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Abstract—In this paper, power allocation between pilots and
data symbols is investigated to maximize energy efficiency
(EE) for downlink orthogonal frequency division multiple access
(OFDMA) networks. We first derive an EE function considering
channel estimation error, which depends on large-scale channel
gains of multiple users, allocated power to pilots and data
symbols, and circuit power consumption. Then an optimization
problem is formulated to maximize the EE under overall transmit
power constraint. Exploiting the quasiconcavity property of the
EE function, we propose an alternating optimization method in
the low transmit power region and reformulate a joint quasicon-
cave problem in the high transmit power region. Analysis and
simulation results show that the power ratio for pilots decreases
with the circuit power. When the circuit power is small, the
optimal overall transmit power increases with the circuit power.
Otherwise, the optimal transmit power does not depend on it.
Transmitting more data symbols to the users with higher channel
gains improves the EE but at a cost of sacrificing the fairness
among multiple users. Simulation results also demonstrate that
compared with spectral efficiency (SE)-oriented design, the EE-
oriented design can improve the EE performance significantly
with a relatively small SE loss.

Index Terms—Energy efficiency (EE), power allocation, pilot,
orthogonal frequency division multiple access (OFDMA).

I. INTRODUCTION

MOTIVATED by protection of natural environment and
the scarcity of energy resources, efficient energy usage

has been widely advocated. Although wireless communica-
tions only take up a small portion of today’s total carbon
footprint among the information and communication technolo-
gies [1], [2], explosive growth of high-quality wireless services
indicates that it will play a more and more important role in
the future. Consequently, design of energy-efficient wireless
communication systems becomes an urgent task.
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Energy efficiency (EE) is first studied from information-
theoretic point of view. It is shown in [3] that when only
transmission energy consumption is considered, the maximum
EE is achieved when spectral efficiency (SE) approaches zero.
When circuit energy consumption in practical systems is taken
into account, the relationship between EE and SE completely
changes, which depends on network architectures, transmis-
sion schemes, and resource allocation strategies, etc. [1]. Re-
cently, various issues have been addressed to improve the EE
of wireless systems. For example, a tradeoff among transmis-
sion energy, circuit energy, and transmission time is investi-
gated for different modulation schemes in [4]. Energy-efficient
power adaptation in frequency-selective channels is addressed
in [5]. Adaptive switching between multiple-input multiple-
output (MIMO) and single-input multiple-output (SIMO) is
studied in [6] to save energy for mobile terminals.

In wireless communication systems, pilots are usually in-
serted into data streams to facilitate channel estimation for
coherent detection. Pilot design has been studied from differ-
ent aspects under various criteria. The number, positions, and
power of pilot symbols are designed to maximize the capacity
lower bound in [7] and to minimize the Cramer-Rao bound of
channel estimation error in [8]. It is shown that the optimal
placement of pilot symbols is periodical insertion in frequency
domain. Power allocation for pilots is discussed for MIMO
systems in [9] and for doubly selective fading channels in
[10], respectively. A comprehensive overview of pilot-assisted
transmission is provided in [11], from both information theory
and signal processing point of view.

In contrast to the flourishing on pilot design from the
perspective of channel capacity and channel estimation error,
little attention is paid to the EE. Pilot design that maxi-
mizes capacity, i.e., maximizes the SE, does not necessarily
maximize the EE. Moreover, in EE-oriented pilot resource
allocation, the overall transmit power needs to be optimized
besides the power ratio between pilots and data symbols. The
energy-efficient pilot design is first studied in [12] for single
user case. By assuming the interference incurred by channel
estimation error as Gaussian, the overall transmit power is
optimized to maximize the EE. It is shown that the maximum
EE is achieved at a certain nonzero overall transmit power,
which is totally different from the relationship between the
EE and transmit power when perfect channel information
is known at the receiver. Power allocation between pilots
and data symbols in multi-user case is more complicated
since different users suffer from different channel fadings,
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TABLE I
NOTATION LIST

(A)ij the (i, j)th element of matrix A

A∗ complex conjugate of matrix A

AT transpose of matrixA
AH Hermitian of matrix A

A−1 inverse of matrix A

det(A) determinant of matrix A

IN N ×N identity matrix
Ex[·] expectation operation over x

partial derivative of function f
∂f/∂x

with respect to x

∇f gradient of function f

∇2f Hessian matrix of function f

N ×N diagonal matrix with
diag{x1, · · · , xN}

diagonal elements x1, · · · , xN

diagonal matrix with diagonal
diag{(xi)i∈S} elements xi, i ∈ S
max{x1, · · · , xN} the maximum value of {xn}Nn=1

which results in different requirements on the power for pilot
transmission. On the other hand, all users may share the
common pilots to estimate channels, e.g., in downlink 3GPP
LTE systems [13], which causes that the method in single user
case cannot be used any more. How to allocate power between
pilots and data symbols to maximize the EE in multi-user case
is still unknown.

In this paper, we will investigate energy-efficient power
allocation between pilots and data symbols in training-
based downlink orthogonal frequency division multiple access
(OFDMA) systems. We consider minimum mean-square error
(MMSE) channel estimation. Based on the correlation matrix
of the channel estimation error, we will first derive the ergodic
capacity of each user and the EE function considering the
circuit power consumption. An optimization problem is then
formulated to maximize the EE with the overall transmit power
constraint. A method based on the quasiconcavity of the EE
function is developed to solve the problem. The impacts of
the circuit power and multiple users are analyzed. Simulation
results will show a substantial EE gain of the EE-oriented
design over the SE-oriented design.

Notations used in this paper are summarized in Table I.

II. SYSTEM MODEL

Consider a downlink OFDMA cellular network with M
users and Ntot subcarriers. K pilot symbols are periodically
placed in the frequency domain and shared by different users
for channel estimation [7]. The index set of subcarriers for
pilots is denoted as Sp. Except K subcarriers for pilot trans-
mission, the remaining Ntot −K subcarriers can be assigned
to different users for data transmission without overlapping.
We denote Sm as the index set of subcarriers occupied by
user m with size Nm. For example, for the system in Fig. 1,
M = 3, Ntot = 8, Sp = {1, 3, 5, 7}, S1 = {0, 4}, S2 = {2},
and S3 = {6}.

We optimize the power allocation based on statistical
channel information of multiple users. Since the frequency-

Fig. 1. Pilot structure of an OFDMA system.

domain channel coefficients have the same distribution over
all subcarriers occupied by each user, the transmit power for
pilots and data symbols of each user is uniformly allocated in
frequency domain. Denote α and βm as the overall transmit
power for pilot and data symbols of user m, respectively. Then
the powers per subcarrier for pilot symbols and data symbols
are α/K and βm/Nm, respectively. The noise at the receiver
of each user is assumed to be additive white Gaussian with
zero mean and variance σ2.

All users are assumed to undergo frequency-selective block
fading channels with L resolvable paths whose values are
subject to Gaussian distribution. The channel impulse response
vector from the base station (BS) to user m, ht

m, consists of
L elements which are independent random variables with zero
mean and variance {γm,l}Ll=1. Hence, its correlation matrix is

Rht
m
= Eht

m

[
ht
mht,H

m

]
= diag{γm,1, · · · , γm,L}. (1)

Denote the channel coefficient of user m at the ith subcarrier
as hfm,i. Then from Parseval’s theorem, its variance can be
obtained as follows,

Ehf
m,i

[
|hfm,i|2

]
= NtotfiRht

m
fHi =

L∑
l=1

γm,l, (2)

where fi denotes the ith row of a truncated FFT matrix FL =[
1√
Ntot

e−j2πnl/Ntot

]Ntot−1,L−1

n,l=0
.

The frequency-domain pilot vector received by user m is

yp,m = Tph
f
p,m + np,m =

√
NtotTpΨpFLh

t
m + np,m

= Φmht
m + np,m, (3)

where hf
p,m �

√
NtotΨpFLh

t
m is a vector consisting of

the frequency-domain channel coefficients of user m at the
subcarriers occupied by pilot symbols, Ψp is a K × Ntot

selection matrix with one at the positions given by Sp, Tp

denotes a K ×K diagonal matrix consisting of pilot symbols
{sk}Kk=1, Φm �

√
NtotTpΨpFL, and np,m is the noise

vector.

The frequency-domain data vector received by user m can
be expressed as

yd,m = Hf
mdm + nd,m = Ĥf

mdm +ΔHf
mdm + nd,m︸ ︷︷ ︸

vm

, (4)
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where dm is the data vector, nd,m is the noise vector,
Hf

m � diag{(hfm,i)i∈Sm} is an Nm × Nm diagonal matrix,
Ĥf

m and ΔHf
m denote the estimation and estimation error of

Hf
m, respectively, and vm � ΔHf

mdm + nd,m denotes the
total signal distortion.

III. PROBLEM FORMULATION

In this section, we will first investigate the performance
of MMSE channel estimator. Then ergodic channel capacity
of each user is derived for downlink transmission and an
optimization problem is formulated to maximize the EE under
overall transmit power constraint.

A. Channel Estimation

Based on MMSE criterion [14, Ch.8], we can readily obtain
the estimate of ht

m from (3) as

ĥt
m = Rht

m
Φm

(
ΦmRht

m
ΦH

m + σ2IK
)−1

yp,m,

where we have used the fact that noise is white and with
zero mean and the same variance over all subcarriers. The
correlation matrix of estimation errors can be expressed as

RΔht
m
= EΔht

m

[
(ht

m − ĥt
m)(ht

m − ĥt
m)H

]
=

(
R−1

ht
m
+

1

σ2
ΦH

mΦm

)−1

. (5)

From Appendix A, we can obtain

ΦH
mΦm = αIL. (6)

After substituting (1) and (6), (5) becomes

RΔht
m
= diag

{
1

1
γm,1

+ α
σ2

, · · · , 1
1

γm,L
+ α

σ2

}
. (7)

Denote Δhfm,i and ĥfm,i as the estimation error and estimate
of hfm,i, respectively. From (2) and (7), the variances of
Δhfm,i, and ĥfm,i can be derived as

EΔhf
m,i

[
|Δhfm,i|2

]
= Ntotf

H
i RΔht

m
fi =

L∑
l=1

γm,lσ
2

γm,lα+ σ2
,

(8)
and

Eĥf
m,i

[
|ĥfm,i|2

]
= Ehf

m,i

[
|hfm,i|2

]
− EΔhf

m,i

[
|Δhfm,i|2

]
=

L∑
l=1

γ2m,lα

γm,lα+ σ2
, (9)

respectively.

B. Ergodic Capacity

If we assume that the elements of data vector dm are
independent and with Gaussian distribution and treat the term
ΔHf

mdm in (4) as Gaussian noise as in [7], the ergodic
channel capacity of user m can be written as

Cm = ΔfEĤf
m

[
log2 det(INm +R−1

vm
Ĥf

mRdmĤf,H
m )

]
,

(10)

where Δf is the subcarrier spacing, Rdm and Rvm are the
correlation matrices of the data vector and the total signal
distortion vector, respectively.

Since the transmit power for user m is equally allocated
to its occupied subcarriers, the correlation matrix of the data
vector can be expressed as

Rdm =
βm
Nm

INm . (11)

Since data and noise are independent, the correlation matrix
of the signal distortion vector in (4) becomes

Rvm � Evm

[
vmvH

m

]
= EΔHf

m,dm,nd,m

[
(ΔHf

mdm + nd,m)(ΔHf
mdm + nd,m)H

]
= EΔHf

m,dm

[
ΔHf

mdmdH
mΔHf,H

m

]
+ End,m

[
nd,mnH

d,m

]
= EΔHf

m

[
ΔHf

mRdmΔHf,H
m

]
+ σ2INm . (12)

Substituting (8) and (11) into (12), we have

Rvm = diag

{(
βm
Nm

EΔhf
m,i

[
|Δhfm,i|2

]
+ σ2

)
i∈Sm

}

=

(
βm
Nm

L∑
l=1

γm,lσ
2

γm,lα+ σ2
+ σ2

)
INm . (13)

To facilitate the analysis of the impact of power allocation,
we re-express the channel estimate as a product of its standard
deviation and a normalized random variable as follows,

ĥfm,i =

√
Eĥf

m,i

[
|ĥfm,i|2

]
g =

√√√√ L∑
l=1

γ2m,lα

γm,lα+ σ2
g, (14)

where (9) is used. Because ĥfm,i is subject to Gaussian
distribution when linear MMSE channel estimation is applied
[12], g is a complex Gaussian random variable with zero mean
and unit variance.

Substituting (11) and (13) into (10) and considering (14),
we have

Cm = ΔfEĥf
m,i

⎡
⎢⎢⎢⎣

Nm∑
i=1

log2

⎛
⎜⎜⎜⎝1 +

βm

Nm
|ĥfm,i|2

βm

Nm

L∑
l=1

γm,lσ2

γm,lα+σ2 + σ2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

= ΔfNmEg

⎡
⎢⎢⎢⎣log2

⎛
⎜⎜⎜⎝1 +

βm
L∑

l=1

γ2
m,lα

γm,lα+σ2 |g|2

(Nm + βm
L∑

l=1

γm,l

γm,lα+σ2 )σ2

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

� ΔfNmEg

[
log2(1 + f(α, βm)|g|2)], (15)

where f(α, βm) �
βm

L∑
l=1

γ2
m,lα

γm,lα+σ2(
Nm+βm

L∑
l=1

γm,l

γm,lα+σ2

)
σ2

is used.

C. Energy Efficiency Optimization

The overall transmit power in training-based downlink
systems consists of the power for pilot transmission and that
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for data transmission and can be expressed as

Pt = α+

M∑
m=1

βm. (16)

Except for transmit power, additional circuit power is con-
sumed at the BS for transmitting and receiving, such as
filtering, digital-to-analog (D/A) or analog-to-digital (A/D)
converting, and signal processing. The overall consumed
power at the BS is given by [4],

Ptot = ρPt + Pc = ρ

(
α+

M∑
m=1

βm

)
+ Pc. (17)

where Pc represents the circuit power consumption and 1/ρ
denotes the power amplifier efficiency which is defined as the
ratio of the output power to input power of a power amplifier.

The EE in dowlink transmission is defined as the overall
number of bits transmitted from the BS per unit energy [5]
and is equivalent to the sum capacity of multiple users per
unit power. From (15) and (17), we can obtain the EE as

η =

M∑
m=1

Cm

Ptot
(18)

=

Δf
M∑

m=1

NmE|g|2
[
log2(1 + f(α, βm)|g|2)]

ρ

(
α+

M∑
m=1

βm

)
+ Pc

.

Since the target application of our work is for best-effort
services pursuing high EE, we do not consider minimum data
rate requirements of multiple users. Then the optimization
problem of power allocation to maximize the EE under
transmit power constraint is finally formulated as follows,

max
α,{βm}M

m=1

Δf
M∑

m=1
NmE|g|2

[
log2(1 + f(α, βm)|g|2)]

ρ(α+
M∑

m=1
βm) + Pc

(19)

s. t. α+

M∑
m=1

βm ≤ Pmax, (19a)

α ≥ 0, βm ≥ 0, m = 1, · · · ,M, (19b)

where Pmax is the maximum transmit power.

IV. SOLUTION OF POWER ALLOCATION TO MAXIMIZE EE

In this section, we solve problem (19) considering the
quasiconcavity of the EE function over the powers for pilots
and data symbols. To exploit this property of the EE func-
tion, we consider two cases that the optimal overall transmit
power is less than or equal to the maximum value, Pmax,
respectively. When the optimal overall transmit power is less
than Pmax, we solve problem (19) by using the alternating
optimization method. Otherwise, we first approximate the
objective function of problem (19) and then apply existing
quasiconcave optimization algorithm to find its solution.

A. Case 1: The Optimal Overall Transmit Power is Less than
Pmax

According to the optimization theory[15], when the optimal
overall transmit power is less than Pmax, constraint (19a)
will not affect the optimum of problem (19) and thus can be
removed from the optimization problem. In the following, we
will solve an optimization problem with the objective function
of (19) and constraint (19b) but without constraint (19a),
which is referred to as problem A to facilitate the description.

Before introducing the method to solve problem A, we
first show some properties of function f(α, βm). We prove in
Appendix B that f(α, βm) is a concave function of α or βm,
but it is not a jointly concave function of α and βm. According
to the composition rule of concave functions, we know from
(15) that the channel capacity of user m is a concave function
of α or βm. Then the sum channel capacity over multiple
users is concave with respect to α or {βm}Mm=1. Therefore,
the EE function in (18) is a concave function over a linear
function. Similar to the proof in [5], we can prove that the
EE function is quasiconcave with respect to α or {βm}Mm=1.
However, since f(α, βm) is not jointly concave with respect
to α and βm, the EE function cannot be proved as a jointly
quasiconcave function of α and {βm}Mm=1. In the following,
we propose an efficient method based on the quasiconcavity
of the EE function over α or {βm}Mm=1.

Since the objective function of problem (19) is quasicon-
cave and constraint (19b) composes a convex set, problem A
is a quasiconcave problem with respect to α or {βm}Mm=1 and
the solution of problem A can be found by optimizing α and
{βm}Mm=1 alternately. The iteration procedure will be stopped
when the EE improvement is less than a predetermined small
value. This alternating optimization method has been widely
applied in MIMO and relay transmission systems[16], [17] and
has been demonstrated to achieve a fairly good performance.

B. Case 2: The Optimal Overall Transmit Power is Equal to
Pmax

When the optimal overall transmit power is equal to the

maximum value, i.e. α+
M∑

m=1
βm = Pmax, we know from [18]

that the alternating optimization method in previous subsection
may get stuck at an unexpected point with poor performance
and is no longer effective to find the solution for problem (19).
Therefore, we need to develop a new method in this case.

In cellular networks, the maximum transmit power should
guarantee that all users in the entire cell region can receive the
pilots with high SNR. Therefore, when the BS transmits pilots
and data symbols with the maximum transmit power, Pmax,
it is reasonable to assume that the power of received pilot
symbols is much higher than the noise power, i.e., γm,iα �
σ2[19], [20]. Then we can approximate f(α, βm) as follows,

f(α, βm) �
βm

L∑
l=1

γ2
m,lα

γm,lα+σ2(
Nm + βm

L∑
l=1

γm,l

γm,lα+σ2

)
σ2
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TABLE II
PROCEDURE FOR SOLVING PROBLEM (19)

1. Solve problem A by the alternating optimization method
and obtain the overall transmit power, P 1

t .
2. if P 1

t < Pmax,
3. P 1

t is the optimal overall transmit power for problem
(19);

4. else
5. Substitute (20) into (18) and solve problem (19)

when the equality in constraint (19a)
6. holds by existing quasiconcave optimization algo-

rithms;
7. end

≈
αβm

L∑
l=1

γm,l

(Nmα+ Lβm)σ2
� f̃(α, βm), (20)

where we define f̃(α, βm) as the approximation of f(α, βm).
After substituting this approximation into (15) and (18), we
can obtain the approximate ergodic capacity of user m and
the approximate EE, respectively.

With the help of this approximation, we prove in Appendix
C that the approximate EE function is jointly quasiconcave
with respect to α and {βm}Mm=1. Considering that constraints
(19a) and (19b) are linear, we know that problem (19) is a
quasiconcave optimization problem of α and {βm}Mm=1.

Consequently, problem (19) is converted into quasiconcave
problems in both cases, which can be solved by existing effi-
cient algorithms [15], [21]–[23]. Besides finding the solution
of problem (19) in the two cases, we also need to judge
whether the optimal overall transmit power for problem (19)
equals the maximum value, Pmax. This judgement can be
implemented by solving problem A in Section IV-A. If the
solution of problem A is less than Pmax, the optimal overall
transmit power for problem (19) is less than Pmax. Otherwise,
the optimal overall transmit power is equal to Pmax. The entire
procedure to find the solution of problem (19) is summarized
in Table II.

V. IMPACT OF CIRCUIT POWER AND MULTIPLE USERS

In practical communication systems, besides the transmit
power, the circuit power takes up a large proportion of the
overall power consumption at the BS[24], [25]. For OFDMA
transmission, different users suffer from different channel
fading and occupy different numbers of subcarriers, which
makes the EE analysis more complicated than that in the single
user case. In this section, we study the impact of circuit power
and multiple users on the EE-oriented pilot power optimization
of OFDMA systems.

A. Impact of Circuit Power

In cellular networks, the transmit power only occupies a
small fraction of the entire power consumption at the BS and
a large proportion is consumed on the BS’s hardware, such as
RF chains, baseband processing modules, AC-DC units and
cooling systems[24]–[26]. It is shown in [26] that the ratio

of the circuit power decreases with the cell coverage. The
ratio is up to 74% for pico-cells, while it is about 43% for
macro-cells. Therefore, considering the circuit power in the
energy-efficient design and investigating its impact on the EE
of the BS are very meaningful.

It can be seen from problem (19) that the value of the
objective function decreases with the circuit power, Pc, when
α and {βm}Mm=1 are fixed. On the other hand, constraints
(19a) and (19b) are independent of Pc. Therefore, the optimal
EE obtained from problem (19) decreases with Pc.

To highlight the impact of circuit power on the optimal
transmit power, we consider single user case and the user index
m is omitted for simplicity. Denote the ratio of the power
for pilots to the overall transmit power as θ. Then the power
for pilots and data symbols can be respectively expressed as
α = Ptθ and β = Pt(1 − θ), where β denotes the power
for data symbols of the single user and Pt represents the
overall transmit power. Substituting them into problem (19),
we obtain an optimization problem with respect to Pt and θ
as follows,

max
Pt,θ

ΔfNEg

⎡
⎣log2

⎛
⎝1 +

P 2
t θ(1−θ)

L∑
l=1

γ2
l

γlPtθ+σ2 |g|2
(
N+Pt(1−θ)

L∑
l=1

γl
γlPtθ+σ2

)
σ2

⎞
⎠
⎤
⎦

ρPt + Pc

(21)

s.t. 0 ≤ Pt ≤ Pmax, θ ≥ 0, (21a)

where N denotes the number of subcarriers occupied by the
user and {γl}Ll=1 represents the channel gains of resolvable
paths.

For general channels where {γl}Ll=1 are arbitrary values,
it is very hard to find the relationship among Pt, θ, and Pc.
To show the impact of channel characteristics, we consider
two extreme channel models. One is flat fading channel, i.e.
γ1 = ζ and γ2 = · · · γL = 0, and the other is that all the
resolvable channel paths have the same variance as in [7], i.e.
γ1 = · · · = γL = δ. With these two channel models, we can
find the optimal θ with a similar method in [9] as

θ∗1 =
1√

N ζPt+σ2

ζPt+Nσ2 + 1
, and θ∗2 =

1√
N δPt+σ2

LδPt+Nσ2 + 1
,

where θ∗1 is the power ratio when the channel is flat fading and
θ∗2 is for the other channel. After substituting them into the
objective function of problem (21), the optimization problem
only depends on Pt and can be rewritten as follows,

max
Pt

η(Pt) (22)

s. t. 0 ≤ Pt ≤ Pmax, (22a)

where η(Pt) is defined as C(Pt)
ρPt+Pc

and C(Pt) �
ΔfNEg

[
log2

(
1 +W (Pt)|g|2

)]
is the ergodic channel capac-

ity of the user. W (Pt) has different expressions in different
channel models. For the flat-fading channel, we have

W1(Pt) (23)

=
(N + 1)ζPt + 2Nσ2 − 2

√
N(Nσ2 + ζPt)(ζPt + σ2)

(N − 1)2σ2
.
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When the channel gains of resolvable paths have the same
variance, we have

W2(Pt) (24)

=
L
(
(N + L)δPt + 2Nσ2 − 2

√
N(Nσ2 + LδPt)(δPt + σ2)

)
(N − L)2σ2

.

To see the impact of Pc on the optimal solution of problem
(22), we first study the impact of Pc on the optimal overall
transmit power that maximizes its objective function, η(Pt)
without the transmit power constraint (22a).

It is easy to show that ∂η(Pt)
∂Pt

|Pt=0 > 0 and lim
Pt→∞

∂η(Pt)
∂Pt

<

0. Denote the optimal transmit power that maximizes η(Pt)
as P ∗

t . Then P ∗
t satisfies

∂η(Pt)

∂Pt
|Pt=P∗

t
= 0. (25)

Considering the expression of η(Pt) and after some manipu-
lations, (25) can be rewritten as

C
′
(P ∗

t )(ρP
∗
t + Pc)− ρC(P ∗

t )

(ρP ∗
t + Pc)2

= 0,

where C
′
(P ∗

t ) denotes the derivative of C(Pt) at the point
Pt = P ∗

t . Then we can obtain the expression of Pc as a
function of P ∗

t as

Pc =
ρC(P ∗

t )

C ′(P ∗
t )

− ρP ∗
t .

The derivative of Pc over P ∗
t can then be expressed as

dPc

dP ∗
t

= −ρC(P
∗
t )C

′′
(P ∗

t )

(C ′(P ∗
t ))

2 , (26)

where C
′′
(P ∗

t ) denotes the second derivative of C(Pt) at the
point Pt = P ∗

t .
Due the complicated expression of W (P ∗

t ) and the expec-
tation operation in the expression of ergodic channel capacity,
it is very hard to judge the sign of C

′′
(P ∗

t ). To gain useful
insights, we further consider two extreme cases as follows.

When P ∗
t is very small, we can approximate W (P ∗

t ) in
(23) and (24) as

W1(P
∗
t ) ≈

(N + 1)ζP ∗
t

(N − 1)2σ2
, (27)

and

W2(P
∗
t ) ≈

(N + L)LδP ∗
t

(N − L)2σ2
, (28)

respectively. When P ∗
t is very large, we can omit the noise

item in (23) and (24) and approximate W (P ∗
t ) as

W1(P
∗
t ) ≈

(
√
N − 1)2ζP ∗

t

(N − 1)2σ2
, (29)

and

W2(P
∗
t ) ≈

(
√
N −√

L)2LδP ∗
t

(N − L)2σ2
, (30)

respectively. After substituting (27)− (30) into the expression
of C(P ∗

t ), we can find that C(P ∗
t ) is a concave function of

P ∗
t and thus C

′′
(P ∗

t ) < 0. Then we can obtain from (26) that

dPc

dP∗
t
> 0, which means that the optimal power, P ∗

t , increases
with Pc.

Based on this relationship between P ∗
t and Pc, we can

further study the impact of Pc on the optimal solution of
problem (22). When the value of Pc is small such that
P ∗
t ≤ Pmax, the optimal solution of problem (22) is P ∗

t and
increases with Pc. When Pc is so large that P ∗

t > Pmax, the
optimal solution of problem (22) is Pmax, which does not
change with the value of Pc.

In [12], only the case that Pc = 0 is considered while in [7],
only the case that Pc is so large that Pt = Pmax is studied.
Different from their work, we have analyzed the relationship
among Pc, the EE, and the overall transmit power in this
section. The impact of Pc on the power ratio is also shown
by simulation in Section VI.

B. Impact of Multiple Users

In OFDMA systems, the number of subcarriers occupied by
each user affects the optimal EE. To simplify the analysis, we
consider that the channels of multiple users have the same
normalized power delay profile but with different average
channel gains. Denote {φl}Ll=1 as the normalized power delay
profile and Γm as the average channel gain of user m,
respectively. Then the channel gain of the lth path of user
m, γm,l = Γmφl, and we can rewrite f(α, βm) as

f(α, βm) �
βm

L∑
l=1

γ2
m,lα

γm,lα+σ2(
Nm + βm

L∑
l=1

γm,l

γm,lα+σ2

)
σ2

=

βm
L∑

l=1

Γ2
mφ2

lα
Γmφlα+σ2(

Nm + βm
L∑

l=1

Γmφl

Γmφlα+σ2

)
σ2

. (31)

We can readily prove that f(α, βm) is an increasing function
of Γm (see Appendix D for details). Denote the largest average
channel gain as Γmax. Then we can obtain

f(α, βm) ≤
βm

L∑
l=1

Γ2
maxφ

2
l α

Γmaxφlα+σ2(
Nm + βm

L∑
l=1

Γmaxφl

Γmaxφlα+σ2

)
σ2

, m = 1, · · · ,M.

Correspondingly, the EE in (18) can be upper bounded as
follows,

η ≤
Δf

M∑
m=1

NmEg

[
log2(1 + fmax(α, βm)|g|2)]

ρ

(
α+

M∑
m=1

βm

)
+ Pc

, (32)

where fmax(α, βm) �
βm

L∑
l=1

Γ2
maxφ

2
l α

Γmaxφlα+σ2(
Nm+βm

L∑
l=1

Γmaxφl
Γmaxφlα+σ2

)
σ2

is used.

It is readily to prove that f(α, βm) increases with βm and
thus we can obtain

M∑
m=1

NmEg

[
log2(1 + fmax(α, βm)|g|2)] (33)
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≤
M∑

m=1

NmEg

[
log2

(
1 + fmax

(
α,

M∑
m=1

βm

)
|g|2
)]

,

where βm ≤ ∑M
m=1 βm is used. Substituting this inequality

into (32), we can obtain

η ≤
Δf

M∑
m=1

NmEg

[
log2

(
1 + fmax

(
α,
∑M

m=1 βm

)
|g|2
)]

ρ

(
α+

M∑
m=1

βm

)
+ Pc

,

(34)
where the equality is achieved when the BS only transmits
data to the user with the highest average channel gain with the

number of subcarriers,
M∑

m=1
Nm, and the total transmit power,

M∑
m=1

βm. (34) implies that there exists a tradeoff between the

EE performance and the fairness among the users, i.e., fairness
needs to be taken into account in the EE-oriented design for
multi-user systems. This cannot be observed from the single
user case in [12].

Though the observation is easy to understand, the design
considering the fairness is not straightforward herein. In fact,
user fairness can be defined under various criteria. From the
aspect of the fairness in terms of resource, each user can be
assigned with equal time-frequency resource or equal transmit
power in OFDMA systems[27]. From the aspect of the fairness
in terms of the data rate, proportional fairness or max-min
fairness rules can be applied [28]. These criteria are already
well explored in the SE-oriented design, and can be extended
to the EE-oriented design. From the aspect of the fairness
in terms of the EE, the proportional fairness among multiple
users has been considered for uplink OFDMA transmission in
[29]. However, for the downlink OFDMA systems, because
the circuit power at the BS is consumed by all users, the
contribution of each user on the circuit power is not clear and
thus the EE function of each user is hard to derive. In the
current work, we assign equal number of subcarriers to each
user to guarantee the resource fairness in the later simulations.

VI. SIMULATION RESULTS

In this section, we evaluate the EE, the overall transmit
power, and the ratio of the power for pilots to the overall trans-
mit power of downlink OFDMA systems using the proposed
method. The parameters are listed in Table III. The value of
power amplifier efficiency is referred to [30] and the value of
circuit power ranges from 0 dBm to 60 dBm, which covers the
circuit power consumption in existing practical systems[26].

We first evaluate the performance of the proposed method
in Section IV by comparing it with the optimal solution.
Because the EE function in (18) does not have a good
property in general cases, we employ exhaustive searching
to find the optimal power allocation for problem (19). Due
to high complexity of the exhaustive searching, only one user
is considered. Fig. 2 shows the EE versus the circuit power
under different maximum transmit power, Pmax. The curves
with the circle marks represent the optimal performance while
the curves with the square marks denote the performance of
the proposed method. We can see that the EEs obtained by the

TABLE III
LIST OF SIMULATION PARAMETERS

Subcarrier spacing, Δf 15 kHz
Number of subcarriers, Ntot 1024
Number of pilots, K 16
Number of users, M 5
Number of subcarriers occupied
by each user, {Nm}Mm=1

201

Cell radius, R 250 m
uniformly distributed

Distribution of M users
in the cell region

Number of the channel resolvable
paths of User m, L

8

All channel paths
Channel power delay profile

have the same variance
Power spectral density of noise -174 dBm/Hz
Standard deviation of Shadowing 8 dB
Noise amplifier gain 7 dBi
Minimum distance from the BS
to users, dmin

35 m

Path loss (dB) 35+38log10 d

Maximum transmit power, Pmax 20, 30, 40 dBm
Power amplifier efficiency, 1/ρ 38%
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Fig. 2. Comparison of the performance of the proposed method with the
maximal EE obtained by exhaustive searching.

proposed method overlap with the maximal EEs obtained by
the exhaustive searching. In the following, we will employ the
proposed method to analyze the performance of the OFDMA
systems.

Our work considers how to maximize the EE while tradi-
tional design concerns about how to maximize the SE. To show
the difference of the two design criteria, we compare their
performance in terms of the EE and SE. We call them as EE-
oriented and SE-oriented criteria for short. For the EE-oriented
criterion, we can solve problem (19) by using the method
in Section IV. For the SE-oriented criterion, the optimization
problem is to maximize the downlink ergodic channel capacity
in (15) with overall transmit power constraints in (19a) and
(19b). Since the downlink ergodic channel capacity increases
with the transmit power, it is maximized when the pilots
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Fig. 3. The EE and SE of EE-oriented and SE-oriented design.
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Fig. 4. The EE gain and the SE loss of the EE-oriented design over the
SE-oriented design.

and data symbols are transmitted with the maximum transmit
power, Pmax and thus we can solve this problem by using the
method in Section IV-B.

Fig. 3 shows the performance of the EE-oriented and SE-
oriented design in terms of the EE and the SE. Considering
the large dynamic range of the EE, we use the log-scale
axis for the EE value. We can see that the EE decreases
with the circuit power for both design criteria. The SE of
EE-oriented design increases with the circuit power until
the circuit power becomes dominant such that the maximum
transmit power is used, while the SE of SE-oriented design
keep a constant. When the circuit power is low, the EE-
oriented design outperforms SE-oriented design in terms of
the EE significantly but its SE is lower than that of SE-
oriented design. With the increase of the circuit power, these
two criteria have the same performance on both the EE and
the SE. This observation can be explained as follows. When
the circuit power is low, the optimal overall transmit power for
EE-oriented design is much lower than the maximum value,
Pmax, which results in the gap on the EE and SE performance.

As the circuit power increases, the optimal overall transmit
power for EE-oriented design approaches Pmax and the circuit
power is dominant in the overall power consumption. The EE-
oriented design reduces to the SE-oriented design. To observe
the EE and SE differences of both design criteria more clearly,
we show the EE gain and the SE loss of the EE-oriented
design over the SE-oriented design in Fig. 4. The EE gain is
defined as the ratio of EE difference between these two design
criteria to the EE value of SE-oriented design and the SE loss
is defined as the ratio of SE difference between two criteria
to the SE of the SE-oriented design. It can be seen that both
the EE gain and the SE loss decrease with the circuit power.
When Pmax = 40 dBm and Pc = 20 dBm, the EE gain is
about 40 times over the EE of SE-oriented design and the
SE loss is about 80% compared with the SE of SE-oriented
design. This implies that the EE-oriented design can improve
the EE significantly with a relatively small SE loss from the
SE-oriented design.

The required overall transmit power and the ratio of the
power for pilots to the overall transmit power for the EE-
oriented design is shown in Fig. 5. When the circuit power
is low, the overall transmit power increases with the circuit
power, which is consistent with the analysis in Section V-
A. The power ratio decreases with the circuit power, which
implies that more power is used for data transmission rather
than channel estimation. As the circuit power becomes higher,
the overall transmit power is constrained to the maximum
value and the power ratio is a constant.

To observe the impact of multiple users of OFDMA system
on the EE-oriented optimization, we show the EE of a two
user system, where the number of subcarriers allocated to them
varies. We assume that these two users are 50 m and 100 m
away from the BS, and we call the user closer to the BS as
user 1. As shown in Fig. 6, we can see that the EE increases
with the subcarrier ratio for user 1 with different value of the
circuit power, i.e., transmitting more data symbols to the user
with higher channel gain can improve the EE. This implies that
maximizing the EE of a multi-user system will be at a cost of
sacrificing the fairness among the users, which is analogous
to the SE-oriented design.
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Fig. 5. Overall transmit power and pilot power ratio for pilots for the EE-oriented design.
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Fig. 6. Impact of multiple users on the EE of the EE-oriented design.

VII. CONCLUSION

In this paper, we have studied power allocation between
pilots and data symbols to maximize the EE of training-based
downlink OFDMA systems when circuit power consumption
is considered. We have derived the EE function when channel
estimation error exists, formulated the optimization problem,
and analyzed the impact of the circuit power and multiple
users. To provide an efficient solution to the optimization
problem, an alternating optimization method is developed
in the low transmit power region and an approximation on
the EE is used to reformulate a joint quasiconcave problem
in the high transmit power region. Analysis and simulation
results show that the EE-oriented design can improve the
EE performance significantly with a relatively small SE loss
compared with SE-oriented design. When Pmax = 40 dBm
and Pc = 20 dBm, the EE gain is about 40 times over the
EE of SE-oriented design while the SE of the EE-oriented
design achieves about 80% of that of the SE-oriented design.
When the circuit power becomes dominant, the EE-oriented
design reduces to the SE-oriented design. The overall transmit

power increases and the power ratio for pilots decreases with
the circuit power. Transmitting more data symbols to the user
with higher channel gain can improve the EE.

APPENDIX A
DERIVATION OF ΦH

mΦm = αIL

From the definition Φm �
√
NtotTpΨpFL, we have

ΦH
mΦm = NtotF

H
LΨH

p TH
p TpΨpFL. (35)

Since the power for pilots, α, is equally allocated to the
subcarriers, we have

TH
p Tp =

α

K
IK .

Upon substituting the above equation, (35) becomes

ΦH
mΦm =

αNtot

K
FH

LΨH
p ΨpFL =

αNtot

K
F̃HF̃, (36)

where F̃ � ΨpFL.
Since pilots are periodically inserted in frequency domain,

the indexes of subcarriers occupied by pilots can be expressed
as {kT + c}K−1

k=0 , where T � Ntot

K denotes the period and c
represents the position of the first pilot symbol. For example,
in Fig. 1, T = 2 and c = 1. Hence, the subcarrier index set
can be expressed as Sp = {c, T + c, · · · , (K − 1)T + c}.
Correspondingly, the (k, n)th element of Ψp is

(Ψp)k,n =

{
1, whenn = kT + c

0, whenn �= kT + c
k = 0, · · · ,K − 1.

When FL is multiplied by Ψp, the (k, r)th element of F̃ can
be written as(

F̃
)
k,r

=
1√
Ntot

e−j
2π(kT+c)r

Ntot , k = 0, · · · ,K − 1, and

r = 0, · · · , L− 1. (37)

Upon substituting (37) into (36), the (n1, n2)th element of
ΦH

mΦm can be derived as follows,

(
ΦH

mΦm

)
n1,n2

=
αNtot

K

K−1∑
k=0

(
F̃
)∗
k,n1

(
F̃
)
k,n2
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∂2f(α, βm)

∂α2
=

2βm(βm
L∑
l=1

γm,l +Nmσ
2)

(
−Nm

L∑
l=1

Z3
m,l + βm

((
L∑

l=1

Z2
m,l

)2

−
L∑

l=1

Zm,l

L∑
l=1

Z3
m,l

))

σ2

(
Nm + βm

L∑
l=1

Zm,l

)3 (38)

=
α

K

K−1∑
k=0

ej(
2πkn1

K +
2πcn1
Ntot

− 2πkn2
K − 2πcn2

Ntot
)

=
α

K
ej

2πc(n1−n2)
Ntot

K−1∑
k=0

ej
2πk(n1−n2)

K .

We can readily derive that

K−1∑
k=0

ej
2πk(n1−n2)

K =

{
K, when n1 = n2

0, when n1 �= n2
.

Therefore, we can obtain ΦH
mΦm = α

KKIL = αIL.

APPENDIX B
PROOF OF CONCAVITY OF f(α, βm) OVER α OR βm

To facilitate the proof description, we define Zm,l �
γm,l

γm,lα+σ2 . Then f(α, βm) can be rewritten as

f(α, βm) =

βm

(
L∑

l=1

γm,l −
L∑

l=1

γm,lσ
2

γm,lα+σ2

)
(
Nm + βm

L∑
l=1

γm,l

γm,lα+σ2

)
σ2

=

βm
L∑

l=1

γm,l +Nmσ
2

(
Nm + βm

L∑
l=1

Zm,l

)
σ2

− 1.

We can derive the second partial derivative of f(α, βm) with
respect to α as shown in (38) on the top of this page, where
∂Zm,l

∂α = −Z2
m,l is used.

From Hölder’s inequality, we have

L∑
l=1

Z2
m,l ≤

(
L∑

l=1

Zm,l

) 1
2
(

L∑
l=1

Z3
m,l

) 1
2

.

Then we can obtain

∂2f(α, βm)

∂α2
≤

−2Nmβm

(
βm

L∑
l=1

γm,l +Nmσ2

)
L∑

l=1

Z3
m,l

σ2

(
Nm + βm

L∑
l=1

Zm,l

)3 < 0.

Therefore, f(α, βm) is concave with respect to α.
Similarly, we can derive the second partial derivative of

f(α, βm) with respect to βm and prove that ∂2f(α,βm)
∂β2

m
< 0,

which means that f(α, βm) is a concave function of βm.
To show that f(α, βm) is not a jointly concave function

with respect to α and βm, we consider a special case that all
the resolvable channel paths of user m have the same variance
as in [7], i.e. γm,1 = · · · = γm,L = δm. In this case,

f(α, βm) =
Lδ2mαβm

(Nmδmα+ Lδmβm +Nmσ2)σ2
. (39)

The Hessian matrix of f(α, βm) is given by

∇2f =
LNmδ

2
m

σ2(χ(α, βm))3
· (40)( −2δmβm(Lδmβm +Nmσ

2) σ2χ(α, βm) + 2Lδ2mαβm
σ2χ(α, βm) + 2Lδ2mαβm −2Lδmα(δmα+ σ2)

)
,

where χ(α, βm) � Nmδmα+ Lδmβm +Nmσ
2.

The determinant of ∇2f is equal to
− L2N2

mδ4m
(Nmδmα+Lδmβm+Nmσ2)4 and is less than zero, which

means that the eigenvalues of ∇2f are not all negative.
Therefore, ∇2f is not a negative semidefinite matrix and
f(α, βm) is not jointly concave with respect to α and βm.

APPENDIX C
PROOF OF QUASICONCAVITY OF THE EE FUNCTION

The Hessian matrix of f̃(α, βm) is given by

∇2f̃ =
−2ψmNmL

(Nmα+ Lβm)3

(
β2
m −αβm

−αβm α2

)
. (41)

It is easy to prove that ∇2f̃ is a negative semidefinite matrix.
Therefore, f̃(α, βm) is a concave function with respect to α
and βm. The concavity of f̃(α, βm) can be extended to the
variable set {α, {βm}Mm=1}. According to the composition rule
that preserves concavity [15], we can conclude that both the

capacity of user m, Cm, and the sum capacity,
M∑

m=1
Cm, are

concave. Then EE function (18) is expressed as a concave
function over a linear function. Similar to the proof in [5], we
can prove that the EE function is quasiconcave.

APPENDIX D
PROOF OF THE INCREASING OF f(α, βm) WITH Γm

By dividing the numerator and the denominator of (31) by
Γm, we can obtain

f(α, βm) =

βm
L∑

l=1

Γmφ2
lα

Γmφlα+σ2(
Nm

Γm
+ βm

L∑
l=1

φl

Γmφlα+σ2

)
σ2

. (42)

It can be observed that the numerator of the right-hand side
of (42) is an increasing function of Γm and the denominator
of the right-hand side of (42) is a decreasing function of Γm.
Therefore, we can conclude that f(α, βm) is an increasing
function of Γm.
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