
Shuzo Sakata- PhD
- Professor at University of Strathclyde
Shuzo Sakata
- PhD
- Professor at University of Strathclyde
About
71
Publications
9,167
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,076
Citations
Introduction
Current institution
Additional affiliations
August 2010 - present
Publications
Publications (71)
Amyloid pathology is a hallmark of Alzheimer’s disease (AD). Hippocampal sharp-wave ripples (SWRs) play a role in memory consolidation and are impaired in various AD mouse models. However, it remains unclear how experience affects SWRs and how extrinsic signals contribute to SWR generation in AD. Here, by combining behavioral, in vivo electrophysio...
Alzheimer's disease pathology typically manifests itself across multiple brain regions yet assessment at this scale in mouse models remains a challenge. This hinders the development of novel therapeutic approaches. Here we introduce a novel fiber photometry approach to monitor amyloid pathology in freely behaving mice. We first demonstrated that fl...
While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, excessive developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders. Still, little is known about how the overproduction of cortical neurons during development affects cortical processing and behavior in...
Accurately and quantitatively describing mouse behavior is an important area. Although advances in machine learning have made it possible to track their behaviors accurately, reliable classification of behavioral sequences or syllables remains a challenge. In this study, we present a novel machine learning approach, called SaLSa (a combination of s...
Fiber photometry is an optical method to monitor fluorescent signals using a fiber optic cannula. Over the past two decades, together with the development of various genetically encoded biosensors, it has been applied to investigate various types of activity in the central nervous system. This includes not only type-specific neuronal population act...
Ponto-geniculo-occipital (PGO) or pontine (P) waves have long been recognized as an electrophysiological signature of rapid eye movement (REM) sleep. However, P-waves can be observed not just during REM sleep, but also during non-REM (NREM) sleep. Recent studies have uncovered that P-waves are functionally coupled with hippocampal sharp wave-ripple...
Neuropsychiatric disorders present with an array of emotional and behavioral symptoms, as well as cognitive deficits. Likely rooted in a complex pathophysiology involving glutamatergic neurotransmission imbalance, cognitive deficits frequently elude treatment by current pharmacotherapies. This highlights the pressing need for innovative drugs speci...
Accurately and quantitatively describing mouse behavior is an important area. Although advances in machine learning have made it possible to track their behaviors accurately, reliable classification of behavioral sequences or syllables remains a challenge. In this study, we present a novel machine learning approach, called SaLSa (a combination of s...
The thalamic reticular nucleus (TRN) is crucial for the modulation of sleep‐related oscillations. The caudal and rostral subpopulations of the TRN exert diverse activities, which arise from their interconnectivity with all thalamic nuclei, as well as other brain regions. Despite the recent characterization of the functional and genetic heterogeneit...
Deconvolution is a challenging inverse problem, particularly in techniques that employ complex engineered point-spread functions, such as microscopy with propagation-invariant beams. Here, we present a deep-learning method for deconvolution that, in lieu of end-to-end training with ground truths, is trained using known physics of the imaging system...
Ponto-geniculo-occipital (PGO) or pontine (P) waves are a prominent electrophysiological marker of rapid eye movement (REM) sleep. Although P-waves have long been recognized, they have been less studied compared to other sleep-related neural events. Recent studies in mice and macaques uncovered state-dependent functional coupling of P-waves with hi...
While evolutionary cortical expansion is thought to underlie the evolution of human cognitive capabilities, developmental expansion can lead to megalencephaly, often found in neurodevelopmental disorders such as autism spectrum disorder. Still, little is known about how the overproduction of cortical neurons during development affects cortical proc...
Aims
Growing evidence suggests an association between the use of sedative‐hypnotic medications and risk of dementia. The aim of this study is to examine this association using a meta‐analysis approach.
Methods
MEDLINE (PubMed) and Scopus were systematically searched for studies published in English only. The quality of studies was evaluated using...
Simple Summary
Electrical activity in the brain dynamically changes throughout the day. Abnormalities in brain activity have been associated with various brain disorders, including Alzheimer’s disease (AD). While brain disorders stem from complex pathological processes, resulting in abnormalities in neural activity and cognitive deficits, recent st...
Structured propagation-invariant light fields, such as the Airy and Bessel beams, can encode high-resolution spatial information over an extended field of view. Their use in microscopy, however, has been limited due to the need for deconvolution, a challenging inverse problem. Here, we introduce a deep learning method that can deconvolve and super-...
Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. Therefore, in this study, we recorded astrocyte intracellular calcium (Ca2...
The lateral habenula (LHb) is a brain structure which is known to be pathologically hyperactive in depression, whereby it shuts down the brains' reward systems. Interestingly, inhibition of the LHb has been shown to have an antidepressant effect, hence making the LHb a fascinating subject of study for developing novel antidepressant therapies. Desp...
Neural activity is diverse, and varies depending on brain regions and sleep/wakefulness states. However, whether astrocyte activity differs between sleep/wakefulness states, and whether there are differences in astrocyte activity among brain regions remain poorly understood. In this study, we recorded astrocyte intracellular calcium (Ca ²⁺ ) concen...
Neuronal activity can modify Alzheimer's disease pathology. Overexcitation of neurons can facilitate disease progression whereas the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. Although previous studies have induced cortical gamma oscillations by either optogenetic activation of...
The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin...
Neuronal activity can modify Alzheimer’s disease pathology. Although overexcitation of neurons can facilitate disease progression, the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. These beneficial effects of gamma oscillations can be caused by either optogenetic activation of cort...
Imaging across length scales and in depth has been an important pursuit of widefield optical imaging. This promises to reveal fine cellular detail within a widefield snapshot of a tissue sample. Current advances often sacrifice resolution through selective sub-sampling to provide a wide field of view in a reasonable time scale. We demonstrate a new...
Cholinesterase inhibitors, the current frontline symptomatic treatment for Alzheimer’s disease (AD), are associated with low efficacy and adverse effects. M1 muscarinic acetylcholine receptors (M1 mAChRs) represent a potential alternate therapeutic target; however, drug discovery programs focused on this G protein-coupled receptor (GPCR) have faile...
Imaging across length scales and in depth has been an important pursuit of widefield optical imaging. This promises to reveal fine cellular detail within a widefield snapshot of a tissue sample. Current advances often sacrifice resolution through selective sub-sampling to provide a wide field of view in a reasonable time scale. We demonstrate a new...
In vivo electrophysiology is the gold standard technique used to investigate sub-second neural dynamics in freely behaving animals. However, monitoring cell-type-specific population activity is not a trivial task. Over the last decade, fiber photometry based on genetically encoded calcium indicators (GECIs) has been widely adopted as a versatile to...
The brainstem plays a crucial role in sleep-wake regulation. However, their ensemble dynamics underlying sleep regulation remain poorly understood. Here we show slow, state-predictive brainstem ensemble dynamics and state-dependent interactions between the brainstem and the hippocampus in mice. On a timescale of seconds to minutes, brainstem popula...
Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep–wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network...
In vivo electrophysiology is the gold standard technique used to investigate sub-second neural dynamics in freely behaving animals. However, monitoring cell-type-specific population activity is not a trivial task. Over the last decade, fiber photometry based on genetically encoded calcium indicators has been widely adopted as a versatile tool to mo...
The pontine nuclei play a crucial role in sleep-wake regulation. However, pontine ensemble dynamics underlying sleep regulation remain poorly understood. By monitoring population activity in multiple pontine and adjacent brainstem areas, here we show slow, state-predictive pontine ensemble dynamics and state-dependent interactions between the pons...
Sleep is a fundamental homeostatic process within the animal kingdom. Although various brain areas and cell types are involved in the regulation of the sleep-wake cycle, it is still unclear how different pathways between neural populations contribute to its regulation. Here we address this issue by investigating the behavior of a simplified network...
[This corrects the article DOI: 10.3389/fnins.2019.00316.].
The lateral habenula (LHb) is hyperactive in depression, and thus potentiating inhibition of this structure makes an interesting target for future antidepressant therapies. However, the circuit mechanisms mediating inhibitory signalling within the LHb are not well-known. We addressed this issue by studying LHb neurons expressing either parvalbumin...
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5–4 Hz) and slow oscillations (<1 Hz) in the neocortex and lar...
With the advent of recent genetic technologies for mice, it is now feasible to investigate the circuit mechanisms of brain functions in an unprecedented manner. Although transgenic mice are commonly used on C57BL/6J (C57) background, hearing research has typically relied on different genetic backgrounds, such as CBA/Ca or CBA due to the genetic def...
Synchronized states are marked by large-amplitude low-frequency oscillations in the cortex. These states can be seen during quiet waking or slow-wave sleep. Within synchronized states, previous studies have noted a plethora of different types of activity, including delta oscillations (0.5-4 Hz) and slow oscillations (<1 Hz) in the cortex and large-...
With the advent of recent genetic technologies for mice, it is now feasible to investigate the circuit mechanisms of brain functions in an unprecedented manner. Although transgenic mice are commonly used on C57BL/6J (C57) background, hearing research has typically relied on different genetic backgrounds, such as CBA/Ca or CBA due to the genetic def...
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be...
The basal forebrain (BF) has long been implicated in attention, learning and memory, and recent studies have established a causal relationship between artificial BF activation and arousal. However, neural ensemble dynamics in the BF still remains unclear. Here, recording neural population activity in the BF and comparing it with simultaneously reco...
Controlling neural circuits is a powerful approach to uncover a causal link between neural activity and behaviour. Optogenetics has been widely adopted by the neuroscience community as it offers cell-type-specific perturbation with millisecond precision. However, these studies require light delivery in complex patterns with cellular-scale resolutio...
Ongoing spontaneous activity in cortical circuits defines cortical states, but it still remains unclear how cortical states shape sensory processing across cortical laminae and what type of response properties emerge in the cortex. Recording neural activity from the auditory cortex (AC) and medial geniculate body (MGB) simultaneously with electrica...
Activity in the absence of stimuli is ubiquitous across the thalamocortical system (TS), with patterns of spontaneous activity reflecting ongoing behavioural state. Under anaesthesia and during deep sleep the TS operates in an inactivated state (characterised by low frequency high amplitude oscillations in local field potential (LFP)) in which neur...
Brain states can be classified as synchronized (large amplitude low frequency oscillations) or desynchronized (small amplitude high frequency activity). [1] Synchronized states are marked by UP states/phases characterized by global spiking and DOWN states/phases are characterized by global silence in the cortex. In awake animals, desynchronized sta...
Optogenetics has proven to be a revolutionary technology in neuroscience and has advanced continuously over the past decade. However, optical stimulation technologies for in vivo need to be developed to match the advances in genetics and biochemistry that have driven this field. In particular, conventional approaches for in vivo optical illuminatio...
The phase of low-frequency network activity in the auditory cortex captures changes in neural excitability, entrains to the temporal structure of natural sounds, and correlates with the perceptual performance in acoustic tasks. Although these observations suggest a causal link between network rhythms and perception, it remains unknown how precisely...
Significance
Neurons in the cerebral cortex emit action potentials in a seemingly random manner. One puzzling aspect of this neuronal “noise” is that it is correlated among neighboring neurons, something thought to reflect the tendency of neurons to fire together. Here, we recorded the activity from populations of cortical neurons in rats and found...
The interaction of neural populations within the neocortex is mainly characterized by which layer they located in. For instance: thalamocortical input projects to layer 4 cells, which in turn project to layer 2/3 cell. Layer 2/3 cells then forward signals onto layer 5 cells [4]. However, it is difficult to see interactions within layers, or even wh...
Within optogenetics there is a need for compact light sources that are capable of delivering light with excellent spatial, temporal, and spectral resolution to deep brain structures. Here, we demonstrate a custom GaN-based LED probe for such applications and the electrical, optical, and thermal properties are analyzed. The output power density and...
Cortical circuits spontaneously generate coordinated activity even in the absence of external inputs. The character of this activity depends on cortical state. We investigated how state affects the organization of spontaneous activity across layers of rat auditory cortex in vivo, using juxtacellular recording of morphologically identified neurons a...
Relationship of cell types between contraversive and ipsiversive movements. Cell types defined by contraversive movement were mapped on the scatter plots in Figure 4B (defined by ipsiversive movement).
(PDF)
Spatial distribution of 4 types of neurons in the superior colliculus (SC). (A) A Nissl-stained coronal section of an animal (# 673) shows the recording track of a tetrode. Tetrode tracks are indicated by a black line in the right diagram (adapted from Paxinos and Watson, 1986). (B) Depth profile of each type of cell for contraversive movement (n =...
Evaluation of the region in the superior colliculus (SC) suppressed by muscimol. (A) Representative photomicrographs of the SC of rats that performed the spatial discrimination task after injecting saline (left) and muscimol (right). # indicates the location of injection tip. Black lines cover the regions where c-Fos expression in glial cells was o...
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is no...
Recordings of single neurons have yielded great insights into the way acoustic stimuli are represented in auditory cortex. However, any one neuron functions as part of a population whose combined activity underlies cortical information processing. Here we review some results obtained by recording simultaneously from auditory cortical populations an...
Spontaneous activity plays an important role in the function of neural circuits. Although many similarities between spontaneous and sensory-evoked neocortical activity have been reported, little is known about consistent differences between them. Here, using simultaneously recorded cortical populations and morphologically identified pyramidal cells...
The responses of neocortical cells to sensory stimuli are variable and state dependent. It has been hypothesized that intrinsic cortical dynamics play an important role in trial-to-trial variability; the precise nature of this dependence, however, is poorly understood. We show here that in auditory cortex of urethane-anesthetized rats, population r...
Recent studies reveal that multisensory convergence can occur in early sensory cortical areas. However, the behavioral importance of the multisensory integration in such early cortical areas is unknown. Here, we used c-Fos immunohistochemistry to explore neuronal populations specifically activated during the facilitation of reaction time induced by...
The neocortex typically operates in one of two states. The activated (desynchronized) state, typical of alert wakefulness and REM sleep, is characterized by a high-frequency, low amplitude local field potential (LFP). The inactivated (synchronized) state exhibits high low-frequency power, and spontaneous transitions between UP states of widespread...
Brains are complex networks. Previously, we revealed that specific connected structures are either significantly abundant or rare in cortical networks. However, it remains unknown whether systems from other disciplines have similar architectures to brains. By applying network-theoretical methods, here we show topological similarities between brain...
7-12 Hz Oscillations, characterized by spindle-like high-voltage rhythmic spike components, appear in quiet immobile states of rats. However, it remains unclear what their relationships with preceding behavioral activities are and how prefrontal neuronal dynamics during these oscillations is. In the present study, we first determined the relationsh...
To understand global and local design principles of mammalian cerebral cortical networks, we applied network-theoretical approaches to connectivity data from macaque and cat cortical networks. We first confirmed "small-world" properties and searched for the evidence of hierarchical modularity. To elucidate their local design principles, we then com...
Rodents are useful animal models in the study of the molecular and cellular mechanisms underlying various neural functions. For studying behavioral properties associated with multisensory functions in rats, we measured the speed and accuracy of target detection by the reaction-time procedure. In the first experiment, we utilized simple two-alternat...
Attention modulates neural activities in sensory cortices. Because cortical neurons are composed of many types of neurons, the activities of these different types of cells can exhibit different modifications depending on whether an animal pays attention to a particular sensory stimulus or not. In the present study, we examined which types of cortic...