
Shuntaro YamadaUniversity of Bergen | UiB · Department of Clinical Dentistry
Shuntaro Yamada
D.D.S., M.Sc. Ph.D
Craniofacial biology and regenerative dentistry
About
20
Publications
4,614
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
171
Citations
Introduction
Shuntaro Yamada is a research fellow at the Center of Translational Oral Research at the University of Bergen. He specializes in advanced tissue engineering techniques aimed at bioengineering scalable implants for bone regeneration. His expertise extends to regenerative dentistry, including tooth engineering, the characterization and application of dental stem cells and their secretome for dental and craniofacial tissue regeneration.
Additional affiliations
April 2013 - March 2015
Education
November 2018 - March 2023
June 2017 - September 2018
April 2007 - March 2013
Publications
Publications (20)
Tooth germs undergo a series of dynamic morphologic changes through bud, cap, and bell stages, in which odontogenic epithelium continuously extends into the underlying mesenchyme. During the transition from the bud stage to the cap stage, the base of the bud flattens and then bends into a cap shape whose edges are referred to as “cervical loops.” A...
The fate determination of bone marrow mesenchymal stem/stromal cells (BMSC) is tightly regulated by mechanical cues, including fluid shear stress. Knowledge of mechanobiology in 2D culture has allowed researchers in bone tissue engineering to develop 3D dynamic culture systems with the potential for clinical translation in which the fate and growth...
The fatal determination of bone marrow mesenchymal stem/stromal cells (BMSC) is closely associated with mechano-environmental factors in addition to biochemical clues. The aim of this study was to induce osteogenesis in the absence of chemical stimuli using a custom-designed laminar flow bioreactor. BMSC were seeded onto synthetic microporous scaff...
Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The pro...
Understanding cellular mechanics requires evaluating the mechanical and chemical cues that regulate the actin cytoskeleton, particularly filopodia and lamellipodia. Therefore, this study aims to investigate the effect of scaffolds properties on cell migration. The results showed that scaffolds toughness, strain, and strength played a key role in pr...
Gelatin methacryloyl (GelMA) stands out for its biocompatibility, tunability, and functionality, being often selected as a scaffolding material. However, the biological modulations induced by its photocrosslinking process on mesenchymal stem cells as well as stress mitigation measures remain insufficiently explored. By using GelMA of Good Manufactu...
There is an overwhelming demand for new scaffolding materials for tissue engineering (TE) purposes. Polymeric scaffolds have been explored as TE materials; however, their high glass transition state (Tg) limits their applicability. In this study, a novel materials platform for fabricating TE scaffolds is proposed based on solvent‐free two‐component...
Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain...
Background
There is growing evidence that extracellular vesicles (EVs) play a crucial role in the paracrine mechanisms of transplanted human mesenchymal stem cells (hMSCs). Little is known, however, about the influence of microenvironmental stimuli on the osteogenic effects of EVs. This study aimed to investigate the properties and functions of EVs...
The featured scientific work by Nature portfolio as the best scientific image of the month February 2024).
https://www.nature.com/immersive/d41586-024-00608-5/index.html
Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and in...
The featured scientific work by Nature portfolio as the best scientific image of the month (November 2023).
https://www.nature.com/immersive/d41586-023-03692-1/index.html
Background
IRX3 is implicated in genetic predisposition to obesity via the FTO variant locus. IRX3 shows FTO risk allele-dependent upregulation specifically during early adipogenesis, leading to a shift from energy-dissipation to fat storage in mature adipocytes. However, how changes in IRX3 expression at one developmental stage affect cellular phe...
Degradable polyester-based scaffolds are ideal for tissue engineering applications where long-term structural integrity and mechanical support are a requisite. However, their hydrophobic and unfunctionalized surfaces restrain their tissue-mimetic quality. Instead, hyaluronan (HA) hydrogels are able to act as cell-instructive materials with the abil...
Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration of each study, the experimental setups of perfusion bi...
Three-dimensional printing (3D printing) is a promising technique for producing scaffolds for bone tissue engineering applications. Porous scaffolds can be printed directly, and the design, shape and porosity can be controlled. 3D synthetic biodegradable polymeric scaffolds intended for in situ bone regeneration must meet stringent criteria, primar...
Key points
•Periodontal regeneration requires the hierarchical reorganization of soft and hard tissues, namely, periodontal ligament, cementum, alveolar bone, and gingiva.
•Three-dimensional microporous scaffolds offer structural support and spatiotemporal guidance for cell growth and differentiation.
•Biomimetic periodontal extracellular matrix sc...
Various types of synthetic polyesters have been developed as biomaterials for tissue engineering. These materials commonly possess biodegradability, biocompatibility, and formability, which are preferable properties for bone regeneration. The major challenge of using synthetic polyesters is the result of low cell affinity due to their hydrophobic n...
This study investigated the level of magnetic energy around implants possessing a static magnetic field (SMF) and assessed the in vivo influence of SMF on bone regeneration. Implants possessing a sintered neodymium magnet internally were placed in a rabbit femur. An implant without SMF was placed as control. After 12 weeks of healing in vivo, the b...