
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014 891

Top- Automatic Service Composition: A Parallel

Method for Large-Scale Service Sets
Shuiguang Deng, Longtao Huang, Wei Tan, Senior Member, IEEE, and Zhaohui Wu, Member, IEEE

Abstract—Quality-of-Service (QoS)-aware web service compo-
sition is of great importance to assemble individual services into a

composite onemeeting functional and nonfunctional requirements.

Given a large number of candidate services, automatic composi-
tion is essential so as to derive a composite service efficiently. Most

existing methods return one solution that is optimal in some given

criteria. This is somewhat rigid in terms of flexibility. In case some
component service in the optimal composition becomes unavail-

able, the composition algorithm has to run again to find another

optimal solution. Also, in a lot of circumstances users prefer mul-
tiple alternatives over a single one. Therefore, providing top- ser-

vice compositions according to their QoS is becoming more desir-

able. On another aspect, from the perspective of computation effi-
ciency, due to the explosion of the searching space, single-threaded

methods are usually not capable of handling a large number of can-

didate services. This paper tackles these two issues together, i.e.,
large-scale, QoS-based services composition yielding top- solu-

tions. The composition algorithm is based on the combination of

backtrack search and depth-first search, which can be executed in
a parallel way. Experiments are carried out based on the datasets

provided by the WS-Challenge competition 2009 and China Web

Service 2011. The results show that our approach can not only find
the same optimal solution as the winning systems from these com-

petitions, but also provide alternative solutions together with the

optimal QoS.

Note to Practitioners—To address the challenge of the automatic

composition of web services in a large scale, this work proposes a
novel approach to find top- solutions with optimal global QoS.

The problem of service composition is transformed into a graph

searching problem. Each composition solution is represented in the
form of a directed acyclic graph. The approach is divided into two

stages, i.e., the run-up stage and the composition stage. Run-up

stage deals with data preprocessing to parse service repository,
which can be executed offline. In the composition stage, top- com-

positions in response to users’ queries are generated in parallel.

Index Terms—Parallel implementation, quality-of-service

(QoS), service composition, top- .

Manuscript received October 17, 2013; revised January 06, 2014; accepted

February 06, 2014. Date of publication March 06, 2014; date of current ver-

sion June 30, 2014. This paper was recommended for publication by Asso-

ciate Editor C.-H. Chen and Editor H. Ding upon evaluation of the reviewers’

comments. This work was supported in part by the National Key Technology

Research and Development Program of China under Grant 2013BAD19B10

and the National Natural Science Foundation of China under Grant 61170033.

(Corresponding author: L. Huang.)

S. Deng, L. Huang, and Z. Wu are with the College of Computer Science and

Technology, Zhejiang University, Hangzhou, Zhejiang 310027 China (e-mail:

dengsg@ zju.edu.cn; hlt218@zju.edu.cn; wzh@ zju.edu.cn).

W. Tan is with the IBM Thomas J. Watson Research Center, Yorktown

Heights, NY 10598, USA (e-mail: wtan@us.ibm.com).

Digital Object Identifier 10.1109/TASE.2014.2306931

I. INTRODUCTION

S ERVICE-ORIENTED Architecture (SOA) and its key im-

plementation, web services, provides a promising solution

for the seamless integration of single-functional applications to

create new large-granularity and value-added services [1]. How-

ever, with the diversity and complexity of user requirements,

it is increasingly difficult for a single service to fulfill a user’s

requirement. [2], [3] Therefore, Automatic Service Composi-

tion (ASC) technology has been proposed to automatically dis-

cover, select, and compose multiple individual services to sat-

isfy a user’s query (i.e., a request for a composite service) [4].

Most researches have transformed the automatic service com-

position problem into the AI planning problem where services

correspond to operators in the planning domain and the compo-

sition corresponds to the plan [5]. Many approaches based on

different kinds of AI planning techniques were used to solve

the composition problem, including situation calculus [6], [7],

state-space search [8]–[11], problem deduction [12], [13], and

automatic theorem proving [14], [15]. Furthermore, Quality-of-

Service (QoS) has drawn more attention when web services are

selected from multiple candidates [16]. As a result, it is a chal-

lenge for composition systems to locate and select a proper com-

ponent service quickly from so many candidate services on the

Internet. In order to guarantee the overall QoS of the result com-

posite services, many approaches have been proposed to gen-

erate composition service with QoS as well as function require-

ments [13], [17]–[20].

In general, the aforementioned QoS-aware service composi-

tion techniques have different features and can be applied in dif-

ferent situations. However, most of the existing approaches are

based on single-thread computation. Once the number of ser-

vices becomes large, these methods behave quite inefficiently

because of the searching space explosion. Therefore, there is

a need to develop a method to handle large-scale datasets effi-

ciently.

In addition, most of the existing approaches are designed to

return only the optimal composition with the best QoS. This has

several limitations and may cause users some inconvenience.

For example, in case some service in the optimal composition

becomes unavailable, the whole composition is void and a

recomposition is needed. Besides, returning only the optimal

result cannot satisfy users’ preferences for more alternatives.

Hence, providing top- service composition solutions that

enjoy top- QoS values, respectively, among all feasible so-

lutions, can avoid these limitations and achieve benefits as

follows.

1545-5955 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

892 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

1) Feasibility. In case some component services in the op-

timal service composition are invalid, we can select an-

other composition among the top- as an alternative. This

can improve the feasibility of the result set.

2) Diversity. As illustrated in cognitive science [21], users are

willing to believe what they have been told most often by

the greatest number of different of sources. For example,

some users like cheaper compositions, while others prefer

faster compositions. Thus, a composition result with small

response time and higher cost will not satisfy both cate-

gory. If top- compositions with best response time are

returned, a price-sensitive user can pick up cheaper ones

from the top- list. Furthermore, some users may have

preferences that cannot be measured by QoS. For example,

some users may be Google’s fans and prefer to choose a

service composition with Google’s services even though

the service composition’s QoS is not the best. Therefore,

providing top- QoS compositions can provide diversified

alternatives for users to satisfy their various preferences.

3) Load balance. Another benefit of providing top- service

compositions rather than only the optimal result is that this

can avoid the optimal service composition to be overloaded

and degrade.

Based on these motivations, top- QoS composition is highly

desirable. However, it is more difficult than those providing the

optimal solution only. This is because service compositions with

different structure may bear the same QoS. Under the same

structure, there may be multiple candidate services with dif-

ferent QoS, which may affect the overall QoS of the composi-

tion. This makes it much harder to calculate top- results when

handling the complex structures of compositions. In order to

tackle the problem of top- QoS service composition, the China

Web Service Cup 1 (CWSC2011) was held in 2011. We partic-

ipated in CWSC2011 and won First Place. Our proposal aims

at tackling the problem of making top- QoS services composi-

tion from a large number of services, focusing on the following

issues.

1) QoS-awareness. QoS refers to various nonfunctional prop-

erties of web services, such as response time, throughput,

and availability, as well as some domain specific QoS at-

tributes [22]. In this study, our goal is to return composi-

tions with better QoS. For simplicity, in this paper we take

response time as the only QoS criterion but it is easy to ex-

tend to other criteria later.

2) Top- compositions.Almost all the existingmethods aim at

making the single optimal composition. Our composition

algorithm is designed to return the best compositions

according to the QoS behavior.

3) Scalability. Most of the existing methods have met the

performance bottleneck when dealing with large-scale

datasets. To address the challenge of state-space explo-

sion, we divide the composition process into several

subtasks that can be executed in parallel.

In this study, we transformed the problem of service com-

position into a graph searching problem. Each composition is

represented in the form of a directed acyclic graph (DAG). In

addition, semantic annotations have been applied to help better

1http://debs.ict.ac.cn/cwsc2011/

match the queries and services. The proposed approach has two

stages: run-up stage and composition stage. In the run-up stage,

there is some preprocessing which can be executed offline.

In the later stage, top- compositions in response to users’

queries are created in parallel. To evaluate the performance,

we conducted a series of experiments based on the large-scale

datasets from the WS-challenge 20092 and CWSC2011. Results

show that the method can respond to composition requirements

quickly and efficiently even with a large-scale dataset.

The contributions of this paper are as follows.

1) We propose a parallel method to address the problem of

top- QoS service compositions. This method is inspired

by MapReduce that has promised massive performance

gains for large-scale computations. Traditional service

composition methods are mainly based on centralized

mechanisms, which can hardly guarantee high scala-

bility. As the number of web services on the Internet

is increasing heavily, scalability has been identified as

one of the most important challenges in the area of web

service compositions. In particular, the top- QoS service

composition may take much computation work when the

candidate service set is large. Therefore, determining how

to improve the scalability is a key issue for top- QoS

service composition.

2) Based on the idea of MapReduce, we divide the top- com-

position problem into several mutually independent sub-

tasks that can be executed in parallel. This problem divi-

sion can not only reduce the communication among par-

allel subtasks but also guarantee the validity of integrating

results from subtask at the same time.

3) We use the dataset from China Web Service Cup 2011

(CWSC2011) to validate our solution. The experimental

results show that our framework can perform with rela-

tively high efficiency and accuracy. We do not have the

solutions from other participants, however, our system has

won the first place both on efficiency and accuracy in this

competition.

The rest of this paper is organized as follows. Section II illus-

trates our motivation through a motivating scenario. Section III

introduces the formal models used in the remainder of the text.

Section IV describes the parallel framework for top- service

composition. Section V describes evaluation experiment and its

results. Section VI reviews the related studies. Section VII con-

cludes this research and discusses future directions.

II. A MOTIVATING SCENARIO

In this section, we use an example to illustrate why finding

top- solutions is important. The example is about file pro-

cessing services in document translation. Suppose that there are

three categories of services related to file processing: language

translating, format transforming, and file merging. The details

of all available services including functions and QoS, are pre-

sented in Table I. Suppose that an Arabic student finds two refer-

ences in English and French, respectively. In order to get better

understanding, he wants the two references to be translated into

Arabic and merged into a pdf file. Then the user request is, input

a doc file fileA in English and a Latex™ file fileB in French, and

2http://ws-challenge.georgetown.edu/wsc09/

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 893

TABLE I

WEB SERVICES ON FILE PROCESSING

Fig. 1. A file processing system.

Fig. 2. The optimal composition result.

generate a merged pdf file in Arabic. For this request, we gen-

erate a dependency graph which contains all feasible solutions

for the request (shown in Fig. 1). In Fig. 1, each node represents

a service. The directed edges indicate the dependency among

the component services. For example, an edge from service to

service means that the output of can cover some inputs of .

Then, our goal is to choose the optimal solution (with smallest

response time) from all feasible solutions. After calculating the

response time of each feasible solution, the optimal service com-

position result is retrieved and presented in Fig. 2. We use a Di-

rected Acyclic Graph (DAG) to describe the optimal result. Its

overall response time is

.

For the optimal composition in this example, if the service

En2Ar_1 happens to be unavailable for some unpredicted

reason such as network problem, server crashing, etc., then the

whole composition cannot return the expected output to the

user. In that case, the composition request has to be reissued

and the composition system should replan an optimal composi-

tion which excludes the service En2Ar_1. If top- composition

results are returned to the user, the user can simply choose

another composition without the service En2Ar_1 in the top-

list when the optimal one is unavailable.

On the other hand, some users may have some special pref-

erences which are not measured by QoS, such as brand bias and

individual habits. For example, one user may prefer to choose

MergePdf_1 other thanMergePdf_2 becauseMergePdf_1 is his

favorite brand. Thus, the response time will be 360 ms, which

is a little longer (10 ms) than the optimal one. This situation

implies that returning only the optimal composition does not

provide more alternatives for users to satisfy their various pref-

erences.

Hence, providing top- service composition results rather

than the optimal result can bring more benefits. But it is not

easy to solve the problem of top- QoS service composition

[55], [62], [63].

First, it is computationally infeasible to obtain top- compo-

sitions by enumerating and ranking all feasible solutions, espe-

cially when the searching space is large. Let us take Fig. 2 as an

example, if each service has 9 other alternatives, there will be

106 feasible solutions.

Second, current approaches for optimal service composition

cannot be extended to top- service compositions in a straight-

forward way. Intuitively, the basic method to get top- results

based on the current optimal approaches is as follows. First,

the optimal composition result is achieved by these approaches.

Then, the services participating in the optimal result are re-

moved from the candidate service set and the next optimal result

is generated with the remaining service set recursively. How-

ever, this cannot get the real top- results. Because some ser-

vices in the optimal result may also participate in other top-

results. If these services are excluded already, the top- results

will be inaccurate.

Furthermore, different composition patterns makes the

problem more complicated. In this simple example, all possible

service composition results share the same composition pattern

in Fig. 1. It only needs to consider the candidates of each task to

find top- results. However, if there exists another service that

can translate French to Arabic, other composition patterns can

be generated. Then, it should consider different compositions

in different composition patterns to get the final top- results.

III. FORMAL MODEL FOR SERVICE COMPOSITION

We first define the key concepts used in service composition

and the top- problem. The formal framework for service com-

position in [46] is adopted and extended for top- service com-

position.

A. Model Entities

Definition 1. (Web Service): A web service is defined as a

triple , where:

1) is the set of input parameters.

2) is the set of output parameters.

3) QoS is an -tuple , where each de-

notes a QoS property of such as cost, response time,

throughput, or availability.

Definition 2. (Ontology Tree): An ontology tree is defined as

a 2-tuple , where:

1) is the set of concepts represented by nodes in the on-

tology tree.

894 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

TABLE II

EXAMPLE OFWEB SERVICES AND SEMANTICWEB SERVICES

2) is the set of direct inheritance relationships represented

by edges in the ontology tree.

In fact, an ontology tree represents the relations among se-

mantic concepts. If a concept inherits from another concept

directly or indirectly, it can be denoted as .

Definition 3. (Semantic Web Service): Given a web ser-

vice , the sematic form of is modeled as a triple

, where:

1) is the set of the semantic concepts in an ontology tree,

each of which corresponds to a parameter of .

2) is the set of the semantic concepts in the ontology tree,

each of which corresponds to a parameter of .

3) QoS is the same as Definition 1.

Table II shows several examples of web services and se-

mantic web services. WebService1 and WebService2 are two

services that provide the functionality of “querying the cost

of cars.” SemanticWebService1 and SemanticWebService2

are their semantic forms, respectively. The two services are

different in terms of syntax. Without the help of semantics, it is

difficult to find both services when searching with the keyword

“car.” In fact, “automobile” and “car” have the same semantic

concept “vehicle”; they actually provide the same (semantic)

functionality. Therefore, utilizing semantics can improve the

recall for service discovery and composition.

Definition 4 (Semantic Dependency): Given two sets of con-

cepts and , if , then

we say semantically depends on , denoted as .

Definition 5. (Web Service Composition): A service compo-

sition is defined as a 4-tuple , where:

1) is the set of services.

2) is the set of dependencies

between services in . represents that the inputs

of depend on the outputs of semantically.

3) is the set of concepts that are needed for to be ini-

tialized.

4) is the set of concepts that outputs.

B. QoS Computation for Web Service Composition

According to [23], QoS properties can be categorized into

two classes. One is negative, which means that the higher the

value is, the lower the quality. Examples in this category include

response time and price. The other is positive, that is, the higher

the value is, the higher the quality. Examples include throughput

and availability.

In this paper, we use response time as the only QoS parameter

to explain our approach in the remaining parts of this paper. We

TABLE III

COMPUTATION RULES FOR QOS OFWEB SERVICE COMPOSITION

may study the composition of multiple QoS properties in the

future.

Given a service composition , the QoS of is the ag-

gregation of the QoS of its component services. We adopt the

computation rules in [23] to get the overall QoS of , shown

in Table III, where is the computation function for QoS of

services in a sequence execution path. is the computation for

QoS of multiple parallel paths. For the notations in the table,

we only use their intuitive mathematic meanings. For example,

“ ” means summation, “ ” means product, “ ” means

maximum, and “ ” means minimum. The optimal QoS of

a composition is the best value obtained from the computa-

tion rules from Table III. For multiple dimensions of QoS, the

common solution is to add a weight to each QoS property and

then get a weighted summation value.

The optimal service composition is the one with the optimal

QoS. There may bemultiple service compositions with the same

optimal QoS. For simplicity, we only consider an one-dimen-

sional QoS value (response time) in this paper. Still, it is easy

to extend to other criteria by aggregating the overall QoS value

of the service composition through the mentioned computation

rules. If an efficient aggregating function of multiple QoS prop-

erties is provided, our proposal can also handle multiple-dimen-

sion QoS value.

C. Problem Definition

The aim of our approach is to make top- QoS service com-

positions from a large-scale number of services. The problem

can be defined as follows.

Definition 6. (Top- QoS Service Composition): Given a set

of web services , a semantic ontology tree , and a user’s

request , where is the set of requested input con-

cepts and the set of requested output concepts. The objective

is to make top- service compositions according to the global

QoS. The set of compositions is denoted as , each of which

(denoted as) should satisfy the following conditions.

1) .

2) .

3)

where means “better than” (e.g., the response time is smaller),

is the set of all possible service compositions that can

satisfy the user request.

That means, the top- composition results should actually

rank from number 1 to number w.r.t. QoS values in all feasible

results. That is, the number of composition results is . When

, top- service composition is equivalent to finding the

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 895

Fig. 3. Overall composition procedure.

optimal composition. For example, in Fig. 1, there are 16 com-

position results and their associated response time are: 4 results

in 350 ms, 4 results in 360 ms, 4 results in 370 ms, and 4 results

in 380 ms. Then, the top-5 results are the 4 results in 350 ms

plus any one result in 360 ms.

IV. PARALLEL SERVICE COMPOSITION

A. Overview

The architecture of our composition method involves three

steps as outlined in Fig. 3. The first step is to preprocess the raw

data of the large-scale dataset and transform the services set to a

rule repository. The rule repository is a kind of in-memory data

structure, which can be accessed fast and efficiently when re-

sponding users’ requests. The second step is issued by a user’s

request. When receiving a user’s request, it begins to fetch ser-

vices from the Rule Repository and filter the services that are

impossible to present in the final results according to the request

and the rules in Rule Repository.Meanwhile the filtered services

are layered in order for fast processing in the next step. The final

step, which is the core of the whole architecture, is responsible

for finding top- composition result in parallel.

B. Preprocessing

In the preprocessing step, services in the service set are trans-

formed into rules and a rule repository is constructed. Here, we

involve a term “rule” which is defined as follows.

Definition 7. (Rule): A rule is defined as a 4-tuple,

, where:

a) is the service that generates the rule.

b) is the set of the semantic concepts the rule needs as

inputs.

c) is the set of the semantic concepts the rule outputs.

d) QoS refers to the quality properties of the rule.

Each web service can be transformed into a rule

equals , and is the conjunction of and ’s

ancestor concepts. This means that the rule not only can generate

the declared concepts of the service but also their ancestors.

After all the services are transformed into rules, a rule repository

is built. The rule repository stores the data in memory rather

than in a database, which provides fast and efficient access when

making compositions. Table IV presents an example of a rule

repository.

In order to provide fast access to the rule repository, we build

an inverted index for it. The rules are indexed by the concepts

TABLE IV

AN EXAMPLE OF RULE REPOSITORY

TABLE V

EXAMPLE OF INVERTED INDEX FOR RULE REPOSITORY

they can output. Table V shows the inverted index of the rule

repository in Table IV. When we search for the concept , we

can find the rules and quickly.

C. Service Filtering

Since choosing appropriate services from a large-scale ser-

vice set sharply increases the processing time, it is necessary to

reduce the scale of the candidates. To this end, it is important to

filter out useless services at the very beginning.

Hennig et al. have introduced an approach to filter out ser-

vices when making compositions [28]. The process flow can be

summarized as follows.

a) Generate a set “INPUTS;” the initial elements of the set

are the inputs of the user’s request.

b) Find all the services that can be triggered by the ele-

ments in “INPUTS.” Then, the outputs of these services

are added to the set “INPUTS” and the services are kept.

c) Repeat step b) until nomore services can be triggered with

the elements in “INPUTS.” That is, the set “INPUTS” is

not extensible. Then, all the services found are the filtered

services.

Using the method above, services that cannot be triggered by

the user’s request will be filtered out. This largely reduces the

number of candidates for compositions.

In this study, we make an extension for the filtering approach

above to filter the large-scale service set. In the extension, we

use the rules to find services triggered by the elements of “IN-

PUTS,” which can support semantic matching. We also make

896 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

TABLE VI

FILTERING AND LAYERING ALGORITHM

Fig. 4. An example of service filtering.

layers of the filtered services in order to avoid cycles when

making compositions. After the execution of this algorithm,

useless services are filtered out, and the remaining services are

layered. The proposed extended filtering algorithm is illustrated

in Table VI. Suppose that the total number of services is , since

each service is checked only once during the filtering process,

the time complexity of this algorithm is . If the final “IN-

PUTS” contains the concepts that the user’s requested output

concepts semantically depends on, then there must exist solu-

tions for the user’s request. Otherwise, there are no solutions

for the user request, and then the following procedures needn’t

to be executed.

As an example, take the initial set and

the rule repository in Table IV. For the first iteration, , , ,

and can be triggered, and .

The filtered services set with the level

as 0. Then, the filtering algorithm continues until no rules can

be triggered. The final filtering result is shown in Fig. 4. The

service is filtered out.

D. Parallel Composing

Parallel composing is the core step in our method. We adopt

the basic idea of MapReduce to build a parallel framework for

top- service composition. MapReduce is a framework for pro-

cessing parallelizable problems across huge datasets using a

large number of nodes. MapReduce has proved to be a very suc-

cessful way to solve large-scale computation and applied widely

(e.g., Google file system, web access log analysis, document

clustering, etc.). The issue of top- service composition should

Fig. 5. Parallel composition framework.

find solutions from large-scale dataset and may take much com-

putation work. Therefore, introducing the idea ofMapReduce to

solve the top- service composition problem can produce sharp

improvements in terms of efficiency and scalability. What we

do in this proposal is to map the top- service composition into

multiple tasks that can be executed in parallel and guarantee that

the results from all the tasks can form the final results. We also

provide algorithms that can be applied for parallel execution.

Inspired on MapReduce, the parallel composition framework

consists of a central agent and several composing agents (shown

in Fig. 5). First, the central agent (corresponding to the master

in MapReduce) processes the user request and generates several

tasks that are mutually independent and can thus be executed

in parallel, then distributes the tasks to each composing agent.

Afterward, each composing agent (corresponding to the worker

in MapReduce) starts to generate solution subgraphs for their

given tasks. The generated solution subgraphs are then sent to

the central agent to generate the final top- results. This parallel

composition framework is a generic framework of embarrass-

ingly parallel. In implementation, it can leverage a wide spec-

trum of parallelization techniques, such as multi-threads, multi-

processors, Hadoop, etc. For our experiments, we utilize multi-

threads to implement the framework.

In order to illustrate our method clearly, we use an ex-

ample through this subsection. The rule repository is shown in

Table IV, and the user request is .

1) Task Generation: The first thing to do is task generation,

which results in multiple tasks that can be executed in parallel.

The formal definition of a task is as follows:

Definition 8. (Task): A task for a composing agent distributed

by the central agent is represented as a 3-tuple ,

where:

a) is the target concept that this task needs to accomplish.

b) is the rule repository.

c) is the set of filtered services. The output of a task are

the solution subgraphs for the target concept of the task.

The tasks are generated according to the user’s requested

output. Given the user request , two tasks

are generated. The first is to generate solution subgraphs for

. The first is to generate solution subgraphs for . Since the

tasks are embarrassingly parallel, they can be executed without

communicating with one another. We use parallelization degree

metric to describe the parallel process capability of the parallel

composition framework. The parallelization degree equals

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 897

the number of tasks executed in parallel, which can be calcu-

lated as follows:

(1)

where is the number of composing agents, is the number

of the tasks generated by the central agent.

2) Parallel Generation of Solution Subgraphs: The main re-

sponsibility of each composing agent is to generate the initial

solutions on which the final results are based. The initial solu-

tions are called solution subgraphs defined as follows.

Definition 9. (Solution Subgraph): A solution subgraph for a

concept is a directed graph from the user’s input concepts to

through a series of rules, which can be modeled as a 4-tuple

, where:

a) is the starting vertex of the solution graph representing

the user’s input concepts.

b) is the terminate vertex of the solution graph repre-

senting the target concept .

c) is the set of other vertexes of the solution subgraph.

Each vertex of represents one service or a set of services

with the same functionality.

d) is the set of edges of the solution subgraphs. An edge

from to means that can provide some

concept that requires. For each vertex, its inputs must

be satisfied by other vertexes’ outputs based on the rule

repository.

So the output of each parallel task are the generated solution

subgraphs. The way to generate solution subgraphs is based on

the backtracking algorithm, which has been introduced in sev-

eral existing methods [29]–[32]. The generation of a solution

graph starts from the terminate vertex .

Traditional backtracking algorithms for service composition

are mainly based on breadth-first-search, which may cost too

much space and have low efficiency with a large-scale service

set [46]. Hence, we develop a new backtracking algorithm for

service composition based on depth-first-search (BTSC-DFS).

Before illustrating the algorithm in detail, we introduce the basic

principle of backtracking based on depth-first-search in BTSC-

DFS.

3) Basic Principle: The target of BTSC-DFS is to generate

a solution subgraph for a concept. For a concept , we first

search the inverted index of the rule repository and get the ser-

vices that can output the concept . For each round of back-

tracking, instead of choosing all these services to continue to

backtrack, BTSC-DFS only chooses parts of them (may be one

or multiple). If services that provide the concept require

the same inputs, they will be regarded as one common service

chosen to backtrack. That is why the nodes in solution subgraphs

may be a set of services. Fig. 6 shows an example using the rules

repository in Table IV. The starting point of backtracking is the

concept , which is one concept of the user’s requested outputs.

From the rule repository, we can find that the service can pro-

vide and needs and as its inputs. For the next round of

backtracking, we find that can provide , while and

can provide . Meanwhile, we find that and require the

same inputs . Thus, we can merge it as one common service

so it can be followed by two alternatives of backtracking for

Fig. 6. An example of backtracking based on DFS.

Fig. 7. An example of the critical path and noncritical paths.

or . Also, only one will be executed at each time ac-

cording to the principle of depth-first-search.

For each solution graph generated by BTSC-DFS, there is at

least one critical path and several noncritical paths in it. The

critical path is based on the thoughts of layered services. For a

service at layer , at least one of its inputs must only be provided

by some services at layer . Then, there must be at least one

path in which each service depends on the services at one upper

layer and the last service accepts the user’s request inputs. Such

a path is called the critical path, and other paths in the solution

subgraphs are noncritical paths. The critical path decides the

pattern of the solution graph in a large part. The critical path

is defined formally as follows.

Definition 10. (Critical Path): A critical path is an order se-

quence of nodes, , in which each

node represents one service or a set of multiple services as ex-

plained previously. For each pair of neighboring nodes,

(), at least one input of can be provided by , and the

layer of is 1 larger than .

Fig. 7 shows an example of the critical path and noncrit-

ical paths. There are two paths in the solution graph. The path

is a critical path. Thus, all of its services

depend on some associated services at the neighboring layer.

The other path is a noncritical path.

BTSC-DFS consists of two steps. First, find all possible crit-

ical paths that output the required concept. Then, add noncritical

paths to each critical path to form a solution graph such that all

the inputs of services are provided by either the user or other

services in the solution graph.

898 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

TABLE VII

ALGORITHM TO GENERATE CRITICAL PATHS

The algorithm GCP is developed to generate critical paths,

as shown in Table VII. We also use the example in Fig. 7 for

a more detailed explanation. For the first step, the algorithm

finds the service that provides the required concept and

puts it into the critical path. Then, it searches the services that

provide each input of . Among them, can provide

, can provide . However, only is one layer

higher than . Therefore, is added to the critical

path, as well as is put into the critical path. Then, the critical

path is generated. The algorithm to gen-

erate noncritical paths (NGCP) is similar. The difference is that

when it tries to find precursors of a service, it will search ser-

vices at any layers rather than only at one upper layer.

Since algorithm BTSC-DFS consists of two algorithms (GCP

and NGCP) and their complexity is identical, we only need to

analyze the time complexity of GCP. In GCP, a stack is main-

tained to store critical paths. Assume that the filtered services

Fig. 8. Solution subgraphs for the given user request.

construct a DAG. Each node (service) is only linked to its up-

perservices (defined in line 15). Let be the total number of

filtered services, and be the number of all edges in the DAG.

For each service at the top of the stack, it will take to de-

cide which service should be put into the stack next, where

is the number of its upperservices (i.e., the number of its outer

edges). Since each service is added to the stack at most once,

the total time complexity is . As a result, not only the

number of candidate services, but also the complexity of the ser-

vice set which decides the dependencies between services, can

influence the performance of BTSC-DFS. The completeness of

BTSC-DFS which we prove later, guarantees that all possible

solution subgraphs can be found.

The completeness of BTSC-DFS means that given a required

concept, BTSC-DFS can find all the solution subgraphs as long

as there exist solutions for the concept.

Proof of Completeness: In Algorithm 1, all enabled ser-

vices are kept and layered, and services definitely useless for the

solution are filtered out. Let us assume that there exists one so-

lution subgraph for the required concept but BTSC-DFS cannot

find it. Since it is impossible that this solution subgraph con-

tains disabled services, all the services in the solution must be

enabled ones.

Meanwhile, algorithm BTSC-DFS can check all the enabled

services by lines 19–22 in Algorithm 2. Moreover, all possible

paths are recorded and available for new solution subgraphs

by lines 15–18. As a result, all edges between services are ex-

tracted, making any solution subgraph that contains any edge

impossible to exist. Hence, the assumption does not hold.

4) SolutionGeneration: After all the solution subgraphs gen-

erated by compositing agents are returned to the central agent,

the central agent starts to merge the solution subgraphs gener-

ated for each concept of the user’s requested outputs and then

generate the final top- compositions.

In order to generate all possible solutions, the Cartesian

product is utilized to compute the patterns of merging solution

subgraphs. Given the user request as above, we can get the

final solution subgraphs for the required outputs and , re-

spectively (shown in Fig. 8). The generated solution subgraphs

are: - , - . Then, the merging graphs will be

, (shown in Fig. 9).

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 899

Fig. 9. Merging graphs for the given user request.

Since the nodes in a merging solution graph are not always

single services as mentioned before, there may be several can-

didates for a node (e.g., the node of “ ” in the Fig. 9).

If we generate all the possible compositions for each merging

solution graph, the number of compositions may result in pro-

hibitive memory and computational costs. Therefore, it is better

to select those services with better QoS to generate top- com-

positions for each merging solution graph. Finally, it selects the

final top- QoS compositions among the top- compositions of

each merging solution graph.

We develop a method to generate top- QoS compositions for

merging solution subgraphs. The brief procedure is as follows.

a) Find all paths in the merged solution subgraphs.

b) For each path, build a bucket for each node. The candi-

date services are put into the buckets in order of the QoS

behavior. For example, the service with fastest response

time will be put first.

c) Take out all the services at the first place of each bucket.

These services will then form a path with the best QoS.

d) For each bucket, calculate all the difference values be-

tween QoS of the remaining services and that of the ser-

vice which has been removed from the bucket. Then, build

a queue and include these services, ensuring that the ones

with smaller difference values are added first.

e) Begin to use the services to substitute the services in the

best path to form a new path. The process of substitution

terminates when the number of generated paths reaches

or all possible paths have been generated. Then, at most

ranked QoS paths are generated. The rank of the paths

is just the order of generation.

f) After every path in the merged solution subgraphs is pro-

cessed, synthesize all the generated paths to make the final

top- QoS compositions.

For the given user request, we can get four final so-

lutions: ,

, ,

and . According to the rule repos-

itory in Table IV, we can calculate the response time of each

composition, which are 110, 190, 280, and 280 ms, respec-

tively. Then, we can return the final results in order of the

response time. Our proposed method can guarantee to obtain

the composition result with the top- QoS value.

Proof of Optimality: The composition results are derived

from merging solution subgraphs of all the required concepts.

Then, all possible patterns for the top- query are generated. For

each pattern, top- composition results are obtained according

to their QoS value. Then, the composition with the optimal QoS

can be found after synthesizing all top- results of each pattern.

Assuming there exists a solution with a better QoS than those re-

turned by our method. That is, there exists a rank- ()

result with a better QoS value than the corresponding rank- re-

sult obtained by our method. That means, there exists either a

better result that is selected from the composition patterns con-

structed by the generated solution subgraphs, or some patterns

that are not found by our method. The first situation cannot

happen since all candidate services for substitution are checked

to get the top- results; similarly if the second situation happens,

it will violate the completeness property of BTSC-DFS (proved

earlier in Section IV-D2). Therefore, the assumption does not

hold.

Regarding to the large-scale candidate services, we make

some optimization to reduce the number of possible patterns

of merging solution subgraphs. If one solution graph can

provide multiple concepts, this graph will not be merged with

other solution subgraphs which also provide these concepts.

For example, given three concepts , , and , the solution

subgraphs are - , - , and - .

can provide both and , so it will be redundant to

merge with either or which also provides and

. Through this reduction, the final set of merging graphs is

, instead of

This optimization can improve the efficiency at the cost of

missing some correct composition results. We will experimen-

tally evaluate the effect of the compromise on the scalability

and accuracy.

V. EVALUATION AND ANALYSIS

We conducted experiments to evaluate the behavior of

our service composition mechanism based on the methods

proposed in this paper. The experiments were conducted with

large-scale datasets. We have evaluated the performance of

the method with different affecting factors. In addition, the

accuracy of the proposed method is assessed by observing

the variance between the actual top- results and calculated

results. The datasets are acquired fromWS-Challenge 2009 and

CWSC2011. WS-Challenge is a famous worldwide automatic

composition competition, which test sets have been have been

used for assessment by many researches. CWSC2011 is the first

competition on web service composition in China. The test sets

of CWSC2011 were extended from WS-Challenge 2009 and

with larger number of candidate services. Using the datasets

from the two competitions for assessment of the proposed

900 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

TABLE VIII

DATASETS OF GENERATOR

method can be more convincing. For the experiments, the par-

allelization is implemented by multi-threads. The composing

agents of the Composition Processor are generated dynami-

cally according to the number of the tasks. Thus, all the tasks

generated by the central agent can be executed simultaneously.

The execution environment is: Intel Core2 P7370 2.0 GHz with

4 GB RAM, Windows 7, jdk1.6.0. In the following, we provide

the details of our experiments.

A. Datasets and Setup

In order to evaluate different properties of the proposed

method, we choose three types of datasets.

First, we use the tool Generator, provided by WS-Challenge

2009, to generate datasets to check the performance with dif-

ferent factors including the number of services, the number of

concepts, the solution depth, and the number of return solutions.

We generate four groups of datasets, shown in Table VIII. The

solution depth is the length of the longest path in the solution.

is the number of the best solutions which are required to return

to the user.

Second, we use the datasets in WS-Challenge 2009 to com-

pare the performance of our method with the winning methods

in the competition. These datasets are generated to test the

efficiency and accuracy of different methods when returning

the optimal QoS (response time and throughput, respectively)

composition for users. For each challenge-set, the competition

also provides the standard optimal QoS (e.g., smallest response

time), the accuracy of different methods is evaluated according

to the difference between the QoS of returned solution and the

optimal value.

Finally, we use the datasets of CWSC2011 to evaluate the ac-

curacy when solving top- problems. CWSC2011 provides five

large-scale datasets. The goal is to compose top- QoS-aware

service compositions with smallest response time according to

requirements from the challenge client.

B. Performance Evaluation and Analysis

1) Scalability With Respect to the Number of Services: In

this stage of our evaluation, we evaluate the effect of the pro-

posed approach with varied numbers of candidate services. The

datasets of Group-1 in Table VIII are used. We fix the concept

number at 10,000 and the solution depth at 9. Then, we adjust

the services from 2000 to 20,000 and try to make top-10 compo-

sitions from the datasets for each request. As Fig. 10 shows, the

proposed approach can finish work at a millisecond level. In ad-

dition, the time cost of our approach linearly increases with the

Fig. 10. Effect of the number of services.

Fig. 11. Effect of the number of concepts.

number of services. This can also validate the time complexity

analysis in Section IV-D2.

2) Scalability With Respect to the Number of Concepts: To

test the effect of the number of concepts on our approach, we

use the datasets of Group-2 in Table VIII. For the datasets, we

vary the concept number from 2000 to 20,000, and fix the ser-

vice number and solution depth as 10,000 and 10, respectively.

Again, top-10 results are computed. We plot the computation

time of each trial in Fig. 11. It shows that the computation time

fluctuates with the number of concepts. The fluctuation is due

to the fact that Generator creates a data set for each number of

concepts, but the complexity of the dataset generated each time

cannot be guaranteed to be similar.

3) Scalability With Respect to the Solution Depth: We also

test the effect of the solution depth on our approach. The datasets

of Group-3 in Table VIII are used, in which the numbers of ser-

vices and concepts are both 10,000, while the solution depth

ranges from 5 to 20. Then, we use our approach to find top-10

compositions. The time taken for each solution depth value is

shown in Fig. 12. It reveals that our approach performs similarly

when the solution depth increases. That is because we utilize the

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 901

Fig. 12. Effect of solution depth.

Fig. 13. Effect of .

idea of depth-first-search and only one possible service is se-

lected for backtracking. It will not increase searching space with

the increasing depth. For some methods, the searching space

will increase greatly when the solution depth increases since

they mostly use the breadth-first-search. Similar to the previous

experiment, the varying complexity of the composition struc-

ture in each dataset also results in the fluctuation of time.

4) Scalability With Respect to : We also check whether the

value of affects the performance of our approachwhenmaking

top- compositions. The datasets of Group-4 in Table VIII are

used, in which the value of ranges from 1 to 100 with the

service number 10,000, the concept number 1,000, and solu-

tion depth 10. The results in Fig. 13 show that our approach

will not spend more composition time when returning more

compositions.

C. Accuracy Evaluation and Analysis

1) Top-1 Verification: As proved in Section IV-D3, the pro-

posed method in this paper can guarantee to return the actual

TABLE IX

DATASETS OF WS-CHALLENGE 2009

TABLE X

DATASETS OF CWSC2011

TABLE XI

COMPARISON RESULTS

top- solution. This section gives the verification for the opti-

mality of our method by comparing our approach with the win-

ning approach in WS-Challenge 2009 [30] that has been proved

to correctly find the top-1 composition with the smallest re-

sponse time. For our approach, the time taken returning top-1

solution is almost the same with that of returning top- solu-

tions, so we use our approach to find the top- solutions. For

each dataset, we execute the algorithms for five rounds and get

the average time taken. The comparison results are shown in

Table XI. The comparison experiments are conducted with five

different datasets (Challengeset 1–5 in Table IX). Three metrics,

i.e., smallest response time of the optimal solution, computa-

tion time to return the solutions, and solution number returned

by each approach are compared between the winning approach

(Winner for short in Table XI) in WS-Challenge 2009 and ours.

From the comparison results, we can conclude that: 1) for the

five challenge set, the optimal composition, i.e., the one with

smallest response time computed by our approach is the same

with the winning method, which validates the optimality of our

approach and 2) when the candidate service number becomes

902 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

TABLE XII

COMPARING TOP- RESULTS

larger (in the last three challenge sets), our approach spends

more time than the other methods. That is because ours returns

all the solutions with the smallest response time while others

only return one. Although our approach is a couple of times

more costly, it yields alternatives while the others do not. Be-

sides, the solutions are sharable among users with the same

query.

2) Top- Accuracy Verification: China Web Service Cup

2011 is held to solicit algorithm and software for top- query

of QoS-aware automatic service composition problem. Hence,

we use the datasets of CWS2011 to verify the correctness of

the top- results retuned by our method. The details of the

datasets are shown in Table X. For each dataset, we compute

top-10 compositions with the smallest response time; in the

meanwhile, the competition also provides the actual top-10

compositions with the smallest response time. The response

time of each solution is the aggregation of component services’

response time according to the rules in Table III. The results are

shown in Table XII. Then, we compare the return results with

the actual results provided by the competition to evaluate the

accuracy of our proposal. The accuracy was assessed according

to the number of hits (computed results that match the actual

top- compositions). The precision is calculated to assess the

accuracy

We also adopt a second measure of selection quality from

[62], the so-called expected opportunity cost :

where is the actual rank of the rank- result. This measure pe-

nalizes particularly bad choices more than mildly bad choices.

For example, when , a result of

is better than , and both are better

than . Note that returns a minimum

value of 0 when all the top- results are correctly returned.

Table XII shows the experimental results compared with

the method [64] which is also designed for top- service

composition problem. From the results, we can conclude that

our approach can achieve 100% accuracy as proved in Section

Section IV-D3. Besides, the results also show that our method

outperforms the method in [64] on time cost.

TABLE XIII

COMPARISON WITH THE PROPOSED OPTIMIZATION.

The aim of our method is to find top- services compo-

sitions from large-scale service sets. Therefore, accuracy

and scalability of the method are both important. We have

made some compromises to achieve high scalability: as seen

in Section IV-D3, some redundant composition patterns are

removed. Thus, we can save some computation time for

generating solutions at the sacrifice of missing some correct

results. In this part, we are going to evaluate the effect of the

compromise on accuracy and scalability. Table XIII shows the

experimental results compared between our original method

and our optimized method. From the results, it is clear that

the optimized approach does not achieve 100% accuracy.

This arises from the fact that the optimized procedures in-

volve reducing the number of possible patterns of merging

solution subgraphs as introduced in Section IV-D3. However,

the optimized method can save nearly half time cost for each

dataset. In general, the results indicate that the optimization in

Section IV-D3 can improve the efficiency without much loss of

accuracy when processing large-scale service sets.

VI. RELATED WORK

Since our proposal aims at tackling the problem of yielding

top- QoS composition from a large number of services, we

review related work from the following three aspects: 1) QoS-

aware service composition; 2) top- service composition; and

3) scalable composition frameworks.

A. QoS-Aware Approaches

Automatic Service Composition (ASC) technology has been

proposed to automatically discover, select, and compose mul-

tiple individual services to satisfy a user’s query. There are

two categories of approaches: AI planning [33]–[40] and graph-

based search [41]–[47]. However, these early researches on au-

tomatic service composition do not consider the nonfunctional

attributions of services. They usually return the service compo-

sition results with fewer services or less depth.

Nowadays, many approaches have been proposed that com-

bine QoS awareness with service composition [20], [22], [23],

[30], [32]. The approach QSynth described in [48] achieved first

place in the WS-challenge 2009. It provides an efficient algo-

rithm with a scalable runtime performance and QoS awareness.

The approach proved to be very efficient and scalable. It realizes

preprocessing when effective data structures are built. The data

structures are used during the user querying phase to quickly

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 903

compose a required composition. But the approach can only re-

turn the optimal result to the user, while ours can provide top-

QoS results to the user.

Florian Wagner et al. [49] propose a method that combines

the AI planning and services selection approaches by lever-

aging common characteristics of service registries. They uti-

lize a data structure that arranges functionally similar services

in clusters and computes the QoS of each cluster. Then, the

planning tool composes workflows consisting of these clusters,

taking the QoS of the clusters into account. Thus, the utility in

general and the reliability of the composed workflows are sig-

nificantly increased.

Shen et al. [50] present an approach to optimize the QoS-

aware services composition for multiple concurrent processes

for multiple selfish users. They use a multi-issue negotiation

protocol among agents based on an auction-based multi-issue

negotiation protocol to reallocate the service resources and de-

vice resources before and during the execution of concurrent

composite services. The approach shows advantages in a dy-

namic resource-constrained environment. However, it is not ef-

ficient when the number of services grows exponentially.

In general, most of the existing researches on QoS-aware au-

tomatic service composition focus on returning the optimal ser-

vice composition result. Different from these researches, our

work returns not only the optimal result but also top- QoS com-

position results. As we mentioned before, providing top- com-

position results can bring more benefits and has a higher level

of complexity than returning optimal result.

B. Top- Service Composition

Although the problem of top- service composition has not

been studied thoroughly, there exist several studies. Benouaret

et al. addressed the problem of top- retrieval of data web ser-

vice compositions to answer fuzzy preference queries under

different matching methods [51], [52]. They present a suitable

ranking criterion based on a fuzzification of Pareto dominance

and developed a suitable algorithm for computing the top- data

web service compositions. However, the ranking criteria of the

top- results are based on the functional relevance between the

composition and the user’s query; QoS of services is not con-

sidered. In our work, the top- service compositions are ranked

based on the overall QoS.

The work in [53] combines QoS computations into the

process of service composition and tries to find the top-

optimal results. The proposed approach is based on a succinct

binary tree data structure and QoS is taken into account with a

heuristic strategy. However, it only calculates the summation

of the QoS of component services as the overall QoS of the

composition, but does not consider different QoS properties

and composition patterns for the overall QoS of compositions,

which makes its QoS computation rules for service composition

not always accurate. Since we adopt the computation rules in

[23], our proposal can calculate the overall values of different

QoS properties with various composition patterns. Zheng et al.

introduced a web service search engine called WSExpress [54],

in which the functional value and the nonfunctional values

are aggregated to compute the rank score of a web service.

Then, top- results are ranked for a search query. However,

this work is mainly towards atomic services rather than service

compositions. Ranking composite services can be seen as an

extension to ranking single services, by dealing with more

complex structures.

Jiang et al. also extend their work [48] to support the query of

top- service composition results [55]. They develop a service

composition system called QSynth-Top- to provide top- QoS

service compositions. A progressive and incremental Key-Path-

Loose algorithm is proposed and implemented. But QSynth-

Top- is based on centralized computing, whichmay need pow-

erful and reliable central servers and a lot of bandwidth for com-

puting, data storage, and communication. Our approach can be

implemented in a decentralized way that can reduce the load

of the central node and improve the availability of the whole

system.

To summarize, the biggest difference between the few works

on top- service composition and our proposal is that we de-

velop a parallel/distributed framework, which divides the top-

composition task into several subtasks that can be executed in

parallel. The benefit is that, when the service set is quite large,

this framework cannot only improve the efficiency but also re-

duce the load of central node.

C. Scalable Composition Frameworks

Traditional service composition frameworks are mainly

based on centralized computation which is not scalable. As the

number of web services on the Internet is increasing, scalability

has been identified as one of the most important challenges in

the area of web service compositions. In particular, the top-

QoS service composition may take much computation work

when the candidate service set is quite large. Then, how to

improve the scalability is a key issue for top- QoS service

composition.

Currently, the emergence of multicore computing, parallel

computing and distributed computing have promised massive

performance gains for large-scale computations, which also

spark new interest in the complex domain of problem parti-

tioning [57]. These emerging techniques also bring new ideas

for web service composition. Some trials to parallelization or

distribution for service composition have already been designed

[58]–[60].

Pathak et al. modeled a choreographer for realizing com-

posite services [58]. The choreographer first selects necessary

components to meet a complex composition goal state, and then

executes the planning for each individual component in par-

allel. However, this approach restricts parallelization to por-

tions of the composition graph that can be executed in par-

allel. The actual synchronization required for such paralleliza-

tion over the entire composition graph will severely decrease the

performance. Since our framework divides the task intomultiple

subtasks which have nothing to do with each other, there is no

need to conduct synchronization process.

Bartalos and Bieliková presented a framework for semantic

web service composition which exploits the possibilities of mul-

tiprocessor platforms [59]. The composition approach is a com-

bination of three parallel processes operating over the same data

904 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 11, NO. 3, JULY 2014

structure: 1) Finding usable services. 2) Finding unusable ser-

vices,. 3) Backward chaining. Similar to [58], this framework

also needs much work on synchronization.

Falou et al. proposed a multiagent-based distributed frame-

work for automatic service composition [60]. This framework

consists of a core agent and several normal agents. Each normal

agent corresponds to a set of services. When the core agent re-

ceives a query, it broadcasts the query to all the normal agents.

Then, each normal agent make local optimize planning form the

initial state to the target state with its services. Finally, the core

agent summarizes all local plans and generates the global op-

timal plans. However, the binding of each normal agent to a

specific set of services restricts the flexibility of the framework.

This framework may miss a lot of possible results which con-

sists of services from different agents since the target of this

work is to find one possible solution not the best solution.

Compared to the above parallel or distributed frameworks for

service composition, our framework adopts the idea of MapRe-

duce and maps the top- composition problem into several sub-

tasks that can be executed in parallel. Furthermore, our frame-

work adopts the principle of MapReduce but not the implemen-

tation, so it can be implemented by various parallel techniques

such as multithreads, multiprocessers, Hadoop, etc.

VII. CONCLUSION AND FUTUREWORK

This paper introduces a parallel framework for top- QoS

service composition from large-scale repositories. In order to

reduce the searching space we develop a backtracking compo-

sition algorithm based on depth-first-search. To test its perfor-

mance the approach is applied to a simulated web service envi-

ronment. The experimental results show that our approach can

make top- QoS service compositions from large-scale reposi-

tories accurately and efficiently. In the future, we intend to in-

vestigate how to handle multiple QoS properties and take more

consideration of users’ preferences to make personalized com-

positions. Also, composition result caching and reusing is inter-

esting to explore.

REFERENCES

[1] M. P. Papazoglou et al., “Service-oriented computing: A research
roadmap,” Int. J. Coop. Info. Syst., vol. 17, no. 2, pp. 223–255, Jun.
2008.

[2] W. Tan, Y. Fan, and M. C. Zhou, “A Petri net-based method for com-
patibility analysis and composition of web services in business process
execution language,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp.
94–106, Jan. 2009.

[3] L. Huang et al., “A trust evaluation mechanism for collaboration of
data-intensive services in cloud,” Appl. Math. Inf. Sci., vol. 7, no. 1L,
pp. 121–129, Feb. 2013.

[4] W. Jiang et al., “Continuous query for QoS-aware automatic service
composition,” in Proc. ICWS, Honolulu, HI, USA, 2012, pp. 50–57.

[5] J. Peer, ”Web service composition as AI planning–A survey,” Univ. St.
Gallen, St. Gallen, Switzerland, Tech. Rep., 2005.

[6] H. Kil and W. Nam, “Semantic web service composition via model
checking techniques,” Int. J. Web Grid Serv., vol. 9, no. 4, pp. 339–350,
Nov. 2013.

[7] M. Phan and F. Hattori, “Automatic web service composition using
congolog,” in Proc. ICDCS Workshop, Lisboa, Portugal, 2006, p. 17.

[8] S. C. Oh et al., “WSPR*: Web-service planner augmented with A*
Algorithm,” in Proc. CEC, Warren, MI, 2009, pp. 515–518.

[9] P. Rodriguez-Mier et al., “An optimal and complete algorithm for au-
tomatic web service composition,” Int. J. Web. Serv. Res., vol. 9, no. 2,
pp. 1–20, Apr. 2012.

[10] B. Wu et al., “AWSP: An automatic web service planner based on
heuristic state space search,” in Proc. ICWS, Washington, DC, USA,
2011, pp. 403–410.

[11] W. Tan et al., “Data-driven service composition in enterprise SOA so-
lutions: A Petri Net approach,” IEEE Trans. Autom. Sci. Eng., vol. 7,
no. 3, pp. 686–694, Jul. 2010.

[12] I. Paik and D. Maruyama, “Automatic web services composition using
combining HTN and CSP,” in Proc. CIT, Fukushima, Japan, 2007, pp.
206–211.

[13] C. Kun, J. Xu, and S. Reiff-Marganiec, “Markov-HTN planning ap-
proach to enhance flexibility of automatic web services composition,”
in Proc. ICWS, Los Angeles, CA, USA, 2009, pp. 9–16.

[14] J. Rao and P. Küngas, “Application of linear logic to web service com-
position,” in Proc. ICWS, Las Vegas, NV, USA, 2003, pp. 3–9.

[15] J. Rao, P. Kungas, and M. Matskin, “Logic-based web services com-
position: From service description to process model,” in Proc. ICWS,
San Diego, CA, USA, 2004, pp. 446–453.

[16] P. C. Xiong, Y. Fan, andM. C. Zhou, “Web service configuration under
multiple quality-of-service attributes,” IEEE Trans. Autom. Sci. Eng.,
vol. 6, no. 2, pp. 311–321, Apr. 2009.

[17] S. G. Deng et al., “Parallel optimization for data-intensive service com-
position,” J. Internet Technol., vol. 14, no. 5, pp. 817–824, Sep. 2013.

[18] W. Mayer, R. Thiagaraja, and M. Stumptner, “Service composition as
generative constraint satisfaction,” in Proc. ICWS, Los Angeles, CA,
USA, 2009, pp. 888–895.

[19] P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic web ser-
vice composition with a heuristic-based search algorithm,” in Proc.
ICWS, Washington, DC, USA, 2011, pp. 81–88.

[20] F. Wagner, F. Ishikawa, and S. Honiden, “QoS-aware automatic ser-
vice composition by applying functional clustering,” in Proc. ICWS,
Washington, DC, USA, 2011, pp. 89–96.

[21] R. F. Korte, “Biases in decision making and implications for human
resource development,” Adv. Developing Human Resources, vol. 5, no.
4, pp. 440–457, Nov. 2003.

[22] M. Alrifai, T. Risse, and W. Nejdl, “A hybrid approach for efficient
web service composition with end-to-end QoS constraints,” ACM T
Web, vol. 6, no. 2, pp. 7–7, May 2012.

[23] L. Zeng et al., “QoS-aware middleware for web services composition,”
IEEE T Software Eng., vol. 30, no. 5, pp. 311–327, May 2004.

[24] Web Services Description Language 1.1 W3C Note 15 2001.
[25] OWL Web Ontology Language Overview, W3C recommendation

10.2004-03 2004.
[26] H. Ludwig et al., Web Service Level Agreement (WSLA) Language

Specification. Armonk, NY, USA: IBM Corporation, 2003, pp.
815–824.

[27] M. Záková et al., “Automating knowledge discovery workflow com-
position through ontology-based planning,” IEEE Trans. Autom. Sci.
Eng., vol. 8, no. 2, pp. 253–264, Apr. 2011.

[28] P. Hennig and W. T. Balke, “Highly scalable web service composition
using binary tree-based parallelization,” in Proc. ICWS, Miami, FL,
2010, pp. 123–130.

[29] M. S. Kumar and P. Varalakshmi, “A novel approach for dynamic web
service composition through network analysis with backtracking,” in
Advances in Computing and Information Technology. Berlin, Ger-
many: Springer-Verlag, 2013, pp. 357–365.

[30] Z. Huang et al., “Effective pruning algorithm for QoS-aware service
composition,” in Proc. CEC, Warren, MI, USA, 2009, pp. 519–522.

[31] S. G. Deng et al., “Trust-based personalized service recommendation:
A network perspective,” J. Comput. Sci. Tech-CH., vol. 29, no. 1, pp.
69–80, Jan. 2014.

[32] Y. Yan et al., “A QoS-driven approach for semantic service composi-
tion,” in Proc. CEC, Warren, MI, USA, 2009, pp. 523–526.

[33] M. Weiss, B. Esfandiari, and Y. Luo, “Towards a classification of
web service feature interactions,” Comput. Netw., vol. 51, no. 2, pp.
359–381, Feb. 2007.

[34] F. Lécué et al., “SOA4All: An innovative integrated approach to ser-
vices composition,” in Proc. ICWS, Miami, FL, USA, 2010, pp. 58–67.

[35] M. Kuzu and N. K. Cicekli, “Dynamic planning approach to automated
web service composition,” Appl. Intell., vol. 36, no. 1, pp. 1–28, Jan.
2012.

[36] D. Wu et al., “Automating DAML-S web services composition using
SHOP2,” in Proc. ISWC, Washington, DC, USA, 2003, pp. 195–210.

[37] M. Klusch, A. Gerber, and M. Schmidt, “Semantic web service com-
position planning with OWLS-Xplan,” in Proc. AAAI Fall Symp. Se-
mantic Web and Agents, Arlington, VA, USA, 2005, pp. 55–62.

[38] P. Doshi et al., “Dynamic workflow composition using Markov De-
cision processes,” in Proc. ICWS, San Diego, CA, USA, 2004, pp.
576–582.

DENG et al.: TOP- AUTOMATIC SERVICE COMPOSITION: A PARALLEL METHOD FOR LARGE-SCALE SERVICE SETS 905

[39] H. Wang et al., “Adaptive service composition based on reinforcement
learning,” inProc. ICSOC, San Francisco, CA, USA, 2010, pp. 92–107.

[40] S. Y. Hwang et al., “Dynamic web service selection for reliable web
service composition,” IEEE Tran. Serv. Comput., vol. 1, no. 2, pp.
104–116, Apr. 2008.

[41] A. Goldman and Y. Ngoko, “On graph reduction for QoS prediction
of very large web service compositions,” in Proc. SCC, Honolulu, HI,
USA, 2012, pp. 258–265.

[42] A. Zhou, S. Huang, and X. Wang, “Bits: A binary tree based web ser-
vice composition system,” Int. J. Web. Serv. Res., vol. 4, no. 1, pp.
40–58, Jan. 2007.

[43] S. Y. Lin et al., “A cost-effective planning graph approach for large-
scale web service composition,”Math. Probl. Eng., p. 21, 2012, Article
ID. 783476.

[44] Z. Hua, F. Yan, and G. Hui, “A web service composition algorithm
based on dependency graph,” in Proc. GCN, Chongqing, China, 2012,
pp. 1511–1518.

[45] S. G. Deng et al., “A method of semantic web service discover based
on bipartite graph matching,” Chin. J. Comput., vol. 31, no. 8, pp.
1364–1375, Nov. 2008.

[46] S. G. Deng et al., “Automatic web service composition based on back-
ward tree,” J. Software, vol. 18, no. 8, pp. 1896–1910, May 2007.

[47] S. C. Oh, D. Lee, and S. R. T. Kumara, “Web service planner (WSPR):
An effective and scalable web service composition algorithm,” Int. J.
Web. Serv. Res., vol. 4, no. 1, pp. 1–22, Jan. 2007.

[48] W. Jiang et al., “Qsynth: A tool for QoS-aware automatic service com-
position,” in Proc. ICWS, Miami, FL, USA, 2010, pp. 42–49.

[49] F. Wagner et al., “Multi-objective service composition with time-and
input-dependent QoS,” in Proc. ICWS, Miami, FL, USA, 2010, pp.
234–241.

[50] Y. En et al., “Optimizing QoS-aware services composition for con-
current processes in dynamic resource-constrained environments,” in
Proc. ICWS, Miami, FL, USA, 2010, pp. 250–258.

[51] K. Benouaret et al., “Top- web service compositions using fuzzy
dominance relationship,” in Proc. SCC, Washington, DC, USA, 2011,
pp. 144–151.

[52] K. Benouaret, D. Benslimane, and A. Hadjali, “Top- service com-
positions: A fuzzy set-based approach,” in Proc. SAC, New York, NY,
USA, 2011, pp. 1033–1038.

[53] X. L.Wang, S. Huang, and A. Y. Zhou, “QoS-aware composite services
retrieval,” J. Comput. Sci. Tech-CH, vol. 21, no. 4, pp. 547–558, Jul.
2006.

[54] Y. Zhang, Z. Zheng, and M. R. Lyu, “Wsexpress: A QoS-aware search
engine for web services,” in Proc. ICWS, Miami, FL, USA, 2010, pp.
91–98.

[55] W. Jiang, S. Hu, and Z. Liu, “Top K query in QoS-aware automatic
service composition,” IEEE Tran. Serv. Comput., to be published.

[56] K. C. C. Chang and S. Hwang, “Minimal probing: Supporting expen-
sive predicates for top- queries,” in Proc. SIGMOD, Madison, WI,
USA, 2002, pp. 346–357.

[57] J. J. Joseph, An Introduction to Parallel Algorithms. Redwood City,
CA, USA: Addison Wesley Longman Publishing Co., Inc., 1992.

[58] J. Pathak et al., “Parallel web service composition in moscoe: A chore-
ography-based approach,” in Proc. ECOWS, Zürich, Switzerland,
2006, pp. 3–12.

[59] P. Bartalos and M. Bieliková, “Semantic web service composition
framework based on parallel processing,” in Proc. CEC, Warren, MI,
USA, 2009, pp. 495–498.

[60] M. El Falou et al., “A distributed planning approach for web services
composition,” in Proc. ICWS, Miami, FL, USA, 2010, pp. 337–344.

[61] F. Tao et al., “FC-PACO-RM: A parallel method for service compo-
sition optimal-selection in cloud manufacturing system,” IEEE Trans.
Ind. Inform., vol. 9, no. 4, pp. 2023–2033, Nov. 2013.

[62] M. Theobald, G. Weikum, and R. Schenkel, “Top- query evaluation
with probabilistic guarantees,” in Proc. VLDB, Toronto, ON, Canada,
2004, pp. 648–659.

[63] C. H. Chen et al., “Efficient simulation budget allocation for selecting
an optimal subset,” Informs J. Comput., vol. 20, no. 4, pp. 579–595,
May 2008.

[64] S. Deng et al., “Efficient planning for top- web service composition,”
Knowl. Inf. Syst., vol. 36, no. 3, pp. 579–605, Sep. 2013.

Shuiguang Deng received the B.S. and Ph.D. de-

grees in computer science from Zhejiang University,

Hangzhou, China, in 2002 and 2007, respectively.

Presently, he is an Associate Professor with the

College of Computer Science, Zhejiang University.

His research interests include service computing,

business process management, and data manage-

ment. Up to now, he has published more than 30

papers in peer-refereed journals and international

conference proceedings as the first author or the

corresponding author. He holds a number of patents

for his many innovations.

Dr. Deng is a Member of the Association for Computing Machinery (ACM).

He is the recipient of Microsoft Fellowship Award 2005.

Longtao Huang received the B.S. degree in software

engineering from Zhejiang University, Hangzhou,

China, in 2010. Currently, he is working towards the

Ph.D. degree in computer science and technology at

Zhejiang University.

His research interests include service computing

and cloud computing.

Wei Tan (M’12–SM’13) received the B.S. degree

and the Ph.D. degree from the Department of Au-

tomation, Tsinghua University, Beijing, China, in

2002 and 2008, respectively.

He is currently a Research Staff Member at IBM

T. J. Watson Research Center, Yorktown Height, NY,

USA. His research interests include big data, cloud

computing, service-oriented architecture, business

and scientific workflows, and Petri nets. He

Dr. Tan is a Member of the Association for Com-

puting Machinery (ACM).

Zhaohui Wu (M’04) received the Diploma degree

in computer science from Zhejiang University,

Hangzhou, China, in 1988.

He is a member of Sino-Germany jointly trained

Ph.D. program from 1991 to 1993. Currently, he is

a Professor with the College of Computer Science,

Zhejiang University. His research interests cover the

range of distributed artificial intelligence, grid com-

puting, biometrics, embedded , etc.

