.9 × 10−7

Glycero-
phospholipids

PE(P-18:1(9Z)/18:2(9Z,12Z)) 9.88|746.51 DOWN 0.64 3.8 × 10−8

PE(P-18:1(9Z)/16:1(9Z)) 10.16|698.51 DOWN 0.55 1.3 × 10−9

PS(22:6(4Z,7Z,10Z,1
3Z,16Z,19Z)/20:3(8Z,11Z,14Z)) 10.27|902.51 UP 1.54 1.7 × 10−9

PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/20:3(8Z,11Z,14Z)) 10.27|852.5 UP 1.80 3.5 × 10−13

PE(18:0/16:0) 10.49|700.52 DOWN 0.49 2.1 × 10−5

PE(18:1(9Z)/18:0) 10.57|726.54 DOWN 0.61 3.1 × 10−10

PC(22:0/15:0) 9.49|804.55 DOWN 0.62 4.4 × 10−9

PC(22:0/18:0) 9.19|846.6 DOWN 0.57 5.2 × 10−5

PE(20:4(8Z,11Z,14Z, 17Z)/18:0) 10.16|750.54 DOWN 0.55 1.0 × 10−4

PE(16:0/18:1(9Z)) 10.36|718.54 UP 1.97 5.9 × 10−8

PC(18:4(6Z,9Z,12Z,15Z)/15:0) 11.66|740.53 DOWN 0.47 1.1 × 10−5

PC(18:2(9Z,12Z)/14:0) 9.35|730.54 DOWN 0.65 5.9 × 10−7

PC(20:4(5Z,8Z,11Z,14Z)s/16:0) 9.49|782.57 DOWN 0.65 4.6 × 10−9

Organic trisulfides Pollinastanol 7.64|401.34 DOWN 0.42 1.0 × 10−3

Phenols Betaxolol 1.46|308.12 DOWN 0.35 4.5 × 10−2

Prenol lipids beta-Vatirenene 14.69|203.18 DOWN 0.53 1.8 × 10−4

Monomenthyl succinate 14.7|257.23 DOWN 0.60 8.2 × 10−5

Ubiquinone-4 3.79|472.34 DOWN 0.49 8.7 × 10−6

Steroids & steroid
derivatives

Cholesterol 14.69|369.35 DOWN 0.60 8.2 × 10−6

8-Dehydrocholesterol 14.1|367.34 DOWN 0.61 1.1 × 10−3

Triacylglycerols TG(16:1(9Z)/18:0/20:1(11Z)) 15.37|904.83 UP 1.58 8.0 × 10−9

TG(17:0/18:1(9Z)/18:1(9Z)) 15.07|890.82 UP 1.65 2.0 × 10−5

TG(18:0/18:0/18:1(9 Z)) 16.03|906.85 UP 1.64 9.2 × 10−5

TG(18:0/18:0/20:4(5 Z,8Z,11Z,14Z)) 16.02|911.81 UP 1.54 3.2 × 10−5

TG(15:0/22:2(13Z,16 Z)/20:0) 15.33|946.88 UP 1.58 6.7 × 10−9

TG(18:1(9Z)/18:1(9Z)/20:1(11Z)) 15.33|930.85 UP 1.63 5.8 × 10−8

TG(18:0/18:1(9Z)/20:0) 16.63|934.88 UP 1.76 2.7 × 10−4

a “UP” denotes presence of higher amounts of the analyte (i.e., up-regulated) in AMI patients as compared to
healthy volunteers, vice versa. b Fold-change was calculated by dividing the mean peak area of analyte in AMI
patients over the mean peak area of analyte in healthy volunteers. A fold-change > 1 also implies up-regulation in
AMI patients, while a fold change < 1 implies down-regulation. c p-value was FDR-adjusted.

3.4. Single-Omics Evaluation of Metabolomics and Lipidomics Datasets

Based on the metabolomics and lipidomics profiles of significantly altered features,
various biological insights may already be discerned. Since numerous similar metabolomics
or lipidomics studies have already been attempted on CHD populations [27–43], this work
will only present the “single-omics” observations briefly, to serve as a basis for comparison
with the extended capacities a multi-omics integration may offer.

First, the metabolite/lipid classes that were significantly altered in AMI were assessed.
With reference to Table 2, it is shown that there is a spread of metabolite classes involved
with AMI risk. They include semi-polar compounds such as purine nucleosides and
indole/derivatives, to non-polar compounds such as steroids/derivatives (overlap with
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lipidomics’ coverage). We note that a few of the metabolites found at higher levels in
AMI patients do not seem to be endogenous/non-naturally occurring in the human body.
They include (1) perfluorododecanoic acid, a polyfluoroalkyl chemical found in stain-
resistant furniture, grease-resistant paper, kitchen wares, etc., whereby its exposure and
accumulation in human serum has been reported to be associated with cardiovascular risk
and specifically angina pectoris (chest pain) [44], and (2) carbosulfan, a pesticide, and a
derivative of carbofuran, the exposure to which has several reported associations with
CVD risk and AMI [45]. This untargeted metabolomics study thus augments the evidence
pointing at such chemical exposures as potential CVD risk factors.

Second, unlike the metabolomics portion, great coverage for lipidomics was observed
(Table 3), with significant lipid features constituting five out of the eight main lipid cate-
gories defined by LIPID MAPS [46]. We thus further investigated the distribution of lipid
classes that were significantly altered (p < 0.05) in AMI. The distribution of lipid classes was
plotted as a pie chart as shown in Figure 2. Based on Figure 2, glycerophospholipids (27%),
fatty acids (16%), and triacylglycerols (14%) are the top three abundant lipid classes that
were altered in AMI. As shown in Table 3, these lipid classes display distinct regulation
patterns: glycerophospholipids were generally downregulated in AMI patients, all detected
fatty acids were downregulated, while all triacylglycerols (as well as most diacylglycerols)
were unanimously upregulated in AMI.
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As for the down-regulation trend found in glycerophospholipid metabolism, this has
already been reported to play a prominent role in CHD progression recently [47]. Ac-
cording to Chen et al., plasmalogens (including various phosphatidylcholines (PC) and
phosphatidylethanolamines (PE) identified in our work and classified under glycerophos-
pholipids in Table 3) were proposed to be protective against atherosclerosis [47]. Moreover,
since plasmalogens are also notably more susceptible to oxidation under oxidative stress,
low levels of such glycerophospholipids can be considered as a biomarker of oxidative
stress and the negative actions of reactive oxygen species, which drive or can be driven
by disease progression [48,49]. Additionally, glycerophospholipids have been postulated
to be possible inflammatory mediators as glycerophospholipid metabolic pathway was
associated with low-grade inflammatory states and general systemic-immune inflamma-
tory states [50]. This link suggests the potential and value of integrating this lipidomics
dataset with glycomics, to identify interactive metabolic pathways commonly associated
with inflammation.

As for the simultaneous down-regulation of fatty acids and up-regulation of di- and
tri-acylglycerols, this can be explained by the imbalance between fatty acid uptake and
oxidation in AMI patients. This is since these two categories of lipids share a dynamic
balance, as di- and triacylglycerols are lipid intermediates (alongside phospholipids and
sphingolipids) that will accumulate within the myocardium when fatty acid oxidation (FAO)
is unable to match the fatty acid delivered to the heart [51,52]. Overall, this simultaneous
dysregulation of fatty acids and di-/triacylglycerols (as well as up-regulation of other
lipid intermediates attributed to the dysfunction of FAO) served as additional evidence
for the ongoing discussion on “lipotoxicity” in the human heart. As summarised by a
key review by Schulze et al., there have been various supporting reports on the role of
intracellular lipid accumulation leading to chronic states with ATP production dysfunction
and energy depletion of the failing myocardium [53]. Such reports range from studies
of animal models, studies of patients with inborn errors of FAO who develop cardiac
abnormalities (e.g., sudden cardiac death, cardiac/skeletal myopathies, insulin resistance),
and observational studies reporting the association of cardiac lipid accumulation with
obesity and/or metabolic cardiovascular complications (e.g., diabetes mellitus), as well
as more advanced imaging studies showing increased intramyocardial lipid content in
patients with heart failure [53]. However, while it seems apparent that lipid accumulation
is linked to the failing myocardium and thereby also AMI onset and progression, what
initiates or drives it is still unclear (i.e., whether it is due to elevated fatty acid uptake,
elevated di-/triacylglycerol synthesis, impaired degradation of lipids, or combinations of
the above) [53].

3.5. Multi-Omics Integration and Analysis of Cross-Omics Relationships

Next, the annotated metabolomic (number of features, n = 27) and lipidomic (n = 48)
profiles, along with the glycomic (n = 37; [10]) and metallomic (n = 30; [11]) profiles of
the same set of AMI and healthy samples were integrated and analysed. The integration
method used here works by identifying a linear combination of maximally correlated
features across the four omics datasets, via utilising both block-PLS-DAs based on sparse
generalised canonical correlation analysis [54]. A series of correlation plots (Figure 3)
display the overall correlations amongst the omics blocks.

Primarily, Figure 3A showed that the latent components of each omics block were
highly correlated between metabolomics and lipidomics (r = 0.67), and were moderately cor-
related between metallomics and lipidomics (r = 0.37), between glycomics and lipidomics
(r = 0.33), and between glycomics and lipidomics (r = 0.33). This highlights the ability in
modelling satisfactory agreement between the datasets. The clustering of the AMI and
healthy samples, while not distinct, are inhomogeneous and thus preliminarily demon-
strates the ability of the integrated omics models to discriminate the outcome of interest
as well. However, low correlations (r < 0.33) were observed between glycomics and met-
allomics, and between glycomics and metabolomics data. Nevertheless, beyond general
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agreement among the various omics blocks in disease classification, further assessment
for specific components highlights the correlations between individual features from each
omics block (Figure 3B). Additionally, the circos plot (Figure 3C) displays the significantly
contributing features across all four omics blocks in a circle, with links between each omics
feature indicating at least a moderate correlation (r cut-off = 0.33; p-value cut-off at 0.05).
The density of both red (positive correlation) and green (negative correlation) links in
Figure 3C demonstrates the high-volume interactions amongst biomolecules from all four
omics layers.
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Figure 3. Visualisation of correlations amongst omics datasets via (A) sample scatterplot displaying
the first component in each omics block (upper diagonal) and Pearson correlation between each
component (lower diagonal), (B) correlation circle plot representing feature contributions from each
omics block, and (C) circos plot showing the correlations (r > 0.33) between omics features as indicated
by the red (positive correlation) and green (negative correlation) links.
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Next, through the generation of a series of relevance network plots amongst various omics
combinations, various cross-omics clusters of interest have been identified. Figures S1–S9 in
the Supplementary File display the individual relevance network plots (including one tetra-
omics network, two tri-omics networks, and all six combinations of the bi-omics networks;
a high correlation cut-off at r ≥ 0.5 and p-value < 0.05). On the other hand, Figures 4 and 5
display the main relevance network plots, which reveal pertinent clusters.

Metabolites 2022, 12, x FOR PEER REVIEW 16 of 26 
 

 

 

Figure 4. Relevance network plots of significant omics features from the discrimination of AMI vs. 

healthy patients, displaying (A) key cluster amongst all four omics with strong correlations between 

features (r ≥ 0.67; p-value < 0.05), and (B) tri-omics (glycomics + metallomics + lipidomics) correla-

tions (r ≥ 0.5; p-value < 0.05). The color key indicates the correlation coefficient values annotated by 

the connection lines between variables. Red colored connection lines denote positive correlations, 

while green colored connection lines denote negative correlations between variables. The intensity 

of the colors is scaled according to the magnitude of the correlation coefficient values. 

Figure 4. Relevance network plots of significant omics features from the discrimination of AMI
vs. healthy patients, displaying (A) key cluster amongst all four omics with strong correlations
between features (r ≥ 0.67; p-value < 0.05), and (B) tri-omics (glycomics + metallomics + lipidomics)
correlations (r ≥ 0.5; p-value < 0.05). The color key indicates the correlation coefficient values
annotated by the connection lines between variables. Red colored connection lines denote positive
correlations, while green colored connection lines denote negative correlations between variables.
The intensity of the colors is scaled according to the magnitude of the correlation coefficient values.
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Figure 5. Relevance networks of significant omics features across various bi-omics combinations (all
r ≥ 0.4; p-value < 0.05). The color key indicates the correlation coefficient values annotated by the
connection lines between variables. Red colored connection lines denote positive correlations, while
green colored connection lines denote negative correlations between variables. The intensity of the
colors is scaled according to the magnitude of the correlation coefficient values.
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Firstly, with reference to Figure 4A which shows the key cluster (r ≥ 0.67) from all
four omics blocks, it mainly revolves around the FA2G1[6] glycan and A2G2S2(2,6) glycan.
FA2G1[6] is a core-fucosylated and unsialylated glycan, while A2S2S2(2,6) is a fully-sialylated
biantennary and noncore-fucosylated glycan. These glycans, which are abundantly found on
the Fc region of human IgG, are both also correlated with the Cu/Se ratio, and lipids of various
classes (acyl carnitine, glycerophospholipid, diacylglycerol, cholesterol and cholesterol ester).
However, it is interesting to note that the directions of correlations are opposite for the two
glycans—FA2G1[6] is positively correlated with various lipids and negatively correlated with
the Cu/Se ratio, while A2G2S2(2,6) is negatively correlated with various lipids but positively
correlated with the Cu/Se ratio. The other two glycans found in the key cluster (FA2G2 and
A2G2S1(2,6)) follow the same trends in terms of glycosylation traits versus the correlation
direction with both lipids and the Cu/Se ratio. In fact, when looking at Figure 4B and specific
bi-omics (glycomics–lipidomics and glycomics–metallomics) relevance networks at r = 0.4
cut-offs in Figure 5’s Clusters 1, 2, and 5, the aforementioned correlation trend is consistent
and even more apparent. This reveals intriguing insights regarding the immunoregulatory
capacity of IgG in AMI and its possible interplay with lipid membrane domains.

We also looked at how the various detected glycans are linked to IgG–FcγR functions,
as well as how IgG–FcγR interactions could be inter-regulated by lipid metabolism. Fc
region glycans can directly influence the affinity of IgGs to FcγRs and thereby change their
ability to recruit immune effector cells to activate distinct immunomodulatory pathways, ei-
ther by changing the conformation of the Fc region or via glycan–glycan interactions [55,56].
For example, N-glycans with core fucose or terminal sialic acid present reduce the affinity
of IgGs to Fcγ receptors in general [55], but specifically, unsialylated IgGs were reported
to primarily interact with type I Fc receptors, which include all FcγRs. On the other hand,
sialylated IgGs interacted primarily with type II FcγRs, which are mainly expressed in
dendritic cells (DC) [55,57]. Next, lipid metabolism, and thereby lipid content/composition
in immune cells, may be inter-regulated by IgG–FcγR interactions [58]. Now, as seen from
the correlation trends with the various lipids seen in Figure 4, most of the lipids (11 lipids)
linked with the glycans associated with the IgG–FcγR immune complex are glycerophos-
pholipids (one of the three main lipid classes composing plasma membranes). Furthermore,
it has been previously reported that pro-inflammatory activated lipid-rich human monocyte-
derived DCs, with their remodelled plasma phospholipid and cholesterol content, might
be involved in atherosclerosis [59]. All of these collaboratively suggest that our previous
postulation regarding AMI atherosclerosis involving a switch from a pro-inflammatory
to an anti-inflammatory state could have also been modulated by lipid metabolism. On
the other hand, we postulate that it could also have simultaneously triggered a change in
plasma membrane composition to elicit desired immunoregulatory responses as a response
to atherosclerotic onset or progression. The involvement of Cu/Se ratio in this equation
remains unclear, although Se has been shown to regulate murine lipid levels via restoring
lipid peroxidation and ameliorating disruptions of membrane dynamics [60]. It is likely that
Cu and Se are indirectly involved in this relevance network due to their strong but general
role in inflammation and immunity [61]. This is further shown as we look at Figure 5’s
bi-omics (metallomics–lipidomics) Cluster 3, where Se is only positively correlated with a
fatty acid and its acylcarnitine (oleic acid and o-linoleoylcarnitine) with r ≥ 0.4. This also
highlights the need to investigate the relationship between copper and lipids, which has 15
links r ≥ 0.4, yet lacks evidence of their interaction in CVD pathophysiology.

Beyond the key cluster identified in the multi-omics network in Figure 4A, a side cluster
was also revealed when the correlation cut-off was lowered to r = 0.5 (Figure 4B). This side
cluster revolves around Ca and its interactions with two unsialylated and non-fucosylated
glycans (A2BG1[3] and M6) and three phosphatidylethanolamine (PE) lipids under the glyc-
erophospholipid class. It is noted that Ca’s negative correlation with the PEs seemed to be
specific, as correlations with other types of lipids, glycerophospholipids or otherwise, were
absent at this correlation cut-off. Thus, while Ca ions have been reported to interact with lipid
membranes as a whole (as evidenced by the presence of Ca binding sites in lipid bilayers
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and changes in membrane bilayer structures with Ca binding, etc.) [62], the lack of Ca–PC
and Ca–phosphatidylserine (PS) correlations suggest a different and more specific mode of
interaction with the PEs. Here, our evidence (along with the correlations with Na and Ca×P
products) points towards the role of the sarcoplasmic reticulum Ca–ATPase (SRCA) in heart
disease. The PE headgroups had been reported to modulate SRCA function by facilitating
“dynamic structural changes involving the phosphorylation domain, which enhances the
catalytic function of Ca–ATPase” [63]. This explains the link between the PEs with Ca, and
thereby also possibly Na, since Na together with Na/K–ATPase play interactive roles in the
regulation of intracellular Ca as well as Ca stores at the SRCA [64]. All of these have direct
consequences on cardiac myocyte functions and are linked with heart contractions [64]. Since
SRCA is a potent therapeutic target for CVD [65,66], our work suggests to also scrutinise
specific intermolecular interactions that result from the phosphoethanolamine moiety of PEs.
Moreover, it is also interesting to see from Figure 5 Cluster 4, that PEs not just have strong
correlations with Ca and Na, but also moderate correlations (r ≥ 0.4) with many other ele-
ments as well (e.g., essential elements such as Al, Cu, Mg, and Zn). It thus highlights the
multi-faceted interactions that PEs have with such essential elements, and their potential
importance in phospholipid homeostasis in the cardiovascular system [67,68]. Lastly, further
studies should also investigate how a terminal GlcNAc glycan and a high-mannose glycan
as identified in this work may be involved, e.g., whether inhibition of the ATPases impairs
N-glycan expression/function [69], or vice versa [70].

3.6. Classification Modelling and Performance of the Multi-Omics Model

As a culmination of all four omics studies, the performance of a multi-omics classifier
in discriminating between AMI and healthy was compared with that of the individual
omics. First, for quick visualisation of the classification performances, PLS-DA modelling
was applied to depict the classifiers’ ability to cluster/separate AMI versus controls. For
the multi-omics classifier, it was built based on the block-PLS-DA analysis described earlier.
As shown in Figure 6A, the ability to cluster/separate AMI and healthy samples via the
consensus multi-omics classifier is seemingly better than the individual PLS-DA models.

Secondly, besides the quick visualisation based on supervised PLS-DA models, an
unsupervised method was also applied to observe if the discrimination between AMI and
controls was indeed the main source of variability measured in omics variables. For that
purpose, hierarchical cluster analysis was done. As shown in Figure 6B, the use of all four
omics datasets was able to render the clustering of AMI from healthy relatively well. This
can be seen from the grouping of the blue rows (AMI) mostly at the bottom, while the
orange rows (controls) are mostly on top. Beyond that, the intermixing of features from
the four omics layers could also be observed from the top dendrogram in Figure 6B. This
was shown from the interspersed spread of the colored columns (showing features from
different omics layers). The significance of this observation is that it possibly denotes an
interactive relationship among the four omics in AMI discrimination.

Thirdly, to more objectively assess the differences in performance between individual
and multi-omics classifiers, AUCROCs were generated. In this case, random forest models
were chosen as the standard modelling technique for comparison purposes, to account for
any nonlinear interactions across the omics layers. As a note, random forest modelling was
also chosen instead of PLS-DA modelling as PLS-DA is a linear-based method and may not
be sensitive to the nonlinear cross-omics relationships. Again, the random forest modelling
was done with repeated random sub-sampling cross-validation (30 iterations; each iteration
uses two-thirds of the samples for feature selection and model training, and the remaining
one-third for testing). No external validation was done. The results are summarised in
Table 4 below. The performance of the multi-omics classifier (AUCROC = 0.953) was higher
than all the individual omics classifiers. The multi-omics classifier’s lower confidence limit
(CI 0.911–0.987) was also even higher than all the upper confidence limits of the individual
classifiers, except for metabolomics. This exemplifies the synergistic effect when these four
omics datasets were cohesively used to build a disease classification model. Although,
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there is one caveat here: the observation that the multi-omics classifier achieving a higher
AUCROC value is not unexpected mathematically. The most important question remains to
be whether the multi-omics classifier’s performance can be reproducible when tested in a
large and independent cohort of AMI patients. This is the litmus test.
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Table 4. Performance of random forest models built using glycomics, metallomics, metabolomics,
lipidomics, and multi-omics features in classifying between AMI and healthy.

Classifier No. of Features Used AUCROC CI

Glycomics 37 0.786 0.688–0.883
Metallomics 30 0.851 0.782–0.904

Metabolomics 27 0.836 0.744–0.930
Lipidomics 48 0.822 0.724–0.905
Multi-omics Top 100 out of 142 0.953 0.911–0.987

As a whole, despite the limitation that an external validation was not achieved in
this portion, the potential of the multi-omics classifier, having synergistically enhanced
performance, cannot be denied.

3.7. Limitations and Further Work

One of the biggest analytical challenges still pertains to the coverage in metabolomics
analyses. As such, for future large-scale multi-omics studies, researchers should consider
performing targeted metabolomics with a defined list of pathways and metabolites of
interest [71], or to attempt, as comprehensively as possible, an untargeted metabolomics
study by perhaps performing both GC–MS and LC–MS analyses for covering both volatile
and non-volatiles [71], as well as running LC–MS with both normal and reverse-phased
columns (e.g., HILIC + T3 + C8 combination) [72], after testing at different mobile phase
pH conditions (acidic, neutral, basic) for optimal/complementary selectivity [73].

Secondly, in this study, only age was matched between the case and control groups.
However, other demographic characteristics (gender, race, smoking status), as well as
cardiovascular risk factors are also important factors that may be translated to measurable
differences in omics profiles as well. Unfortunately, our study size was severely limited by
patients’ recruitment in local hospitals. Thus, we could only match the cases and controls
based on age. Moreover, the inequity in distributions was further compounded by the fact
that AMI patients are usually males. Additionally, adjustment for confounding factors by
statistical analysis cannot completely eliminate the effect of mismatching between the two
groups on the results. Therefore, in future work, sensitivity analyses (e.g., by removing
some female controls and checking if the results would be affected) should be attempted.
Otherwise, studying larger cohorts with appropriate matching would be ideal.

Lastly, we also note the challenges pertaining to visualisation capacities in our work,
which were limited by the functions achievable using the available open-sourced soft-
ware/packages. It would be greatly beneficial for any such omics studies in the future
to have further developments in bioinformatics tools to streamline and hasten the data
processing, analysis, and visualisation works.

4. Conclusions

Overall, an integrative multi-omics study of omics beyond the central dogma was
attempted on a cohort of AMI and healthy patients to reveal intriguing biological insights
pertaining to the cross-omics mechanisms associated with AMI pathophysiology. They
included elucidating the potential roles of glycerophospholipids in N-glycan-modulated
IgG–FcγR’s immunoregulatory functions, the importance of SRCA in CVD, and the contri-
butions of PEs for SRCA functions. Moreover, combining the four omics datasets syner-
gistically enhanced the classifier performance in discriminating between AMI and healthy
patients. All these discoveries were otherwise not attainable when these omics were sin-
gularly and independently analysed. The transitioning of a single omics to a multi-omics
strategy is therefore supported by the work presented in this study.

It should also be noted that the significant contributions of the respective state-of-the-
art analytical workflows employed in this work enabled efficient multi-omics research. We
highlight that the CE-LIF-based glycomics workflow selected in this multi-omics study
used only 2 µL of blood plasma, while the untargeted metabolomics and lipidomics datasets
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generated via simultaneous extraction used only 50 µL plasma. Furthermore, even though
the metallomics workflow required acid digestion, which makes it hard to integrate with
other omics extraction workflows, the glycomics and metabolomics/lipidomics extractions
could potentially be unified. One of our recent works [74], which demonstrates the validity
of a simultaneous polar metabolite and N-glycan extraction bi-omics workflow, supports
such an outlook.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/metabo12111080/s1, Supplementary Methods; Table S1: List of significantly
altered metabolite features based on PLS-DA’s VIP score, Mann-Whitney test, and fold-change criteria;
Table S2: List of significantly altered lipidomic features based on PLS-DA’s VIP score, Mann Whitney test,
and fold-change criteria; Figure S1: Relevance network plot of highly correlated (r > 0.5; p-value < 0.05)
significant features across all four omics layers (glycomics + metallomics + metabolomics + lipidomics);
Figure S2: Tri-omics (glycomics + metallomics + lipidomics) relevance network plot of highly signif-
icant features correlat-ed (r > 0.5; p-value < 0.05); Figure S3: Tri-omics (glycomics + metallomics +
metabolomics) relevance network plot of highly significant features cor-related (r > 0.5; p-value < 0.05);
Figure S4: Bi-omics (glycomics + metallomics) relevance network plot of highly significant features
correlated (r > 0.5; p-value < 0.05); Figure S5: Bi-omics (glycomics + lipidomics) relevance network
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lipidomics) relevance network plot of highly significant features correlated (r > 0.5; p-value < 0.05).
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