IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018 695

Packet Injection Attack and Its Defense
in Software-Defined Networks

Shuhua Deng™, Xing Gao, Zebin Lu, and Xieping Gao

Abstract— Software-defined networks (SDNs) are novel net-
working architectures that decouple the network control and
forwarding functions from the data plane. Unlike traditional
networking, the control logic of SDNs is implemented in a
logically centralized controller which provides a global network
view and open programming interface to the applications. While
SDNs have become a hot topic among both academia and
industry in recent years, little attention has been paid on the
security aspect. In this paper, we introduce a novel attack,
namely, packet injection attack, in SDNs. By maliciously injecting
manipulated packets into SDNs, attackers can affect the services
and networking applications in the control plane, and largely
consume the resources in the data plane. The consequences
could be the disruption of applications built on the top of
the topology manager service and rest API, as well as a huge
consumption of network resources, such as the bandwidth of the
OpenFlow channel. To defend against the packet injection attack,
we present PacketChecker, a lightweight extension module on
SDN controllers to effectively detect and mitigate the flooding of
falsified packets. We implement a prototype of PacketChecker
in floodlight controller and conduct experiments to evaluate the
efficiency of the defense mechanism. The evaluation shows that
the PacketChecker module can effectively mitigate the attack
with a minor overhead to the SDN controller.

Index Terms— Software defined networks, packet injection
attack, security.

I. INTRODUCTION

OFTWARE defined networks (SDNs) are new network

architectures decoupling control logics and forwarding
functions from network infrastructures. In SDNs, a logi-
cally centralized controller is employed to provide a holistic
network view as well as network programmable interfaces. The
controller collects the devices information (e.g., host location,
switches information) and constructs a global topology view.
Based on the topology view, the controller then deploys
forwarding policies by installing flow rules on each networking
devices (e.g., switches). Through the northbound application
programming interfaces, networking applications built on the
top of the controller can further customize network control

Manuscript received March 26, 2017; revised September 5, 2017; accepted
October 12, 2017. Date of publication October 23, 2017; date of current
version December 19, 2017. This work was supported in part by NSFC under
Grant 61172171 and in part by the Hunan Provincial Postgraduate Research
and Innovation Project of China under Grant CX2015B207. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Mauro Barni. (Corresponding author: Xieping Gao.)

S. Deng, Z. Lu, and X. Gao are with the Key Laboratory of Intel-
ligent Computing and Information Processing of Ministry of Education,
Xiangtan University, Xiangtan 411105, China (e-mail: shuhuadeng @ 163.com;
xpgao@xtu.edu.cn).

X. Gao is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA 23185 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2765506

policies such as firewalls, routing algorithms, and load balanc-
ing strategies. Such centralized controls significantly simplify
the modification of network policies and the deployment of
networking applications. OpenFlow [1], as one of the most
successful SDNs protocols, has been widely deployed in real-
istic cloud computing environments to improve the reliability
and performance of cloud services. Google reports that they
achieved near 100% link utilization in their data centers using
SDN principles and OpenFlow [2].

While SDNs bring huge successes, the idea of centralized
control also raises new security concerns. As the core of
the whole network, the SDN controller is responsible for the
schedule of the entire network traffics. Therefore, a compro-
mised controller would result in devastating consequences.
Once the OpenFlow controller is under malicious attacks,
the normal networking functions would be disrupted. Even
worse, attackers who hijack the controller could control the
entire network and easily alter every single flow. Moreover,
since all applications rely on the global network view to
function properly, the poisoned network view caused by mali-
cious packets would lead to flow rule conflicts and policy
violations. As a result, numerous efforts from both academia
and industry have been made to enforce the security of SDNs.
For example, FortNox [3], FLOWGUARD [4] and Fleet [5] are
proposed to solve the problem of policy violations. AVANT-
GUARD [6] and FloodGuard [7] are built to defend against
the denial-of-service attacks on SDNs. While those works
provide solid solutions which effectively raise the bar for
launching various malicious activities such as the satura-
tion attacks [6]-[8], they ignored malicious users who can
intentionally inject packets to overwhelm the secure channels
between the controller and forwarding devices, poison the
global topology view and tremendously consume controller’s
resources.

In this paper, we unveil a new vulnerability exists in the
OpenFlow protocol. In existing design of the communication
processes, when a forwarding device (e.g., a switch) meets a
new packet with no matching flow rules in the flow table,
it sends a Packet-In message to the controller through
the secure channel without any regulation mechanisms.
We demonstrate that such a design could be abused by an
adversary to launch packet injection attacks. A malicious
user can continuously inject manipulated packets with random
falsifications of parts of the header fields (e.g., MAC address),
forcing the switches to send Packet-In messages to the
controller. Those fake devices information would deceive the
topology management service to generate a ghostly topology
with huge amounts of non-existing devices included, and
thus mislead the networking applications via the Rest APIL.

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8985-1295
https://orcid.org/0000-0002-7764-3616

696 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018

In certain cases, the attack can disable the functionality of
applications and even crash the applications.

To defend against such attacks, we propose PacketChecker
to prohibit malicious hosts from manipulating a large amount
of Packet-In intentionally. PacketChecker acts as a light-
weight extension to existing OpenFlow controllers. It fil-
ters out Packet-In messages according to the header
fields of the packets before these messages processed by the
controller core module. By comparing the MAC address,
Switch DPID and Inport information carried in the
Packet-In message, PacketChecker can automatically iden-
tify the injected packets. Once an anomaly is detected,
it informs the switch to discard these packets through a
Flow-Mod message, thus avoids the controller resources
be exhausted. We implement a prototype of PacketChecker
module in Floodlight controller.

To evaluate the impact of the packet injection attack on
SDN controllers, as well as the effectiveness of PacketChecker,
we conduct a set of experiments in the Mininet environ-
ments. We launch the packet injection attack on a simulated
SDN network under three different networking topologies and
compare the results with PacketChecker installed. Our results
show that this attack can disrupt the networking applications
and clog up network traffic. However, with PacketChecker
integrated, the controller can effectively detect and drop all
injected packets from malicious user on the switch. Also,
our evaluation results show that PacketChecker induces minor
performance overhead.

In general, our paper makes the following contributions.

o We uncover a new security vulnerability in the OpenFlow
communication process, topology management service
and Rest API in the SDN controller.

o« We present a novel attack, namely the packet injection
attack, against the SDN controller. We demonstrate the
feasibility of such attack on the Mininet [9] emulation
environment and analyze the consequences.

o We discuss several possible solutions to mitigate the new
threat. Based on some features of SDNs, we design and
implement PacketChecker by extending the Floodlight
controller to prevent the packet injection attack.

o We conduct experiments to evaluate PacketChecker in
terms of the effectiveness and efficiency. The experimen-
tal results show that PacketChecker can effectively miti-
gate the packet injection attack while imposing negligible
overheads.

The rest of the paper is organized as follows. We present the
background information about SDNs and the OpenFlow pro-
tocol in Section II. We describe the vulnerability in SDN con-
troller and introduce the packet injection attack in Section III.
We discuss the countermeasures against the packet injection
attack and propose PacketChecker in Section IV. We detail the
implementation and evaluation of PacketChecker in Section V.
We survey the related work in Section VI. Finally, we conclude
our work in Section VII.

II. BACKGROUND

In this Section, we briefly introduce the background knowl-
edge of the OpenFlow communication process, the topology

management service and the northbound Rest API in SDN
controllers.

A. The OpenFlow Communication Process

OpenFlow is the most widely deployed southbound inter-
face. It defines the forwarding behavior and message for-
mat for the interaction between the OpenFlow switch and
controller. Unlike traditional switches, OpenFlow switches
forward packets according to the flow entries in the flow
table. Each flow table in the switch contains a set of flow
entries. A flow entry consists of the match fields, counters
and a set of instructions that are applied to match packets [10].
When a switch receives a packet, it starts matching the flow
table according to the specified match fields. If matched,
the packet will be processed based on the instruction which
contains in the matched flow entry. Otherwise, the packet is
forwarded according to the table-miss flow entry. By default,
the unmatched packets will be sent to the controller via
Packet-In messages. The OpenFlow message plays an
important role in the communication between the switch
and controller. There are three types of messages: controller-
to-switch, asynchronous, and symmetric. Controller-to-switch
messages, such as Packet-Out and Features messages,
are initiated by the controller and used to manage or control
the switch. Asynchronous messages are initiated by the switch
to inform the switch state change event to the controller.
It includes Packet-In and Port-Status messages. Sym-
metric messages could be initiated by either a switch or a
controller to complete the connections. Also, they are used
to process some problems between switches and the con-
troller. When the controller receives Packet-In messages
that contain unmatched packets, the forwarding service would
compute a route for these packets. But, if there no route for
these packets, controller would instruct the switch flood these
packets to other ports through the Packet-Out messages.

B. The Topology Management Service

The topology management service in the controller is the
foundation of route computing. It is responsible for updat-
ing the network topology. To collect the information about
the switch and monitor the link state, the controller sends
link layer discovery protocol (LLDP) packets in the form
of Packet-Out messages to connected switches periodic-
ity. It then learns the network information according to the
Packet-In messages and updates the network topology
view simultaneously. In general, the topology management
service includes host discovery, switch discovery and link
discovery. Host discovery is passive. It learns and updates
the host information (i.e., MAC address, Inport) based on the
Packet-In messages caused by mismatched packets. The
discovery of the switch occurs when the switch establishes a
connection to the controller. The controller learns and stores
the switch information (i.e., the port ID and datapath ID) to
update the topology information. Different from the discovery
of the host and switch, link discovery is proactive. The
controller sends LLDP packets to the switch and computes the

DENG et al.: PACKET INJECTION ATTACK AND ITS DEFENSE IN SDNs

link based on the neighbour’s Packet-In and LLDP mes-
sages. Normally, the controller provides an intuitive way to
manage and monitor the network topology with a web-based
graphical user interface (Web GUI). For example, the Web
GUI of Floodlight controller provides a way for users to view
controller state information, connected switches, inter-switch
links, devices or hosts, flows installed in switch tables, and
the overall network topology [11]. Most OpenFlow statistics
could be queried through the Web GUI, and the results are
displayed in a tabular fashion.

C. The Northbound Rest API

The core of SDN programmability is the Northbound Rest
API, which provides an abstraction of the network infrastruc-
ture with a programmable interface for SDN applications to
make use of the controller services and configure the net-
work dynamically. Different from the southbound, a standard
northbound API for SDN does not exist. As a result, many
controllers, i.e., Floodlight, Ryu, OpenDaylight, implement
their own service abstractions adopted a Rest-based approach
along with data representation formats like JSON and XML.
Users can easily develop northbound applications to manage
the network through the features exposed by the controller.
Besides, the Rest API is also important to the cloud computing
applications. Floodlight controller provides a built-in virtual-
network module to the application of OpenStack Quantum [12]
through the exposed Rest API. Banikazemi et al. [13] imple-
mented a module in Floodlight providing a Rest API for virtual
networks management.

III. PACKET INJECTION ATTACK

In this section, we describe the new security vulnerability
in existing SDN controller. We demonstrate how attackers
can inject packets to the network, spoof network service and
consume the resources.

A. Threat Model

A packet injection attack can happen in SDN network where
users can control one or more hosts to inject manipulated
packets. The adversary does not require more privileges than
regular users or need to compromise the controller’s system.
We assume that the attacker controls several end host servers
and is able to generate packets with crafted head fields.

We also assume the target SDN controller works in the
reactive mode, which is widely used by most mainstream
controllers, such as Floodlight [14], Pox [15], etc. In the reac-
tive mode, switches would generate and forward Packet-In
packets for incoming unmatched packets to the controller. Note
that our threat model is also consistent with previous work
including TopoGuard [16] and FloodGuard [4].

We illustrate a simple scenario in Figure 1. There is at
least one OpenFlow switch which receives the traffics from
end hosts. The OpenFlow controller processes Packet-In
messages from the switch and sends flow rules to the switch
in the form of Flow-Mod messages. Such a threat model
is reasonable and common since SDN is designed to replace
existing networking infrastructure.

697

SDN Controller

'~

74 OpenFlow >z
) Switch -

ormal Injected
Packets Packets
User Attacker
Fig. 1. Attack scenario.

B. Packet Injection Attack

As described in Section II, in the reactive SDN environ-
ment, OpenFlow switches forward unmatched packets to the
controller through the OpenFlow channel. The topology man-
agement service in the controller learns the host information
by monitoring the Packet-In messages and updates the
topology information as well as host profiles. Also, the Rest
API provides devices information to the network applications.
In the process, there is no mechanism in the controller to
ensure the legitimacy of Packet-In messages caused by
unmatched packets. Any unmatched packets could trigger the
Packet-In messages. Such a design could be exploited
by attackers who control one or more end hosts to mount
packet injection attacks that a large amount of fake packets
are falsified. Once those falsified packets are sent to the
OpenFlow switch, table-misses would occur because there are
no corresponding flow rules for these packets. As a result,
the switch sends Packet-In messages with the informa-
tion of these packets to the SDN controller through the
OpenFlow channel. Those Packet-In messages would lead
to the following consequences: (1) The topology management
service module would learn the host information, create a
host attachment and update the topology and device Rest API
information. (2) Those messages would be further processed
by the forwarding service module. Since the controller does
not have real destinations for those packets, it would instruct
the switch to flood these packets to other ports except the
inport in the form of the Packet-Out messages. (3) With the
explosion of the topology information, the applications built
on the top of the Rest API would suffer huge performance
degradation.

To demonstrate the feasibility and effectiveness of the
packet injection attack, we conduct experiments in an
OpenFlow simulated environment with Mininet [9]. Mininet is
a common simulation tool used in OpenFlow networks based
on network namespaces. Processes can only access resources
inside their namespaces [17]. To implement this attack, we cre-
ate two hosts and an OpenFlow switch which is connected
to a SDN controller. The experiment topology is initiated
in the Mininet as depicted in Figure 1. Then, we generate

698 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018

INFO:host_tracker:Learned 1 1 de:1£:51:09:12:fa
INFO:host_tracker:Learned 1 1 de:1£:51:09:12:fa got IP 10.0
0.1 €. _

INFO:host_t"raekel_::Learned 1 2 b2:da:c6:d1:32:5d

INFO:host_tracker:Ieamgd m :c6:d1:32:5d got IP 10.0|
0.2 C=mmmmm-mmaaaZ
'INFO:host_tracker:Learned ©59:8d:a9:e2:0e)

INFO:host_tracker:Learned 1 1 £6:59:8d:a9:e2:0e got IP 225.
117.147.132 <« . _
INFO:host_tracker?ﬂe'arneg 11 70:23:2e:0c:al:c4

INFO:host_tracker:Learned‘l“1~7,0 :_23:2 0 0 :c4 got IP 59.2
46.224.47 € ========---=-=---Z23
INFO:host_tracker:Learned 1. % td5:23:3e:36:ea:ce

INFO:host_tracker:Learrded 1 1 d5:23:3e:36:ea:ce got IP 229.

\240.236.189 <= J

Fig. 2. Pox with and without attack.

manipulated packets and send these packets using Scapy [18]
to the switch in a rate of 100 packets per second. We choose
two popular controllers: Pox and Floodlight controller.

1) Spoofing: We start the Pox controller with three services:
(1) The forwarding service; (2) The host tracker service;
and (3) The OpenFlow discovery service. The forwarding
service is responsible for installing exact-match rules for each
flow. The host tracker service, as a part of topology manage-
ment service, keeps tracking the host location and configu-
ration information in the network. The OpenFlow discovery
service discovers the connectivity with OpenFlow switches by
sending out LLDP packets. In order to verify the functions
of the host tracker service, we perform a reachability test in
the Mininet environment. The result is shown in Figure 2.
We find that the host tracker service can learn the location
information including switch DPID, Inport, MAC address and
IP address from the Packet-In messages. Then, we launch
the attack by constructing massive packets and injecting these
fake packets into the network through the host “10.0.0.1.
In Figure 2, we can see that the port “1” in the switch “1”
adds a lot of host devices with fake MAC addresses and IP
addresses. However, these hosts are actually not existing in
the network.

Different from the Pox controller, Floodlight does not
display additional device information in the terminal window.
In order to provide a more intuitive way to display device
information, we modify the Devicemanagerlmpljava file.
As shown in Figure 3, we add a logger.info function to output
the device MAC address information. The DeviceListener class
tracks the device information and stores it in the device
object dynamically. Then, we conduct the same reachability
and attack test in Mininet environment with the Floodlight
controller. The result is shown in Figure 4. We can see that the
device management service (similar to the host tracker service
in the Pox controller) is also cheated by the Packet-In
messages. It learns and stores the fake device information,
and then provides this information to the device Rest API and
network topology applications.

2) Denial-of-Service: A large amount of injected packets
can not only deceive the controller service, but also launch
denial-of-service attacks on networking applications which are
based on these services. To demonstrate the consequences,
we start the Floodlight controller and a Firefox browser with
the Web GUI opened. We continually inject packets into the

private class DeviceDebugEventLogger implements IDeviceListener{
@Override
public String getName(){
return ''DeviceDebugEventLogger " ;

}

@Override
public boolean isCallbackOrderingPrereq(String type, String
name){
return false ;

}

@Override
public boolean isCallbackOrderingPostreq(String type, String
name){
return false ;

}

@Override

public void deviceAdded(IDevice device){
generateDeviceEvent(device, '""host—added");
logger . info (''Device{} is Add!", device.getMACAddressString());

Fig. 3.

16:38:17.279 INFO [n.f.d.i.DeviceManagerImpl:nioEv,
oup—-3-1] Device 52:ef:d0:52:cc:84 is Add! (--;m
16:38:17.281 INFO [n.f.d.i.DeviceManagerImpl:ni®dE
oup—-3-1] Device 82:32:7c:62:£0:51 is Add! 17
16:38:27.641 INFO [n.f.l.i.LinkDiscovery Manager:Scheduled—
2] Sending LLDP packets out of all the enabled ports
16:38:41.744 INFO [n.f.d.i.DeviceManagerImpl:nioEv;
oup—-3-1] Device 5a:db:54:15:b3:d7 is Add! (--;m
16:38:41.748 INFO [n.f.d.i.DeviceManagerInpl:mi’Q}ﬁren 00pGY
oup-3-1] Device 56:b2:83:b3:2a:3a is Add! 4 G
16:38:41.750 INFO [n.f.d.i.DeviceManagerImpl :‘n;foEventLoosz
oup-3-1] Device 7e:20:44:50:8f:cb is Add! ’
16:38:41.754 INFO [n.f.d.i. DeviceManagerImp]‘!.!nioEventLoopGx
3 5 1

DeviceManagerImpl.

Fig. 4. Floodlight with and without attack.

OpenFlow switch and refresh Web GUI on a timed interval.
With the increase of attacking packets, we find that the
response speed of Web GUI is slowing down. Finally, the Web
GUI is even collapsed due to the large amount of device
information.

Unlike the denial-of-service attack on the Web GUI,
the OpenFlow channel and network bandwidth are correlated
to attack speed. More resources are required to inject more
packets in a fixed time. We adjust attack speed to measure the
workload of OpenFlow channel and network bandwidth. The
result is shown in Figures 11 and 12. We find that when
the attack speed is set with 1,600 packets per second (pps),
the network bandwidth will be reduced to zero. Under such a
circumstance, the network would be blocked by these packets.
Meanwhile, the workload of OpenFlow channel is gradually
rising. When the packet attack speed exceeds 1,600 pps,
the Packet-In messages from OpenFlow switch would be
dropped.

3) Discussion: The packet injection attack abuses
Packet-In packets generated by maliciously crafted
packets to flood the SDN. As a result, the attack can cause
damage in the reactive mode. In the proactive mode, flow
rules are pre-defined by the controller in the switches’ flow
tables. Unmatched packets would be dropped directly by

DENG et al.: PACKET INJECTION ATTACK AND ITS DEFENSE IN SDNs

TABLE I
MAC ADDRESS AND SWITCH PORT MAPPING TABLE

Field
MAC, DPID, PORT

Name
HostMap

Type
HashMap

OpenFlow switches, and thus the Packet-In events would
not be triggered. As a result, a naive attack has little impact
on SDN in the proactive mode. We plan to investigate attacks
on the proactive mode in the future.

IV. COUNTERMEASURES

To mitigate the packet injection attack, we propose
PacketChecker to assist the SDN controller in handling fake
packets. PacketChecker acts as a lightweight extension to
existing SDN controller. We first present the overall defense
mechanism. Then we describe the core algorithm for detecting
the packet injection attack. Finally, we detail the design and
implementation of PacketChecker.

A. Defense Strategy

The root cause for the packet injection attack is that
the controller does not verify the validity of Packet-In
messages. Such a mechanism allows attackers to spoof and
flood packets with random MAC or IP addresses. Traditional
Ethernet switches mitigate MAC flooding attacks by lim-
iting the access on a port to users with specific MAC
addresses. These MAC addresses are either manually config-
ured or dynamically learned. It requires constant updating of
the map and suffers the scalability problem.

Inspired by methods wused to prevent MAC flood-
ing attacks [19] in traditional networks, we propose a
novel method, namely PacketChecker, to discover malicious
Packet-In packets in SDN networks. The key idea of
PacketChecker is straightforward: if the controller can dis-
tinguish malicious Packet-In messages from normal ones,
it can simply drop those packets before being processed by
other modules in the controller. Different from traditional
networking, SDN separates the control logic from the data
plane and manages the network behavior through a logically
centralized controller. Such a centralized controller can deploy
network policies by installing flow rules on each switch in a
real time manner. As a result, PacketChecker does not need a
manual configuration on each switch.

To verify the legitimacy of Packet-In messages, we pro-
pose to bind the switch port with the host’s MAC address in
SDN controller. In SDN network, the centralized controller
knows which hosts are connected to the switch, and is able
to control the switch directly. Besides, the MAC address of
the host and the switch DPID are unique. The controller can
limit the normal host packets from a specific switch port, and
identify the injected packets through this way.

As shown in TABLE 1, PacketChecker sets up a mapping
table for the MAC address and switch port. The switch
port includes the switch datapath ID and the port number
where the packets come from. When the network starts,
the controller collects the host’s MAC address as well as the

699

switch’s port information from the Packet-In messages.
Based on those information, PacketChecker creates an entry
for the host’s MAC address in the Mapping Table. Once
the host or switch leaves the network, the controller would
receive a Port-Status message. Based on this message,
the entry with the host’s MAC address or switch port would be
deleted immediately. Via this approach, the table is maintained
in a dynamic and real time manner. When the controller
receives a Packet-In message, it first judges the legitimacy
of the Packet-In message by querying the table. If the
table contains the MAC addresses and port information of
a packet, it means that this Packet-In message is legal.
PacketChecker then forwards it to subsequent modules for
further processing. Otherwise, there is a strong possibility
that such a Packet-In message is malicious and should
be dropped. In default settings, once PacketChecker catches a
malicious Packet-In message, it drops the packet directly to
prevent it from entering other modules. In this way, the packet
injection attack could be tackled splendidly.

Note that the MAC address of a physical device is usually
unchanged in the realistic networks. As a result, the defense
strategy would not affect packets from legitimate devices.
In the case that the MAC address of a physical device is
changed (e.g., replacing a device), additional mechanisms are
needed to synchronize the mapping table. The entry associ-
ated with the MAC address should be deleted in advance.
PacketChecker could also check those updating periodically.

Although this strategy can effectively detect malicious
Packet-In messages, it can not reduce the number
of Packet-In messages sent to the OpenFlow channel.
In order to mitigate the bandwidth saturation problem brought
by the packet injection attack, we utilize the switch to
reduce malicious Packet-In messages. Once detecting these
malicious messages, the OpenFlow switch would drop the
subsequent packets according to a Flow-Mod message gen-
erated by the controller. We control the drop action by setting
a hard and idle timeout for the flow rules. Through this
method, PacketChecker can dramatically reduce the number
of Packet-In messages and mitigates the overhead of
OpenFlow channel.

B. Detection Algorithm

The detection algorithm of the packet injection attack is pre-
sented in Algorithm 1. A table-miss in the OpenFlow switch
is configured to encapsulate the packet into a Packet-In
message, which is sent to the controller. The Packet-In
handler in the controller processes this message according
to the Algorithm 1 firstly. If the MAC address contained
in this Packet-In message is not in the mapping table
that storing the host’s MAC address and switch port, this
message is legitimate. We update the mapping table to include
the information of this packet by writing the MAC address,
switch port and DPID, and then send it to other modules.
Alternatively, if the mapping table contains this MAC address,
but the switch port and DPID information are not matching the
data in the mapping table, we treat this message as illegal, and
return a stop command, which stops the packet from sending

700 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018

Algorithm 1 Detection the Packet Injection Attack
Input: M (Packet-In messages), T (host’s MAC address and
switch port mapping table), S (OpenFlow switches)
Output: C (command)
for each M € S do
if M MAC ¢ T then
TMAC < M.MAC, T.Port
T.DPID < M.DPID
return Command.continue
end if
if M MAC € T and T.Port = M.Port and T.DPID =
M.DPID then
return Command.continue
else
return Command.stop
end if
end for

& M.Port and

Forwarding
(b)

The workflow of PacketChecker.

Mapping

Normal
Table

Packet-In
M Attack
Detection

(a)

Fig. 5.

the next module in the controller. In this way, the packet
injection attack could be detected in a real-time fashion.
We analyze time complexity of this algorithm in section V.

C. PacketChecker

PacketChecker consists of two parts: attack detection and
attack solution. The attack detection module is used to detect
the packet injection attack automatically. It depends on the
host’s MAC address and switches port mapping table to verify
Packet-In messages. The attack solution module is used
to handle malicious Packet-In messages. The process is
based on the execution order of the modules in the controller.
The workflow of PacketChecker is shown in Figure 5. For the
mapping table in PacketChecker, the MAC address and switch
port information are collected by monitoring Packet-In
messages. To maintain the mapping table dynamically,
PacketChecker monitors the message to update the port status.
When a host leaves the switch, the connected port would
be shut down, and the entry in the mapping table would be
deleted. Also, if the switch disconnects with the controller,
the switch port in the table would be deleted.

1) Attack Detection: The Packet-In messages include
the OpenFlow version, transaction ID, in port, Ethernet des-
tination MAC address, Ethernet source MAC address, and
so on. To verify the validity of Packet-In messages,
PacketChecker extracts the source MAC address, in port and
switch datapath ID. We define a class named Port to include
the switch DPID and port number. According to the Port,

|Topology GUI l |Quantum l ’Other Network Applications |

Topology Ma ,| Linkdiscovery Loadbalancer

Il Packet-In Messages
Control Plane Services ; @

Server

Desktop izﬁifbp

Fig. 6. Flow diagram of packet-in process.

the controller knows the location of the switch port, because
the Port in the network is unique. Another data structure is
a Map which implements the mapping table. The Map key is
the MAC address, and the value is the Port. Using this Map,
MAC address is bound with the Port. Then the attack detection
algorithm is built on the top of those structures.

2) Attack Solution: The attack detection module identifies
the malicious Packet-In messages, and then sends them
to the attack solution module. The attack solution module
would discard malicious messages and instruct the switch
to drop subsequent packets by distributing a Flow-Mod
message. Legal messages are processed normally. As shown
in Figure 6, the linkdiscovery module collects the link infor-
mation firstly when SDN controller receives the Packet-In
messages. Then, the topology management module constructs
the topology using the link information, and the device man-
agement module maintains the device information. The SDN
controller makes a forwarding policy based on the device
and topology information. When a malicious Packet-In
message is detected, it should be processed by attack solution
module firstly. Only valid messages could be processed by the
link discovery module. Malicious messages would be drop
directly. Such a design allows PacketChecker extending the
SDN controller without any modification of SDN hardware.

V. EVALUATION
A. Implementation

We implement the PacketChecker module in the Flood-
light controller and test it under the Mininet environ-
ment. The implementation of the attacking mechanisms is
based on Scapy. The PacketChecker module implements the
IOFMessageListener to monitor the Packet-In messages,
and the IOFSwitchListener to monitor the host movement and
the port status of switches. The experimental environment
includes Mininet and Floodlight 1.2 running in servers with
Ubuntu 15.04 and Inter Core 15-4590 3.3GHz CPU and 4GB
memory.

We use Fat-Trees [20] topology to test the response time of
PacketChecker. The Fat-tree network is widely used in data

DENG et al.: PACKET INJECTION ATTACK AND ITS DEFENSE IN SDNs

TABLE 11
THE SCALE OF TOPOLOGY

Topology | Pod | Host
1 2 4*25
2 4 8*25
3 8 16%25

center network, and it is a universal network for provably
efficient communication. The scale of the topology in our
experiment is shown in TABLE II. Each edge switch is con-
nected to 25 hosts. We select H1 as the host that used to launch
the packet injection attack. We utilize HttpRequester [21] to
measure the response time of the device Rest API and the Web
GUI of Floodlight controller which is displayed in the Firefox
browser to observe the SDN network topology.

B. Evaluation

We first analyze the time complexity and measure the delay
of the attack detection algorithm in our topology. Then, we test
the effectiveness of the detection algorithm. Thirdly, we show
the evaluation on the Web GUI which is based on the Rest API.
Lastly, we launch packet injection attacks on TopoGuard [16]
and demonstrate that TopoGuard cannot mitigate the packet
injection attack.

1) Complexity: For the detection algorithm of the packet
injection attack, the main operation is traversing the MAC
address in T (host MAC address and switch port mapping
table). In the worst case, it requires O(N) comparisons, where
N is the number of entries in T. We use hash Map to build
the mapping table. For each Packet-In message from a
OpenFlow switch, our algorithm uses containsKey function to
judge whether the MAC address is in the mapping table or not.
If MAC address is in the table, we use containsValue to
compare the port information from the Packet-In messages
and judge whether it equals the value in the table. The com-
plexity of containsKey function is O(1), and the complexity
of containsValue function is O(N). Thus, we consider the
complexity of the detection algorithm is O(1), in the worst
case, the complexity of the detection algorithm is O(N).

2) Packet-In Process Delay: We measure the processing
delay of the Packet-In messages to test the efficiency
of the PacketChecker module under packet injection attacks.
We send a large number of attack packets (e.g., 10,000) to
the switch with an interval of 0.01s, and measure the process-
ing delay of each packet in three scale topology by using
Java System.nanoTime API. The API promises a precision
of 1 nanosecond. The cumulative distribution function (CDF)
is showed in Figure 7. We can see that almost ninety-eight
percent of Packet-In messages processing delay are less
than 20us, which is negligible for the Floodlight controller.
Among three different topologies, we find that processing
Packet-In messages have little relation with the scale of
topology. When the SDN controller receives a Packet-In
message, it would send it to the PacketChecker module firstly.
The major delay of processing Packet-In messages is
comparing the MAC address with the mapping table. Only
in the worst case, the delay is related to the mapping table

701
1-0 8
-- topologyl
! : . == topology2
e - — < topology3
0.6 F]
[V
[a)
O
0.4 LS]
0.2}
0h5 20 40 60 80 100

time(us)

Fig. 7. CDF of measured PacketChecker delays.

Client A
SDN Controller

OpenFlow
Packet-In

lnjected'l
Packets
,I

Attacker

Fig. 8. Test topology.

size, which is closely related to the scale of network topology.
In general, the delay of Packet-In messages process is very
small, which means PacketChecker can effectively handle the
packet injection attack.

3) The Effectiveness of the Detection Mechanism: We test
the effectiveness of the PacketChecker module from two
aspects: (1) anti deception and (2) denial-of-service attack. The
injected illegal packets can spoof the topology management
service and Rest API, consume the bandwidth and Web GUI
resource. The test environment is shown in Figure 8.

a) Anti-Deception: We measure the effectiveness by
comparing the number of malicious packets detected by
PacketChecker and injected packets sent by the attacker. The
attacker keeps generating packets with different MAC and IP
addresses to the switch. By counting the number of malicious
packets confirmed by PacketChecker, we find that almost all
attack packets could be detected by this module. According to
the detection algorithm, the mapping table collects the right
host MAC address and binds it to the switch port. Thus,
packets containing other MAC addresses from the same port
of the switch are considered as malicious. The detect result
is shown in Figure 9. Moreover, we use RestClient [22] to
access the device Rest APIL. In Figure 10, we find that the
device Rest API only contains the Client A, B, and Attacker
information. The forged host information is dropped by the

702 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018

09:45:25.689 INFO [n.f.P.PacketChecker:New I/0O server worke
r #2-2] ATTACK!!! Host 00:4B:63:7D:E3:AF add is not allowed
add!!! drop Packet-In!!!

09:45:25.699 INFO [n.f.P. PacﬁetChecker New I/O server worke|
r #2-2] ATTACK!!! Host 00:1C: 98 a4: C2 8C add is not allowed
add!!! drop Packet-In!!! €. S~

09:45:25.710 INFO [n.f.P. Packeﬁthecker\New I/0 server worke|
r #2-2] ATTACK!!! Host 00:56:BD:60:85 “8'6~a.§d~:|. owed|
add!!! drop Packet-In!!! <= =-=-=-=-=-=-=-=-=-=-22
09:45:25.721 INFO [n.f.P. PacketChecken.Néw,I/B server worke|
r #2-2] ATTACK!!! Host 00:3D: 95,76 2D 26 a&a is not allowed|
add!!! drop Packet-In!!! <~ -7

09:45:25.731 INFO [n.f.P. PacketChéckgr New I/O server worke|
r #2-2] ATTACK!!! Host 00:74.67: FD AC:E3 add is not allowed
add!!! drop Packet-In!!! 4

09:45:25.742 INFO [n.f.P. Packgﬁthecker New I/O server worke|
r #2-2] ATTACK!!! Host 00:A774F:8F:70:49 add is not allowed
add!!! drop Packet-In!!!

Fig. 9. Detection result of floodlight with PacketChecker.

[{"entityClass":"DefaultEntityClass", "mac":["9e:16:69:£6:96
:6d"],"ipv4":["10.0.0.1"], "vlan":[], "attachmentPoint": [{"sw|
itchDPID":"00:00:00:00:00:00:00:01", "port":1, "errorStatus":
null}], "lastSeen":1484310469302}, {"entityClass": "DefaultEnt
ityClass","mac":["0e:30:d0:87:3a:dc"], "ipv4":["10.0.0.2"],"
vlan":[], "attachmentPoint": [{"switchDPID":"00:00:00:00:00:0
0:00:01", "port":2, "errorStatus":null}], "lastSeen":148431046
9294}, {"entityClass":"DefaultEntityClass", "mac":["de:1£:51:
09:12:fa"],"ipv4":["10.0.0.3"],"vlan":[], "attachmentPoint":
[{"switchDPID":"00:00:00:00:00:00:00:01", "port":3, "errorSta
tus":null}], "lastSeen":1484310469310}]

Fig. 10. Rest API access with PacketChecker.

25 ; ;
A
215} e
% Attack
8 e—e PacketChecker
¥ 10} |
(®]
=

VA S IS B

0 400 800 1200 1600

Attack Rate(PPS)

Fig. 11. Workload of openflow channel.

PacketChecker module. As we can see, PacketChecker module
can effectively prevent the injected packets from spoofing the
topology management service and Rest APL

b) Anti-DoS: We demonstrate the protection on the Open-
Flow channel and bandwidth resources by PacketChecker.
Figure 11 shows the OpenFlow channel’s workload variations
under the attack and defense. Without PacketChecker, with
the increasing of attack rate, the load of OpenFlow channel
increases gradually. For the PacketChecker module, we set a
flow rule to the switch to drop the injection packets when
attack is detected. We set the hard timeout and idle timeout
of flow rules to 5 seconds. After that, the workload is then
ignored. Dropping those injected packets in the switch can
not only reduce the load of OpenFlow channel, but also save

8l N
m
8
= == Attack
= e—e PacketChecker
2 ol NG]
e
c
@©
o
20
0 i ; i
0 400 800 1200 1600
Attack Rate(PPS)
Fig. 12. Bandwidth.

bandwidth resources. Thus it can effectively defend against the
bandwidth denial-of-service attack. The result of the defense
on bandwidth is shown in Figure 12. Without PacketChecker,
the bandwidth is about 9.55Mbps in normal condition. When
we start the attack and increase the attack rate, the bandwidth
dramatically goes down. As the attack rate reaches 1600pps,
the whole network is disabled. On the other hand, with
PacketChecker, the bandwidth still keeps almost 9.55Mbps
under attacks.

In our experiment, we heuristically set the hard timeout and
idle timeout of flow rules to 5 seconds. In realistic networks,
the range of the timeout could be set from O through 65535.
If the timeout is set to a relatively large value, flow rules
would stay in the flow table for a long time and exhaust the
space, which might cause flow table overflow. On the other
hand, if this value is too small, SDN controller would send
Flow-Mod messages frequently and largely increase the load
on the OpenFlow channel. In our future work, we plan to
design some dedicated optimization algorithms to set those
timeout dynamically with the consideration of the frequency of
attack, the capacity of flow table, the bandwidth of OpenFlow
channel and the workload of the SDN controller.

4) Evaluation on the Web GUI: We show another protection
on networking applications by testing the Web GUI. We use
a Firefox browser to monitor the change of the SDN net-
work topology based on the device Rest API. The CPU and
memory usage are measured by psutil (process and system
utilities) library. Psutil is a cross-platform library for retrieving
information on running processes and system utilization in
Python [23]. The percentage of CPU used by a process is
defined as the proportion of the elapsed CPU time occupied by
the task to the total CPU time. On multi-core systems, the CPU
usage is the total of all cores. The topology is consisting of two
client hosts connecting the OpenFlow switch, and a Floodlight
controller to manage the network. The test topology is shown
in Figure 8. We measure the CPU and memory usage of the
Firefox process with and without our PacketChecker module to
illustrate the effectiveness. For the attack, the rate of the packet
injection is 100 packets per second. The results of the CPU and
memory usage of the Firefox browser are shown in Figures 13

DENG et al.: PACKET INJECTION ATTACK AND ITS DEFENSE IN SDNs

140
]| S l -
__100¢ -
S |
g 80r
a Nt
2 60 1|l S O
a ! i — Attack
© 40f -} HEE ==...TopoGuard
H ~— PacketChecker
20} o SRS S S -
!
0
0 20 40 60 80 100 120

time(s)

Fig. 13. CPU usage of web GUIL

and 14. The attacks occur between 20 to 120 seconds. Without
the packet injection attack, the CPU and memory utilization
is quite low. But after 20 seconds when we start the attack,
the CPU and memory usage increase quickly. 20 seconds
later, the CPU usage is over 100 and maintains in such as
level in the following period of time. At last, the Firefox
browser is crashed. The reason is that the packet injection
attack forces the controller learning a lot of host entities.
The numerous GUI read and display operations bring huge
overhead to the Firefox browser and finally cause the Firefox
browser being crashed. Also, during the attack, the memory
utilization continues rising. That is because the increase of the
host entities in the topology needs more memory to store the
information and display in the Floodlight Web GUI.

Comparing to the case without the PacketChecker module,
we can see the PacketChecker module can effectively defend
against the packet injection attack. After the starting of the
packet injection attack, the CPU and memory utilization
of Firefox browser still maintains at a normal level. Since
PacketChecker filters the malicious packets, the topology
management service would not learn the large number of fake
information. As a result, the CPU and memory utilization still
maintains at a normal level.

5) Comparison to TopoGuard: Hong et al. proposed
TopoGuard to protect the SDN controller from network topol-
ogy poisoning attacks. TopoGuard verifies the legitimacy of
a host migration, the origin of a LLDP packet as well as
switch’s port property once detecting a topology update. For
Packet-In messages, the Port Manager in TopoGuard first
locates the host entity in the existing Host List through the
switch’s port information. If the host entity is not found,
the traffic is then regarded as the first-hop traffic, and the
source’s MAC address is recorded in the Host List.

While TopoGuard performs well on defending host location
hijacking and link fabrication attacks, it does not verify the
legitimacy of the source’s MAC address. In packet injec-
tion attacks, malicious users control multiple hosts to inject
manipulated packets with falsified MAC address. A new
MAC address in the packets would be treated as a new host
entity in TopoGuard. Thus, those crafted packets can pass the

703

N
(6]

-
-
-
-

N
(=}

=
Ul

-
==,

Memory Usage(%)

10 T - - TopoGuard [R—
— PacketChecker
5F-
0 i
100

0 20 40 60 80 120

time(s)

Fig. 14. Memory usage of web GUL

verification on the host migration of TopoGuard, and deceive
the topology management service.

To validate the effectiveness of packet injection attacks and
PacketChecker, we further launch attacks on TopoGuard and
compare the results with PacketChecker. Figures 13 and 14
illustrate the experimental results, which contain the CPU and
memory usage of the Firefox browser. In Figure 13, we find
that the CPU usage of TopoGuard is very close to Floodlight
without PacketChecker. In Figure 14, the memory usage of
TopoGuard is about 3% more than Floodlight. This is because
the port property of switch port in 7opoGuard consumes some
more memory resources. Obviously, TopoGuard also suffers
the overwhelming of falsified packets, similar to the Floodlight
controller without PacketChecker. The results demonstrate that
packet injection attacks can also poison TopoGuard success-
fully.

VI. RELATED WORK

Many previous studies focus on the security analysis of
SDN networks and applications based on the SDN technol-
ogy [24]-[28]. Shin and Gu [29] designed the CloudWatcher
to monitor the large and dynamic cloud networks service.
Hu et al. [4] developed FLOWGUARD to build robust fire-
walls for SDN. Matsumoto et al. presented a Fleet controller
which is used to defend against malicious administrators [5].
Porras et al. [3] designed a security policy enforced kernel
named FortNOX to detect and solve the flow rules conflict
problem. All these works aim to enforce the security of
SDN applications. Besides, there some other works study the
scalability of SDN [30]-[32] and SDN application [33]-[36].
Different from those works, our work focus on the security
problem in the data and control plane of SDN architecture.

Owing to the centralized control of SDN networks,
preventing the controller from attacks is an important
issue. Typical attacks on the controller include denial-of-
service (DoS) attacks [37], network topology poisoning attacks
and flow table overflow attacks. AVANT-GUARD [6] and
FloodGuard [4] are proposed to defend against the DoS attack
on SDN controller. AVANT-GUARD focuses on the inherent
communication bottleneck between data and control plane

704 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 3, MARCH 2018

as well as the speed of detection and response of the flow
dynamic. Also, it mainly defeats TCP-based flooding attacks.
FloodGurad is designed to defend against the data-to-control
plane saturation attack. It uses a packet migration module to
cache the flooding packets and send them to the controller with
a rate limit in round-robin scheduling. Although it can limit
the rate of Packet-In messages to the controller, it does not
check the validity of the Packet-In messages, and cannot
prevent the packet injection attack. Besides, Qian er al. [38]
used an asset-centric approach to identify security threats in
OpenFlow networks. They analyzed the flow table overflow
attack originated from malicious applications on the controller.
They compared the performance between FlowChecking and
the Learning Switch on packets loss and service delaying.
Similarly, a quantitative analysis of DoS attacks and mitigation
mechanism is made in [39] and [40]. In order to mitigate the
network poison attack, TopoGuard [16] is proposed. It is an
extension to SDN controller and provides automatic and real-
time detection of such attack. However, it does not consider the
origin of Packet-In messages in solving the host location
hijacking attack. SPHINX [41] detects ARP poisoning on
network topology and DoS attacks on data plane forwarding.

Packet injection attack also exists in traditional network
architecture. A switch-related countermeasure is proposed
in [42]. Different from the traditional packet injection attack in
Ethernet networks, since the OpenFlow switches do not learn
packet information, such attack in SDN would lead to more
disastrous consequences. We focus on the impact of packet
injection attacks on data plane, control plane and propose the
PacketChecker to mitigate this problem.

VII. CONCLUSION

In this paper, we unveil a new vulnerability in SDN and
propose the packet injection attack. This attack can affect
the topology management service, Rest API and networking
applications on SDN controller. To defend against the attack,
we propose and design PacketChecker, which is a lightweight
extension to an existing SDN controller. We implement a
prototype in the Floodlight controller and evaluate the effec-
tiveness and performance of PacketChecker. The experimen-
tal results show that the packet injection attack can largely
consume the resources of the SDN controller, and even lead
to denying the service. While existing SDN controller can
not defend against such attack, our design can effectively
detect and mitigate the packet injection attack. Also, the
PacketChecker module incurs negligible overhead.

ACKNOWLEDGEMENTS

We would like to thank Prof. Mauro Barni and the anony-
mous reviewers for their insightful and detailed comments.

REFERENCES

[1] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp- 69-74, Apr. 2008.

[2] S. Jain et al., “B4: Experience with a globally-deployed software
defined WAN,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 3-14, 2013.

[3] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A security enforcement kernel for OpenFlow networks,” in Proc. ACM
SIGCOMM Workshop Hot Topics Softw. Defined Netw., Aug. 2012,
pp. 121-126.

[4] H. Hu, W. Han, G. J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in Proc. ACM SIG-
COMM Workshop Hot Topics Softw. Defined Netw., 2014, pp. 97-102.

[5]1 S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
malicious administrators,” in Proc. Workshop Hot Topics Softw. Defined
Netw., 2014, pp. 103-108.

[6] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined net-
works,” in Proc. 20th ACM Conf. Comput. Commun. Secur., Nov. 2013,
pp. 413-424.

[71 H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS attack prevention
extension in software-defined networks,” in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Depend. Syst. Netw., Jun. 2015, pp. 239-250.

[8] S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proc. Workshop Hot Topics Softw. Defined Netw.,
2013, pp. 165-166.

[9]1 Mininet. Rapid Prototyping for
Accessed: Aug. 2016. [Online].
edu/foswiki/bin/view/OpenFlow

[10] OpenFlow Specification vi1.4.0. Accessed: Oct. 2016. [Online]. Avail-
able: http://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflowspec-v1.4.0.pdf

[11] Web GUI. Accessed: Oct. 2016. [Online]. Available: https://floodlight.
atlassian.net/wiki/display/floodlightcontroller/Web+GUI#WebGUI-
Introduction

[12] OpenStack Foundation. OpenStack Quantum. Accessed: Apr. 2016.
[Online]. Available: http://docs.openstack.org/trunk/openstack-network/
admin/content/index.html

[13] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and G. Wang,
“Meridian: An SDN platform for cloud network services,” IEEE
Commun. Mag., vol. 51, no. 2, pp. 120127, Feb. 2013.

Software
Available:

Defined Networks.
http://yuba.stanford.

[14] Project Floodlight. Accessed: Jul. 2016. [Online]. Available:
http://www.projectfloodlight.org/floodlight/
[15] Pox Controller. Accessed: Jul. 2016. [Online]. Available:

http://openflow.stanford.edu/display/ONL/POX+Wiki

[16] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures,” in Proc.
Annu. Netw. Distrib. Syst. Secur. Symp., Feb. 2015, pp. 1-15.

[17] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. Mckeown, “Reproducible network experiments using container-
based emulation,” in Proc. 8th Int. Conf. Emerg. Netw. Experim.
Technol., 2012, pp. 253-264.

[18] Scapy. Accessed: Jul. 2016.
secdev.org/projects/scapy/

[19] MAC Flooding. Accessed: Jul. 2016. [Online]. Available: http:/en.
wikipedia.org/wiki/MAC_flooding

[20] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 38, no. 4, pp. 63-74, 2008.

[Online]. Available: http://www.

[21] HttpRequester. Accessed: Oct. 2016. [Online]. Available: https://
sourceforge.net/projects/httprequester/

[22] RestClient. Accessed: Oct. 2016. [Online]. Available: http://
www.restclient.org/

[23] Psutil 4.2.0. Accessed: Oct. 2016. [Online]. Available: https://

pypi.python.org/pypi/psutil

[24] R. Kloti, V. Kotronis, and P. Smith, “OpenFlow: A security analysis,”
in Proc. IEEE Int. Conf. Netw. Protocols, Oct. 2013, pp. 1-6.

[25] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proc. ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw., 2013, pp. 55-60.

[26] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability assess-
ment,” in Proc. ACM SIGCOMM Workshop Hot Topics Softw. Defined
Netw., 2013, pp. 151-152.

[27] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and
S. Guizani, “Securing software defined networks: Taxonomy, require-
ments, and open issues,” IEEE Commun. Mag., vol. 53, no. 4, pp. 3644,
Apr. 2015.

[28] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A sur-
vey,” in Proc. Future Netw. Services, Nov. 2013, pp. 1-7.

[29] S. Shin and G. Gu, “CloudWatcher: Network security monitoring using
OpenFlow in dynamic cloud networks (or: How to provide security
monitoring as a service in clouds?)” in Proc. 20th IEEE Int. Conf. Netw.
Protocols, Oct. 2012, pp. 1-6.

DENG et al.: PACKET INJECTION ATTACK AND ITS DEFENSE IN SDNs

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

T. Koponen et al., “Onix: A distributed control platform for large-scale
production networks,” in Proc. 7th USENIX Symp. Netw. Syst. Design
Implement., 2010, pp. 1-14.

M. Yu, J. Rexford, M. J. Freedman, and J. Michael, “Scalable flow-
based networking with DIFANE,” in Proc. ACM Special Interest Group
Data Commun., Aug. 2010, pp. 351-362.

A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: Scaling flow management for high-
performance networks,” in Proc. ACM Special Interest Group Data
Commun., Aug. 2011, pp. 254-265.

T. Ball et al., “VeriCon: Towards verifying controller programs in
software-defined networks,” in Proc. ACM Conf. Program. Lang. Design
Implement., 2014, pp. 282-293.

M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proc. 9th USENIX Symp. Netw.
Syst. Design Implement., 2012, pp. 1-14.

M. Dobrescu and K. Argyraki, “Software dataplane verification,” in
Proc. 11th USENIX Symp. Netw. Syst. Design Implement., 2014,
pp. 1-15.

C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software defined networks,” in Proc. 10th USENIX Symp. Netw.
Syst. Design Implement., 2013, pp. 1-15.

X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang, “Container-
Leaks: Emerging security threats of information leakages in container
clouds,” in Proc. 47th IEEE/IFIP Int. Conf. Depend. Syst. Netw.,
Jun. 2017, pp. 237-248.

Y. Qian, W. You, and K. Qian, “OpenFlow flow table overflow attacks
and countermeasures,” in Proc. Eur. Conf. Netw. Commun., Jun. 2016,
pp. 205-209.

N.-N. Dao, J. Kim, M. Park, and S. Cho, “Adaptive suspicious prevention
for defending DoS attacks in SDN-based convergent networks,” PLoS
ONE, vol. 11, no. 8, p. e0160375, 2016.

L. Dridi and M. F. Zhani, “SDN-Guard: DoS attacks mitigation in
SDN networks,” in Proc. 5th IEEE Int. Conf. Cloud Netw., Oct. 2016,
pp. 212-217.

M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
security attacks in software-defined networks,” in Proc. Annu. Netw.
Distrib. Syst. Secur. Symp., Feb. 2015, pp. 1-15.

R. Das, A. Karabade, and G. Tuna, “Common network attack types and
defense mechanisms,” in Proc. Signal Process. Commun. Appl. Conf.,
May 2015, pp. 2658-2661.

Shuhua Deng was born in 1991. He received the
B.S. degree in computer science and technology
from Xiangtan University, China, in 2013, where
he is currently pursuing the Ph.D. degree in com-
putational mathematics. His research focuses on
software-defined networks and network security.

705

Xing Gao received the B.S. degree in computer
science from the Beijing Institute of Technology
in 2011. He is currently pursuing the Ph.D. degree
with the College of William and Mary. His research
interests include cloud computing, system security,
and power management of data centers.

Zebin Lu was born in 1989. He received the
B.S. degree in communication engineering from
Xiangtan University, China, in 2013, where he is
currently pursuing the Ph.D. degree in computational
mathematics. His research interests are in the area
of software-defined networks.

Xieping Gao was born in 1965. He received the
B.S. and M.S. degrees from Xiangtan University,
China, in 1985 and 1988, respectively, and the
Ph.D. degree from Hunan University, China, in 2003.
He was a Visiting Scholar with the National Key
Laboratory of Intelligent Technology and Systems,
Tsinghua University, China, from 1995 to 1996, and
the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore, from
2002 to 2003. He is currently a Professor with
the College of Information Engineering, Xiangtan
University, China. He has authored and co-authored over 80 journal papers,
conference papers, and book chapters. His current research interests are in
the areas of wavelets analysis, neural networks, image processing, computer
network, mobile communication, and bioinformatics. He is a regular reviewer
of several journals and he has been a member of the technical committees of
several scientific conferences.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

