Shunsuke Kitada

Shunsuke Kitada
Hosei University · Department of Applied Informatics

Master of Engineering

About

21
Publications
2,720
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
61
Citations

Publications

Publications (21)
Article
Full-text available
Although attention mechanisms have become fundamental components of deep learning models, they are vulnerable to perturbations, which may degrade the prediction performance and model interpretability. Adversarial training (AT) for attention mechanisms has successfully reduced such drawbacks by considering adversarial perturbations. However, this te...
Preprint
We propose a simple yet effective image captioning framework that can determine the quality of an image and notify the user of the reasons for any flaws in the image. Our framework first determines the quality of images and then generates captions using only those images that are determined to be of high quality. The user is notified by the flaws f...
Preprint
There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increas...
Preprint
It is often difficult to correctly infer a writer's emotion from text exchanged online, and differences in recognition between writers and readers can be problematic. In this paper, we propose a new framework for detecting sentences that create differences in emotion recognition between the writer and the reader and for detecting the kinds of expre...
Preprint
Discontinuing ad creatives at an appropriate time is one of the most important ad operations that can have a significant impact on sales. Such operational support for ineffective ads has been less explored than that for effective ads. After pre-analyzing 1,000,000 real-world ad creatives, we found that there are two types of discontinuation: short-...
Article
Full-text available
Discontinuing ad creatives at an appropriate time is one of the most important ad operations that can have a significant impact on sales. Such operational support for ineffective ads has been less explored than that for effective ads. After pre-analyzing 1,000,000 real-world ad creatives, we found that there are two types of discontinuation: short-...
Article
Full-text available
There is increasing interest in the use of multimodal data in various web applications, such as digital advertising and e-commerce. Typical methods for extracting important information from multimodal data rely on a mid-fusion architecture that combines the feature representations from multiple encoders. However, as the number of modalities increas...
Article
Full-text available
Although attention mechanisms have been applied to a variety of deep learning models and have been shown to improve the prediction performance, it has been reported to be vulnerable to perturbations to the mechanism. To overcome the vulnerability to perturbations in the mechanism, we are inspired by adversarial training (AT), which is a powerful re...
Preprint
We propose a new general training technique for attention mechanisms based on virtual adversarial training (VAT). VAT can compute adversarial perturbations from unlabeled data in a semi-supervised setting for the attention mechanisms that have been reported in previous studies to be vulnerable to perturbations. Empirical experiments reveal that our...
Preprint
We propose a new character-based text classification framework for non-alphabetic languages, such as Chinese and Japanese. Our framework consists of a variational character encoder (VCE) and character-level text classifier. The VCE is composed of a $\beta$-variational auto-encoder ($\beta$-VAE) that learns the proposed glyph-aware disentangled char...
Preprint
In recent years, deep learning models have placed more emphasis on the interpretability and robustness of models. The attention mechanism is an important technique that contributes to these elements and is widely used, especially in the natural language processing (NLP) field. Adversarial training (AT) is a powerful regularization technique for enh...
Preprint
Classical and some deep learning techniques for Arabic text classification often depend on complex morphological analysis, word segmentation, and hand-crafted feature engineering. These could be eliminated by using character-level features. We propose a novel end-to-end Arabic document classification framework, Arabic document image-based classifie...
Conference Paper
Full-text available
Accurately predicting conversions in advertisements is generally a challenging task, because such conversions do not occur frequently. In this paper, we propose a new framework to support creating high-performing ad creatives, including the accurate prediction of ad creative text conversions before delivering to the consumer. The proposed framework...
Preprint
Full-text available
Accurately predicting conversions in advertisements is generally a challenging task, because such conversions do not occur frequently. In this paper, we propose a new framework to support creating high-performing ad creatives, including the accurate prediction of ad creative text conversions before delivering to the consumer. The proposed framework...
Preprint
Full-text available
For analysing and/or understanding languages having no word boundaries based on morphological analysis such as Japanese, Chinese, and Thai, it is desirable to perform appropriate word segmentation before word embeddings. But it is inherently difficult in these languages. In recent years, various language models based on deep learning have made rema...
Preprint
Full-text available
In this report, we introduce the outline of our system in Task 3: Disease Classification of ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection. We fine-tuned multiple pre-trained neural network models based on Squeeze-and-Excitation Networks (SENet) which achieved state-of-the-art results in the field of image recognition. In addition, we u...

Network

Cited By