Reconstruction from anisotropic random measurements

Mark Rudelson\dagger and Shuheng Zhou* †
\daggerDepartment of Mathematics,
*Department of Statistics,
University of Michigan, Ann Arbor, MI 48109-1107

June 7, 2011

Abstract
Random matrices are widely used in sparse recovery problems, and the relevant properties of matrices with i.i.d. entries are well understood. The current paper discusses the recently introduced Restricted Eigenvalue (RE) condition, which is among the most general assumptions on the matrix, guaranteeing recovery. We prove a reduction principle showing that the RE condition can be guaranteed by checking the restricted isometry on a certain family of low-dimensional subspaces. This principle allows us to establish the RE condition for several broad classes of random matrices with dependent entries, including random matrices with subgaussian rows and non-trivial covariance structure, as well as matrices with independent rows, and uniformly bounded entries.

1 Introduction
In a typical high dimensional setting, the number of variables p is much larger than the number of observations n. This challenging setting appears in statistics and signal processing, for example, in regression, covariance selection on Gaussian graphical models, signal reconstruction, and sparse approximation. Consider a simple setting, where we try to recover a vector $\beta \in \mathbb{R}^p$ in the following linear model:

$$Y = X\beta + \epsilon.$$

(1.1)

Here X is an $n \times p$ design matrix, Y is a vector of noisy observations, and ϵ is the noise term. Even in the noiseless case, recovering β (or its support) from (X, Y) seems impossible when $n \ll p$, given that we have more variables than observations.

A line of recent research shows that when β is sparse, that is, when it has a relatively small number of nonzero coefficients, it is possible to recover β from an underdetermined system of equations. In order to
ensure reconstruction, the design matrix X needs to behave sufficiently nicely in a sense that it satisfies certain incoherence conditions. One notion of the incoherence which has been formulated in the sparse reconstruction literature (Candès and Tao, 2005, 2006, 2007) bears the name of Uniform Uncertainty Principle (UUP). It states that for all s-sparse sets T, the matrix X restricted to the columns from T acts as an almost isometry. Let X_T, where $T \subset \{1, \ldots, p\}$ be the $n \times |T|$ submatrix obtained by extracting columns of X indexed by T. For each integer $s = 1, 2, \ldots$ such that $s < p$, the s-restricted isometry constant θ_s of X is the smallest quantity such that

$$(1 - \theta_s) \|c\|_2^2 \leq \|X_T c\|_2^2 / n \leq (1 + \theta_s) \|c\|_2^2,$$ (1.2)

for all $T \subset \{1, \ldots, p\}$ with $|T| \leq s$ and coefficients sequences $(c_j)_{j \in T}$. Throughout this paper, we refer to a vector $\beta \in \mathbb{R}^p$ with at most s non-zero entries, where $s \leq p$, as a s-sparse vector.

To understand the formulation of the UUP, consider the simplest noiseless case as mentioned earlier, where we assume $\epsilon = 0$ in (1.1). Given a set of values $(\langle X_i, \beta \rangle)_{i=1}^n$, where X_1, X_2, \ldots, X^n are independent random vectors in \mathbb{R}^p, the basis pursuit program (Chen et al., 1998) finds $\hat{\beta}$ which minimizes the ℓ_1-norm of β' among all β' satisfying $X \beta' = X \beta$, where X is a $n \times p$ matrix with rows X_1, X_2, \ldots, X^n. This can be cast as a linear program and thus is computationally efficient. Under variants of such conditions, the exact recovery or approximate reconstruction of a sparse β using the basis pursuit program has been shown in a series of powerful results (Donoho, 2006a, 2004; Candès et al., 2006; Candès and Tao, 2005, 2006; Donoho, 2006b; Rudelson and Vershynin, 2006, 2008; Candès and Tao, 2007). We refer to these papers for further references on earlier results for sparse recovery.

In other words, under the UUP, the design matrix X is taken as a $n \times p$ measurement ensemble through which one aims to recover both the unknown non-zero positions and the strength of a s-sparse signal β in \mathbb{R}^p efficiently (thus the name for compressed sensing). Naturally, we wish n to be as small as possible for given values of p and s. It is well known that for random matrices, UUP holds for $s = O(n/\log(p/n))$ with i.i.d. Gaussian random entries, Bernoulli, and in general subgaussian entries (Candès and Tao, 2005; Rudelson and Vershynin, 2005; Candès and Tao, 2006; Donoho, 2006b; Baraniuk et al., 2008; Mendelson et al., 2008). Recently, it has been shown (Adamczak et al., 2009) that UUP holds for $s = O(n/\log^2(p/n))$ when X is a random matrix composed of columns that are independent isotropic vectors with log-concave densities. For a random Fourier ensemble, or randomly sampled rows of orthonormal matrices, it is shown that (Rudelson and Vershynin, 2006, 2008) the UUP holds for $s = O(n/\log^c p)$ for $c = 4$, which improves upon the earlier result of Candès and Tao (2006) where $c = 6$. To be able to prove UUP for random measurements or design matrix, the isotropicity condition (cf. Definition 1.5) has been assumed in all literature cited above. This assumption is not always reasonable in statistics and machine learning, where we often come across high dimensional data with correlated entries.

The work of Bickel et al. (2009) formulated the restricted eigenvalue (RE) condition and showed that it is among the weakest and hence the most general conditions in literature imposed on the Gram matrix in order to guarantee nice statistical properties for the Lasso estimator (Tibshirani, 1996) as well as the Dantzig selector (Candès and Tao, 2007). In particular, it is shown to be a relaxation of the UUP under suitable choices of parameters involved in each condition; see Bickel et al. (2009). We now state one version of the Restricted Eigenvalue condition as formulated in (Bickel et al., 2009). For some integer $0 < s_0 < p$ and a
positive number k_0, RE(s_0, k_0, X) for matrix X requires that the following holds:

$$\forall v \neq 0, \min_{J \subset \{1, \ldots, p\}, \|v_J\|_1 \leq s_0} \frac{\|Xv\|_2}{\|v_J\|_2} > 0,$$

where v_J represents the subvector of $v \in \mathbb{R}^p$ confined to a subset J of $\{1, \ldots, p\}$. In the context of compressed sensing, RE condition can also be taken as a way to guarantee recovery for anisotropic measurements. We refer to van de Geer and Buhlmann (2009) for other conditions which are closely related to the RE condition.

Consider now the linear regression model in (1.1). For a chosen penalization parameter $\lambda_n \geq 0$, regularized estimation with the ℓ_1-norm penalty, also known as the Lasso (Tibshirani, 1996) refers to the following convex optimization problem

$$\hat{\beta} = \arg \min_{\beta} \frac{1}{2n} \|Y - X\beta\|^2_2 + \lambda_n \|\beta\|_1,$$

where the scaling factor $1/(2n)$ is chosen for convenience. Under i.i.d Gaussian noise and the RE condition, bounds on ℓ_2 prediction loss and on ℓ_q, $1 \leq q \leq 2$, loss for estimating the parameter β in (1.1) for both the Lasso and the Dantzig selector have all been derived in Bickel et al. (2009). In particular, ℓ_2 loss of $\Theta(\lambda\sigma\sqrt{s})$ were obtained for the Lasso under RE($s, 3, X$) and the Dantzig selector under RE($s, 1, X$) respectively in Bickel et al. (2009), where it is shown that RE($s, 1, X$) condition is weaker than the UUP used in Candès and Tao (2007).

RE condition with parameters s_0 and k_0 for random measurements / design matrix has been proved for a random Gaussian vector Raskutti et al. (2009, 2010) with a sample bound of order $n = O(s_0 \log p)$, when condition (1.3) holds for the square root of the population covariance matrix Σ. As we show below, the bound $n = O(s_0 \log p)$ can be improved to the optimal one $n = O(s_0 \log (p/s_0))$ when RE($s_0, k_0, \Sigma^{1/2}$) is replaced with RE($s_0, (1+\varepsilon)k_0, \Sigma^{1/2}$$)$ for any $\varepsilon > 0$. The papers Raskutti et al. (2009, 2010) have motivated the investigation for a non-iid subgaussian random design by Zhou (2009a), as well as the present work. The proof of Raskutti et al. (2010) relies on a deep result from the theory of Gaussian random processes – Gordon’s Minimax Lemma Gordon (1985). However, this result relies on the properties of the normal random variables, and is not available beyond the Gaussian setting. To establish the RE condition for more general classes of random matrices we had to introduce a new approach based on geometric functional analysis. We defer the comparison of the present paper with Zhou (2009a) to Section 1.2. Both Zhou et al. (2009b) and van de Geer and Buhlmann (2009) obtained weaker results which are based on bounding the maximum entry-wise difference between sample and the population covariance matrices. We refer to Raskutti et al. (2010) for a more elaborate comparison.

1.1 Notation and definitions

Let e_1, \ldots, e_p be the canonical basis of \mathbb{R}^p. For a set $J \subset \{1, \ldots, p\}$, denote $E_J = \text{span}\{e_j : j \in J\}$. For a matrix A, we use $\|A\|_2$ to denote its operator norm. For a set $V \subset \mathbb{R}^p$, we let conv V denote the convex hull of V. For a finite set Y, the cardinality is denoted by $|Y|$. Let B^p_2 and S^{p-1} be the unit Euclidean ball...
and the unit sphere respectively. For a vector \(u \in \mathbb{R}^p \), let \(u_{T_0} \) be the subvector of \(u \) confined to the locations of its \(s_0 \) largest coefficients in absolute values. In this paper, \(C, c, \text{ etc} \), denote various absolute constants which may change line by line. Occasionally, we use \(u_T \in \mathbb{R}^{|T|} \), where \(T \subseteq \{1, \ldots, p\} \), to also represent its 0-extended version \(u'_T \in \mathbb{R}^p \) such that \(u'_{T_c} = 0 \) and \(u'_T = u_T \).

We define \(\text{Cone}(s_0, k_0) \), where \(0 < s_0 < p \) and \(k_0 \) is a positive number, as the set of vectors in \(\mathbb{R}^p \) which satisfy the following cone constraint:

\[
\text{Cone}(s_0, k_0) = \{ x \in \mathbb{R}^p \mid \exists I \subseteq \{1, \ldots, p\}, |I| = s_0 \text{ s.t. } \| x_I \|_1 \leq k_0 \| x_I \|_1 \}.
\]

Let \(\beta \) be a \(s \)-sparse vector and \(\hat{\beta} \) be the solution from either the Lasso or the Dantzig selector. One of the common properties of the Lasso and the Dantzig selector is: for an appropriately chosen \(\lambda_n \) and under i.i.d. Gaussian noise, the condition

\[
v := \hat{\beta} - \beta \in \text{Cone}(s, k_0)
\]

holds with high probability. Here \(k_0 = 1 \) for the Dantzig selector, and \(k_0 = 3 \) for the Lasso; see Bickel et al. (2009) and Candès and Tao (2007) for example. The combination of the cone property (1.6) and the RE condition leads to various nice convergence results as stated earlier.

We now define some parameters related to the RE and sparse eigenvalue conditions that are relevant.

Definition 1.1. Let \(1 \leq s_0 \leq p \), and let \(k_0 \) be a positive number. We say that a \(q \times p \) matrix \(A \) satisfies \(\text{RE}(s_0, k_0, A) \) condition with parameter \(K(s_0, k_0, A) \) if for any \(v \neq 0 \),

\[
\frac{1}{K(s_0, k_0, A)} := \min \left\{ \min_{J \subseteq \{1, \ldots, p\}, |J| \leq s_0} \frac{\| A v_J \|_2}{\| v_J \|_2} \mid \min_{J \subseteq \{1, \ldots, p\}, |J| \leq s_0} \frac{\| A v_J \|_2}{\| v_J \|_2} > 0 \right\}.
\]

It is clear that when \(s_0 \) and \(k_0 \) become smaller, this condition is easier to satisfy.

Definition 1.2. For \(m \leq p \), we define the largest and smallest \(m \)-sparse eigenvalue of a \(q \times p \) matrix \(A \) to be

\[
\rho_{\text{max}}(m, A) := \max_{t \neq 0; m-\text{sparse}} \frac{\| A t \|_2^2}{\| t \|_2^2}, \quad (1.8)
\]

\[
\rho_{\text{min}}(m, A) := \min_{t \neq 0; m-\text{sparse}} \frac{\| A t \|_2^2}{\| t \|_2^2}. \quad (1.9)
\]

1.2 Main results

The main purpose of this paper is to show that the RE condition holds with high probability for systems of random measurements/random design matrices of a general nature. To establish such result with high probability, one has to assume that it holds in average. So, our problem boils down to showing that, under some assumptions on random variables, the RE condition on the covariance matrix implies a similar condition on a random design matrix with high probability when \(n \) is sufficiently large (cf. Theorems 1.6 and Theorem 1.8). This generalizes the results on UUP mentioned above, where the covariance matrix is assumed to be identity.
Denote by A a fixed $q \times p$ matrix. We consider the design matrix X which can be represented as

$$X = \Psi A,$$

(1.10)

where the rows of the matrix Ψ are isotropic random vectors. An example of such a random matrix X consists of independent rows, each being a random vector in \mathbb{R}^p that follows a multivariate normal distribution $N(0, \Sigma)$, when we take $A = \Sigma^{1/2}$ in (1.10). Our first main result is related to this setup. We consider a matrix represented as $\tilde{X} = \tilde{\Psi} A$, where the matrix A satisfies the RE condition. The result is purely geometric, so we consider a deterministic matrix $\tilde{\Psi}$.

We prove a general reduction principle showing that if the matrix $\tilde{\Psi}$ acts as almost isometry on the images of the sparse vectors under A, then the product $\tilde{\Psi} A$ satisfies the RE condition with a smaller parameter k_0. More precisely, we prove Theorem 1.3.

Theorem 1.3. Let $1/5 > \delta > 0$. Let $0 < s_0 < p$ and $k_0 > 0$. Let A be a $q \times p$ matrix such that $\text{RE}(s_0, 3k_0, A)$ holds for $0 < K(s_0, 3k_0, A) < \infty$. Set

$$d = s_0 + s_0 \max_j \|Ae_j\|_2^2 \frac{16K^2(s_0, 3k_0, A)(3k_0)^2(3k_0 + 1)}{\delta^2},$$

(1.11)

and let $E = \bigcup_{|J| = q} E_J$ for $d < p$ and E denotes \mathbb{R}^p otherwise. Let $\tilde{\Psi}$ be a matrix such that

$$\forall x \in AE \quad (1 - \delta) \|x\|_2 \leq \|\tilde{\Psi} x\|_2 \leq (1 + \delta) \|x\|_2.$$

(1.12)

Then $\text{RE}(s_0, k_0, \tilde{\Psi} A)$ condition holds for matrix $\tilde{\Psi} A$ with $0 < K(s_0, k_0, \tilde{\Psi} A) \leq K(s_0, k_0, A)/(1 - 5\delta)$.

Remark 1.4. We note that this result does not involve $\rho_{\text{max}}(s_0, A)$, nor the global parameters of the matrices A and $\tilde{\Psi}$, such as the norm or the smallest singular value. We refer to Raskutti et al. (2010) for examples of matrix A, where $\rho_{\text{max}}(s_0, A)$ grows with s_0 while the RE condition still holds for A.

The assumption $\text{RE}(s_0, 3k_0, A)$ can be replaced by $\text{RE}(s_0, (1 + \varepsilon)k_0, A)$ for any $\varepsilon > 0$ by appropriately increasing d. See Remark 2.6 for details.

We apply the reduction principle to analyze different classes of random design matrices. This analysis is reduced to checking that the almost isometry property holds for all vectors from some low-dimensional subspaces, which is easier than checking the RE property directly.

The first example is the matrix Ψ whose rows are independent isotropic vectors with subgaussian marginals as in Definition 1.5. This result extends a theorem of Raskutti et al. (2010) to a non-Gaussian setting, in which the entries of the design matrix may even not have a density.

Definition 1.5. Let Y be a random vector in \mathbb{R}^p

1. Y is called isotropic if for every $y \in \mathbb{R}^p$, $E |\langle Y, y \rangle|^2 = \|y\|_2^2$.

2. Y is ψ_2 with a constant α if for every $y \in \mathbb{R}^p$,

$$\|\langle Y, y \rangle\|_{\psi_2} := \inf \{t : E \exp(\langle Y, y \rangle^2/t^2) \leq 2 \} \leq \alpha \|y\|_2.$$

(1.13)
The ψ_2 condition on a scalar random variable V is equivalent to the subgaussian tail decay of V, which means
\[
\mathbb{P}(|V| > t) \leq 2 \exp(-t^2/c^2), \text{ for all } t > 0.
\]

Throughout this paper, we use ψ_2, vector with subgaussian marginals and subgaussian vector interchangeably. Examples of isotropic random vectors with subgaussian marginals are:

- The random vector Y with i.i.d $N(0, 1)$ random coordinates.
- Discrete Gaussian vector, which is a random vector taking values on the integer lattice \mathbb{Z}^p with distribution $\mathbb{P}(X = m) = C \exp(-\|m\|^2/2)$ for $m \in \mathbb{Z}^p$.
- A vector with independent centered bounded random coordinates. The subgaussian property here follows from the Hoeffding inequality for sums of independent random variables. This example includes, in particular, vectors with random Bernoulli coordinates, in other words, random vertices of the discrete cube.

It is hard to argue that such multivariate Gaussian or Bernoulli random designs are not relevant for statistical applications.

Theorem 1.6. Set $0 < \delta < 1$, $k_0 > 0$, and $0 < s_0 < p$. Let A be a $q \times p$ matrix satisfying $\text{RE}(s_0, 3k_0, A)$ condition as in Definition 1.1. Let d be as defined in (1.11), and let $m = \min(d, p)$. Let Ψ be an $n \times q$ matrix whose rows are independent isotropic ψ_2 random vectors in \mathbb{R}^q with constant α. Suppose the sample size satisfies
\[
n \geq \frac{2000 \alpha^4}{\delta^2} \log \left(\frac{60cp}{m\delta}\right).
\]

Then with probability at least $1 - 2 \exp(\delta^2 n/2000 \alpha^4)$, $\text{RE}(s_0, k_0, (1/\sqrt{n})\Psi A)$ condition holds for matrix $(1/\sqrt{n})\Psi A$ with
\[
0 < K(s_0, k_0, (1/\sqrt{n})\Psi A) \leq \frac{K(s_0, k_0, A)}{1 - \delta}.
\]

Remark 1.7. We note that all constants in Theorem 1.6 are explicit, although they are not optimized.

Theorem 1.6 is applicable in various contexts. We describe two examples. The first example concerns cases which have been considered in Raskutti et al. (2010); Zhou (2009a). They show that the RE condition on the covariance matrix Σ implies a similar condition on a random design matrix $X = \Psi \Sigma^{1/2}$ with high probability when n is sufficiently large. In particular, in Zhou (2009a), the author considered subgaussian random matrices of the form $X = \Psi \Sigma^{1/2}$ where Σ is a $p \times p$ positive semidefinite matrix satisfying $\text{RE}(s_0, k_0, \Sigma^{1/2})$ condition, and Ψ is as in Theorem 1.6. Unlike the current paper, the author allowed $\rho_{\max}(s_0, \Sigma^{1/2})$ as well as $K^2(s_0, k_0, \Sigma^{1/2})$ to appear in the lower bound on n, and showed that X/\sqrt{n} satisfies the RE condition as in (1.15) with overwhelming probability whenever
\[
n > \frac{9c'\alpha^4}{\delta^2} (2 + k_0)^2 \min(4\rho_{\max}(s_0, \Sigma^{1/2}), \rho_{\max}(s_0, \Sigma^{1/2})^2) s_0 \log(5ep/s_0), s_0 \log p)
\]
where the first term was given in Zhou (2009b, Theorem 1.6) explicitly, and the second term is an easy consequence by combining arguments in Zhou (2009b) and Raskutti et al. (2010). Analysis there used Corollary 2.7 in Mendelson et al. (2007) crucially.

In the present work, we get rid of the dependency of the sample size on $\rho_{\max}(s_0, \Sigma^{1/2})$, although under a slightly stronger $\mathbf{RE}(s_0, 3k_0, \Sigma^{1/2})$ (See also Remark 2.6). More precisely, let Σ be a $p \times p$ covariance matrix satisfying $\mathbf{RE}(s_0, 3k_0, \Sigma^{1/2})$ condition. Then, (1.15) implies that with probability at least $1 - 2 \exp(\delta^2 n/2000a^4)$,

$$0 < K(s_0, k_0, (1/\sqrt{n})\Psi \Sigma^{1/2}) \leq \frac{K(s_0, k_0, \Sigma^{1/2})}{1 - \delta}$$

(1.17)

where n satisfies (1.14) for d defined in (1.11), with A replaced by $\Sigma^{1/2}$.

Another application of Theorem 1.6 is given in Zhou et al. (2009a). The $q \times p$ matrix A can be taken as a data matrix with p attributes (e.g., weight, height, age, etc), and q individual records. The data are compressed by a random linear transformation $X = \Psi A$. Such transformations have been called “matrix masking” in the privacy literature (Duncan and Pearson, 1991). We think of X as “public,” while Ψ, which is a $n \times q$ random matrix, is private and only needed at the time of compression. However, even with Ψ known, recovering A from Ψ requires solving a highly under-determined linear system and comes with information theoretic privacy guarantees when $n \ll q$, as demonstrated in Zhou et al. (2009a). On the other hand, sparse recovery using X is highly feasible given that the RE conditions are guaranteed to hold by Theorem 1.6 with a small n. We refer to Zhou et al. (2009a) for a detailed setup on regression using compressed data as in (1.10).

The second application of the reduction principle is to the design matrices with uniformly bounded entries. As we mentioned above, if the entries of such matrix are independent, then its rows are subgaussian. However, the independence of entries is not assumed, so the decay of the marginals can be arbitrary slow. A natural example for compressed sensing would be measurements of random Fourier coefficients, when some of the coefficients cannot be measured.

Theorem 1.8. Let $0 < \delta < 1$ and $0 < s_0 < p$. Let $Y \in \mathbb{R}^p$ be a random vector such that $\|Y\|_\infty \leq M$ a.s and denote $\Sigma = \mathbb{E}YY^T$. Let X be an $n \times p$ matrix, whose rows X_1, \ldots, X_n are independent copies of Y. Let Σ satisfy the $\mathbf{RE}(s_0, 3k_0, \Sigma^{1/2})$ condition as in Definition 1.1. Let d be as defined in (1.11), where we replace A with $\Sigma^{1/2}$. Assume that $d \leq p$ and $\rho = \rho_{\min}(d, \Sigma^{1/2}) > 0$. Suppose the sample size satisfies for some absolute constant C

$$n \geq \frac{CM^2d \cdot \log p}{\rho \delta^2} \cdot \log^2 \left(\frac{CM^2d \cdot \log p}{\rho \delta^2}\right).$$

Then with probability at least $1 - \exp\left(-\delta n/(6M^2d)\right)$, $\mathbf{RE}(s_0, k_0, X)$ condition holds for matrix X/\sqrt{n} with $0 < K(s_0, k_0, X/\sqrt{n}) \leq K(s_0, k_0, \Sigma^{1/2})/(1 - \delta)$.

Remark 1.9. Note that unlike the case of a random matrix with subgaussian marginals, the estimate of Theorem 1.8 contains the minimal sparse singular value ρ. We will provide an example illustrating that this is necessary in Remark 4.4.

We will prove Theorems 1.3, 1.6, and 1.8 in Sections 2, 3, and 4 respectively.
We note that the reduction principle can be applied to other types of random variables. One can consider the case of heavy-tailed marginals. In this case the estimate for the images of sparse vectors can be proved using the technique developed by Vershynin (2011a,b). One can also consider random vectors with log-concave densities, and obtain similar estimates following the methods of Adamczak et al. (2009, 2011). We leave the details for an interested reader.

To make our exposition complete, we will show some immediate consequences in terms of statistical inference on high dimensional data that satisfy such RE and sparse eigenvalue conditions. We discuss in Section 1.3 some bounds for the Lasso estimator for such a subgaussian random ensemble. In particular, bounds developed in the present paper can be applied to obtain tight convergence results for covariance estimation for a multivariate Gaussian model Zhou et al. (2011).

1.3 Convergence rates in sparse recovery

Lasso and the Dantzig selector are both well studied and shown to have provable nice statistical properties. For results on variable selection, prediction error and ℓ_p loss, where 1 ≤ p ≤ 2 under various incoherence conditions, see, for example Greenshtein and Ritov (2004); Meinshausen and Bühlmann (2006); Zhao and Yu (2006); Bunea et al. (2007); Candès and Tao (2007); Koltchinskii (2009a); van de Geer (2008); Zhang and Huang (2008); Wainwright (2009); Candès and Plan (2009); Bickel et al. (2009); Cai et al. (2010); Koltchinskii (2009b); Meinshausen and Yu (2009). As mentioned, the restricted eigenvalue (RE) condition as formulated by Bickel et al. (2009) are among the weakest and hence the most general conditions in literature imposed on the Gram matrix in order to guarantee nice statistical properties for the Lasso and the Dantzig selector. For a comprehensive comparison between some of these conditions, we refer to van de Geer and Bühlmann (2009).

For random design as considered in the present paper, one can show that various oracle inequalities in terms of ℓ_2 convergence hold for the Lasso and the Dantzig selector as long as n satisfies the lower bounds above. Let s = |supp β| for β in (1.1). Under RE(s, 9, Σ^{1/2}), a sample size of n = O(s log(p/s)) is sufficient for us to derive bounds corresponding to those in Bickel et al. (2009, Theorem 7.2). As a consequence, we see that this setup requires Θ(log(p/s)) observations per nonzero value in β where Θ hides a constant depending on K^2(s, 9, Σ^{1/2}) for the family of random matrices with subgaussian marginals which satisfies RE(s, 9, Σ^{1/2}) condition. Similarly, we note that for random matrix X with a.s. bounded entries of size M, n = O(s M^2 log p log^3(s log p)) samples are sufficient in order to achieve accurate statistical estimation. We say this is a linear or sublinear sparsity. For p ≫ n, this is a desirable property as it implies that accurate statistical estimation is feasible given a very limited amount of data.

As another example, assume that ρ_{max}(s, Σ^{1/2}) is a bounded constant and ρ_{min}(s, Σ^{1/2}) > 0. We note that this slight restriction on ρ_{max}(s, Σ^{1/2}) allows one to derive an oracle result on the ℓ_2 loss as studied by Donoho and Johnstone (1994); Candès and Tao (2007); Zhou (2009b, 2010)), which we now elaborate. Let ε ~ N(0, σ^2 I) in (1.1). Assume that RE(s_0, 12, Σ^{1/2}) holds, where Σ_{ii} = 1, ∀i and s_0 is defined as the
smallest integer such that
\[
\sum_{i=1}^{p} \min(\beta_i^2, \lambda^2\sigma^2) \leq s_0\lambda^2\sigma^2, \quad \text{where} \quad \lambda = \sqrt{2\log p/n}.
\] (1.18)

We note that as a consequence of this definition is: \(|\beta_j| < \lambda\sigma\) for all \(j > s_0\), if we order \(|\beta_1| \geq |\beta_2| \geq \ldots \geq |\beta_p|\); see Candès and Tao (2007). Hence \(s_0\) essentially characterizes the number of significant coefficients of \(\beta\) with respect to the noise level \(\sigma\). Following analysis in Zhou (2010), one can show that the Lasso solution satisfies
\[
\|\hat{\beta} - \beta\|_2^2 \asymp s_0\lambda^2\sigma^2,
\] (1.19)
with overwhelming probability, as long as
\[
n \geq Cm \log(cp/m)
\] (1.20)
where \(m = \max(s, d)\) for \(d\) as defined in (1.11) with \(\Sigma^{1/2}\) replacing \(A\).

One can also show the same bounds on \(\ell_1\) loss and prediction error as in Zhou (2010) under this setting. The rate of (1.19) is an obvious improvement upon the rate of \(\Theta(\lambda\sigma\sqrt{s})\) when \(s_0\) is much smaller than \(s\), that is, when there are many non-zero but small entries in \(\beta\). Moreover, given such ideal rate on the \(\ell_2\)-loss, it is shown in Zhou (2009b, 2010) that one can then recover a sparse model of size \(\asymp 2s_0\) such that the model contains most of the important variables while achieving such oracle inequalities as in (1.19), where thresholding of the Lasso estimator followed by refitting has been applied. Such results have also been used in Gaussian Graphical model selection to show fast convergence rates in estimating the covariance matrix and its inverse Zhou et al. (2011).

Conceptually, results in the current paper allow one to extend such oracle results in terms of \(\ell_2\) loss from the family of random matrices obeying the UUP to a broader class of random matrices that satisfy the RE condition with sample size at essentially the same order. When \(\Sigma\) is ill-behaving in the sense that \(\rho_{\max}(m, \Sigma^{1/2})\) grows too rapidly as a function of \(m\), we resort to the bound of \(O(\lambda\sigma\sqrt{s})\) which corresponds to those derived in Bickel et al. (2009), under RE\((s, 9, \Sigma)\).

Finally, the incoherence properties for a random design matrix that is the composition of a random matrix with a deterministic matrix have been studied even earlier, see for example Rauhut et al. (2008); Zhou et al. (2009a), in the context of signal reconstruction and high dimensional sparse regressions.

2 Reduction principle

We first reformulate the reduction principle in the form of restrictive isometry: we show that if the matrix \(\tilde{\Psi}\) acts as almost isometry on the images of the sparse vectors under \(A\), then it acts the same way on the images of a set of vectors which satisfy the cone constraint (1.5). We then prove Theorem 1.3 as a corollary of Theorem 2.1.
Theorem 2.1. Let $1/5 > \delta > 0$. Let $0 < s_0 < p$ and $k_0 > 0$. Let A be a $q \times p$ matrix such that $\text{RE}(s_0, 3k_0, A)$ condition holds for $0 < K(s_0, 3k_0, A) < \infty$. Set

$$d = s_0 + s_0 \max_j \|Ae_j\|_2^2 \left(\frac{16K^2(s_0, 3k_0, A)(3k_0)^2(3k_0 + 1)}{\delta^2} \right),$$

and let $E = \bigcup_{|J| = d} E_J$ for $d < p$ and $E = \mathbb{R}^p$ otherwise. Let $\tilde{\Psi}$ be a matrix such that

$$\forall x \in AE \quad (1 - \delta) \|x\|_2 \leq \|\tilde{\Psi}x\|_2 \leq (1 + \delta) \|x\|_2. \quad (2.1)$$

Then for any $x \in A \left(\text{Cone}(s_0, k_0) \right) \cap S^{q-1}$,

$$(1 - 5\delta) \leq \|\tilde{\Psi}x\|_2 \leq (1 + 3\delta) \quad (2.2)$$

Proof of Theorem 1.3. By the $\text{RE}(s_0, 3k_0, A)$ condition, $\text{RE}(s_0, k_0, A)$ condition holds as well. Hence for $u \in \text{Cone}(s_0, k_0)$ such that $u \neq 0$,

$$\|Au\|_2 \geq \frac{\|uT_0\|_2}{K(s_0, k_0, A)} > 0,$$

and by (2.2)

$$\|\tilde{\Psi}Au\|_2 \geq (1 - 5\delta) \|Au\|_2 \geq (1 - 5\delta) \frac{\|uT_0\|_2}{K(s_0, k_0, A)} > 0.$$

\[\square \]

The proof of Theorem 2.1 uses several auxiliary results, which will be established in the next two subsections.

2.1 Preliminary results

Our first lemma is based on Maurey’s empirical approximation argument Pisier (1981). We show that any vector belonging to the convex hull of many vectors can be approximated by a convex combination of a few of them.

Lemma 2.2. Let $u_1, \ldots, u_M \in \mathbb{R}^q$. Let $y \in \text{conv}(u_1, \ldots, u_M)$. There exists a set $L \subset \{1, 2, \ldots, M\}$ such that

$$|L| \leq m = \frac{4 \max_{j \in \{1, \ldots, M\}} \|u_j\|_2^2}{\epsilon^2}$$

and a vector $y' \in \text{conv}(u_j, j \in L)$ such that

$$\|y' - y\|_2 \leq \epsilon.$$
Proof. Assume that
\[y = \sum_{j \in \{1, \ldots, M\}} \alpha_j u_j \] where \(\alpha_j \geq 0 \) and \(\sum_j \alpha_j = 1 \).

Let \(Y \) be a random vector in \(\mathbb{R}^q \) such that
\[\mathbb{P}(Y = u_\ell) = \alpha_\ell, \ \ell \in \{1, \ldots, M\} \]
Then
\[\mathbb{E}Y = \sum_{\ell \in \{1, \ldots, M\}} \alpha_\ell u_\ell = y. \]

Let \(Y_1, \ldots, Y_m \) be independent copies of \(Y \) and let \(\varepsilon_1, \ldots, \varepsilon_m \) be \(\pm 1 \) i.i.d. mean zero Bernoulli random variables, chosen independently of \(Y_1, \ldots, Y_m \). By the standard symmetrization argument, we have
\[\mathbb{E} \left\| y - \frac{1}{m} \sum_{j=1}^m Y_j \right\|_2^2 \leq 4 \mathbb{E} \left(\left\| \frac{1}{m} \sum_{j=1}^m \varepsilon_j Y_j \right\|_2^2 \right) \leq \frac{4 \max_{\ell \in \{1, \ldots, M\}} \| u_\ell \|_2^2}{m} \leq \varepsilon^2 \] (2.3)
where
\[\mathbb{E} \left\| Y_j \right\|_2^2 \leq \sup \left\| Y_j \right\|_2 \leq \max_{\ell \in \{1, \ldots, M\}} \| u_\ell \|_2^2 \]
and the last inequality in (2.3) follows from the definition of \(m \).

Fix a realization \(Y_j = u_{k_j}, \ j = 1, \ldots, m \) for which
\[\left\| y - \frac{1}{m} \sum_{j=1}^m Y_j \right\|_2 \leq \varepsilon. \]
The vector \(\frac{1}{m} \sum_{j=1}^m Y_j \) belongs to the convex hull of \(\{ u_\ell : \ \ell \in L \} \), where \(L \) is the set of different elements from the sequence \(k_1, \ldots, k_m \). Obviously \(|L| \leq m \) and the lemma is proved.

For each vector \(x \in \mathbb{R}^p \), let \(T_0 \) denote the locations of the \(s_0 \) largest coefficients of \(x \) in absolute values. Any vector \(x \in \text{Cone}(s_0, k_0) \cap S^{p-1} \) satisfies:
\[\| x_{T_0} \|_\infty \leq \frac{\| x_{T_0} \|_1}{s_0} \leq \frac{\| x_{T_0} \|_2}{\sqrt{s_0}} \] (2.4)
\[\| x_{T_0} \|_1 \leq k_0 \sqrt{s_0} \| x_{T_0} \|_2 \leq k_0 \sqrt{s_0}; \ \text{and} \ \| x_{T_0} \|_2 \leq 1. \] (2.5)
The next elementary estimate will be used in conjunction with the RE condition.

Lemma 2.3. For each vector \(v \in \text{Cone}(s_0, k_0) \), let \(T_0 \) denotes the locations of the \(s_0 \) largest coefficients of \(v \) in absolute values. Then
\[\| v_{T_0} \|_2 \geq \frac{\| v \|_2}{\sqrt{1 + k_0}}. \] (2.6)
Proof. By definition of $\text{Cone}(s_0, k_0)$, by (2.4)

$$\|v_{T_0}\|_2^2 \leq \|v_{T_0}\|_1 \|v_{T_0}\|_{\infty} \leq k_0 \|v_{T_0}\|_1 / s_0 \leq k_0 \|v_{T_0}\|_2^2.$$

Therefore $\|v\|_2^2 = \|v_{T_0}\|_2^2 + \|v_{T_0}\|_2^2 \leq (k_0 + 1) \|v_{T_0}\|_2^2$.

The next lemma concerns the extremum of a linear functional on a big circle of a q-dimensional sphere. We consider a line passing through the extreme point, and show that the value of the functional on a point of the line, which is relatively close to the extreme point, provides a good bound for the extremum.

Lemma 2.4. let $u, \theta, x \in \mathbb{R}^q$ be vectors such that

1. $\|\theta\|_2 = 1$.
2. $\langle x, \theta \rangle \neq 0$.
3. Vector u is not parallel to x.

Define $\phi : \mathbb{R} \to \mathbb{R}$ by:

$$\phi(\lambda) = \frac{\langle x + \lambda u, \theta \rangle}{\|x + \lambda u\|_2}. \quad (2.7)$$

Assume $\phi(\lambda)$ has a local maximum at 0, then

$$\frac{\langle x + u, \theta \rangle}{\langle x, \theta \rangle} \geq 1 - \frac{\|u\|_2}{\|x\|_2}.$$

Proof. Let $v = \frac{x}{\|x\|_2}$. Also let

$$\theta = \beta v + \gamma t, \text{ where } t \perp v, \|t\|_2 = 1 \text{ and } \beta^2 + \gamma^2 = 1, \beta \neq 0$$

and $u = \eta v + \mu t + s$ where $s \perp v$ and $s \perp t$

Define $f : \mathbb{R} \to \mathbb{R}$ by:

$$f(\lambda) = \frac{\lambda}{\|x\|_2 + \lambda \eta}, \lambda \neq -\frac{\eta}{\|x\|_2}. \quad (2.8)$$

Then

$$\phi(\lambda) = \frac{\langle x + \lambda u, \theta \rangle}{\|x + \lambda u\|_2} = \frac{\langle (\|x\|_2 + \lambda \eta) v + \lambda \mu t + \lambda s, \beta v + \gamma t \rangle}{\|\lambda \|_2 + \lambda \eta) v + \lambda \mu t + \lambda s\|_2}$$

$$= \frac{\beta (\|x\|_2 + \lambda \eta) + \lambda \mu \gamma}{\sqrt{(\|x\|_2 + \lambda \eta)^2 + (\lambda \mu)^2 + \lambda^2 \|s\|_2^2}}$$

$$= \frac{\beta + \mu \gamma f(\lambda)}{\sqrt{1 + (\mu^2 + \|s\|_2^2) f^2(\lambda)}}$$

Since $f(\lambda) = \frac{\lambda}{\|x\|_2} + O(\lambda^2)$ we have $\phi(\lambda) = \beta + \mu \gamma \frac{\lambda}{\|x\|_2} + O(\lambda^2)$ in the neighborhood of 0. Hence, in order to for $\phi(\lambda)$ to have a local maximum at 0, μ or γ must be 0. Consider these cases separately.
First suppose $\gamma = 0$, then $\beta^2 = 1$ and $|\langle x, \theta \rangle| = \|x\|_2$. Hence,

$$\frac{\langle x + u, \theta \rangle}{\langle x, \theta \rangle} = 1 + \frac{\langle u, \theta \rangle}{\langle x, \theta \rangle} \geq 1 - \frac{\|u\|_2}{\|x\|_2} \geq 1 - \frac{\|u\|_2}{\|x\|_2}$$

where $|\langle u, \theta \rangle| \leq \|u\|_2$.

Otherwise, suppose that $\mu = 0$. Then we have $|\eta| = |\langle u, v \rangle| \leq \|u\|_2$ and

$$\frac{\langle x + u, \theta \rangle}{\langle x, \theta \rangle} = 1 + \frac{\eta u + s, \beta v + \gamma t}{\langle v \|x\|_2, \beta v + \gamma t \rangle} = 1 + \frac{\eta u}{\|x\|_2 \beta} = 1 + \frac{\eta}{\|x\|_2} \geq 1 - \frac{\|u\|_2}{\|x\|_2}$$

where we used the fact that $\beta \neq 0$ given $\langle x, \theta \rangle \neq 0$.

2.2 Convex hull of sparse vectors

For a set $J \subset \{1, \ldots, p\}$, denote $E_J = \text{span}\{e_j : j \in J\}$. In order to prove the restricted isometry property of Ψ over the set of vectors in $A \left(\text{Cone}(s_0, k_0) \cap S^{q-1}\right)$, we first show that this set is contained in the convex hull of the images of the sparse vectors with norms not exceeding $(1 - \delta)^{-1}$. More precisely, we prove the following lemma.

Lemma 2.5. Let $1 > \delta > 0$. Let $0 < s_0 < p$ and $k_0 > 0$. Let A be a $q \times p$ matrix such that $\text{RE}(s_0, k_0, A)$ condition holds for $0 < K(s_0, k_0, A) < \infty$. Define

$$d = d(k_0, A) = s_0 + s_0 \max_j \|Ae_j\|^2_2 \left(\frac{16K^2(s_0, k_0, A)k_0^2(k_0 + 1)}{\delta^2}\right). \quad (2.9)$$

Then

$$A \left(\text{Cone}(s_0, k_0) \cap S^{q-1}\right) \subset (1 - \delta)^{-1} \text{conv} \left(\bigcup_{|J| \leq d} AE_J \cap S^{q-1}\right) \quad (2.10)$$

where for $d \geq p$, E_J is understood to be \mathbb{R}^p.

Proof. Without loss of generality, assume that $d(k_0, A) < p$, otherwise the lemma is vacuously true. For each vector $x \in \mathbb{R}^p$, let T_0 denote the locations of the s_0 largest coefficients of x in absolute values. Decompose a vector $x \in \text{Cone}(s_0, k_0) \cap S^{p-1}$ as

$$x = x_{T_0} + x_{T_0} \in x_{T_0} + k_0 \|x_{T_0}\|_1 \text{absconv}(e_j | j \in T_0^c), \text{ where } \|x_{T_0}\|_2 \geq \frac{1}{\sqrt{k_0 + 1}} \text{ by } (2.6)$$

and hence

$$Ax \in Ax_{T_0} + k_0 \|x_{T_0}\|_1 \text{absconv}(Ae_j | j \in T_0^c).$$

Since the set $A \text{Cone}(s_0, k_0) \cap S^{q-1}$ is not easy to analyze, we introduce set of a simpler structure instead. Define

$$V = \{x_{T_0} + k_0 \|x_{T_0}\|_1 \text{absconv}(e_j | j \in T_0^c) | x \in \text{Cone}(s_0, k_0) \cap S^{p-1}\}.$$
For a given \(x \in \text{Cone}(s_0, k_0) \cap S^{p-1} \), if \(T_0 \) is not uniquely defined, we include all possible sets of \(T_0 \) in the definition of \(V \). Clearly \(V \subset \text{Cone}(s_0, k_0) \) is a compact set. Moreover, \(V \) contains a base of \(\text{Cone}(s_0, k_0) \), that is, for any \(y \in \text{Cone}(s_0, k_0) \setminus \{0\} \) there exists \(\lambda > 0 \) such that \(\lambda y \in V \).

For any \(v \in \mathbb{R}^p \) such that \(\|Av\|_2 \neq 0 \), define

\[
F(v) = \frac{Av}{\|Av\|_2}.
\]

By condition \(\mathbb{R}E(s_0, k_0, A) \), the function \(F \) is well-defined and continuous on \(\text{Cone}(s_0, k_0) \setminus \{0\} \), and, in particular, on \(V \). Hence,

\[
\text{ACone}(s_0, k_0) \cap S^{q-1} = F(\text{Cone}(s_0, k_0) \setminus \{0\}) = F(V).
\]

By duality, inclusion (2.10) can be derived from the fact that the supremum of any linear functional over the left side of (2.10) does not exceed the supremum over the right side of it. By the equality above, it is enough to show that for any \(\theta \in S^{q-1} \), there exists \(z' \in \mathbb{R}^p \setminus \{0\} \) such that \(\|z\| \leq d \) and \(F(z') \) is well defined, which satisfies

\[
\max_{v \in V} \langle F(v), \theta \rangle \leq (1 - \delta)^{-1} \langle F(z'), \theta \rangle. \tag{2.11}
\]

For a given \(\theta \), we construct a \(d \)-sparse vector \(z' \) which satisfies (2.11). Let

\[
z := \arg \max_{v \in V} \langle F(v), \theta \rangle.
\]

By definition of \(V \) there exists \(I \subset \{1, \ldots, p\} \) such that \(|I| = s_0 \), and for some \(\varepsilon_j \in \{1, -1\} \),

\[
z = z_I + \|z_I\|_1 k_0 \sum_{j \in I^c} \alpha_j \varepsilon_j e_j, \text{ where } \alpha_j \in [0, 1], \sum_{j \in I^c} \alpha_j \leq 1, \text{ and } 1 \geq \|z_I\|_2 \geq \frac{1}{\sqrt{k_0 + 1}}. \tag{2.12}
\]

Note if \(\alpha_i = 1 \) for some \(i \in I^c \), then \(z \) is a sparse vector itself, and we can set \(z' = z \) in order for (2.11) to hold. We proceed assuming \(\alpha_i \in [0, 1) \) for all \(i \in I^c \) in (2.12) from now on, in which case, we construct a required sparse vector \(z' \) via Lemma 2.2. To satisfy the assumptions of this lemma, denote \(\varepsilon_{p+1} = 0 \), \(\varepsilon_{p+1} = 1 \) and set

\[
\alpha_{p+1} = 1 - \sum_{j \in I^c} \alpha_j, \text{ hence } \alpha_{p+1} \in [0, 1].
\]

Let

\[
y := Az_I = \|z_I\|_1 k_0 \sum_{j \in I^c} \alpha_j \varepsilon_j Ae_j = \|z_I\|_1 k_0 \sum_{j \in I^c \cup \{p+1\}} \alpha_j \varepsilon_j Ae_j
\]

and denote \(\mathcal{M} := \{j \in I^c \cup \{p+1\} : \alpha_j > 0\} \). Let \(\varepsilon > 0 \) be specified later. Applying Lemma 2.2 with vectors \(u_j = k_0 \|z_I\|_1 \varepsilon_j Ae_j \) for \(j \in \mathcal{M} \), construct a set \(J' \subset \mathcal{M} \) satisfying

\[
|J'| \leq m := \frac{4 \max_{j \in I^c} k_0^2 \|z_I\|_1 \|Ae_j\|_2^2}{\varepsilon^2} \leq \frac{4k_0^2 s_0 \max_{j \in I^c} \|Ae_j\|_2^2}{\varepsilon^2} \tag{2.13}
\]
and a vector
\[y' = k_0 \| z_I \|_1 \sum_{j \in J'} \beta_j \varepsilon_j A e_j \]
where for \(J' \subset \mathcal{M}, \beta_j \in [0, 1] \) and \(\sum_{j \in J'} \beta_j = 1 \)
such that \(\| y' - y \|_2 \leq \varepsilon \).

Set \(u := k_0 \| z_I \|_1 \sum_{j \in J'} \beta_j \varepsilon_j e_j \) and let
\[z' = z_I + u. \]
By construction, \(Az' \in AE_J \), where \(J := (I \cup J') \cap \{1, \ldots, p\} \) and
\[|J| \leq |I| + |J'| \leq s_0 + m. \tag{2.14} \]
Furthermore, we have
\[\| Az - Az' \|_2 = \| A(z_I - u) \|_2 = \| y - y' \|_2 \leq \varepsilon \]
For \(\{\beta_j, j \in J'\} \) as above, we extend it to \(\{\beta_j, j \in I^c \cup \{p+1\}\} \) setting \(\beta_j = 0 \) for all \(j \in I^c \cup \{p+1\} \setminus J' \) and write
\[z' = z_I + k_0 \| z_I \|_1 \sum_{j \in I^c \cup \{p+1\}} \beta_j \varepsilon_j e_j \]
where \(\beta_j \in [0, 1] \) and \(\sum_{j \in I^c \cup \{p+1\}} \beta_j = 1 \).

If \(z' = z \), we are done. Otherwise, for some \(\lambda \) to be specified, consider the vector
\[z + \lambda(z' - z) = z_I + k_0 \| z_I \|_1 \sum_{j \in I^c \cup \{p+1\}} [(1 - \lambda)\alpha_j + \lambda \beta_j] \varepsilon_j e_j. \]
We have \(\sum_{j \in I^c \cup \{p+1\}} [(1 - \lambda)\alpha_j + \lambda \beta_j] = 1 \) and
\[\exists \delta_0 > 0 \text{ s. t. } \forall j \in I^c \cup \{p+1\}, \quad (1 - \lambda)\alpha_j + \lambda \beta_j \in [0, 1] \text{ if } |\lambda| < \delta_0. \]
To see this, we note that
- This condition holds by continuity for all \(j \) such that \(\alpha_j \in (0, 1) \).
- If \(\alpha_j = 0 \) for some \(j \), then \(\beta_j = 0 \) by construction.

Thus \(\sum_{j \in I^c} [(1 - \lambda)\alpha_j + \lambda \beta_j] \leq 1 \) and
\[z + \lambda(z' - z) = z_I + k_0 \| z_I \|_1 \sum_{j \in I^c} [(1 - \lambda)\alpha_j + \lambda \beta_j] \varepsilon_j e_j \in V \]
whenever \(|\lambda| < \delta_0 \).

Consider now a function \(\phi : (-\delta_0, \delta_0) \to \mathbb{R} \),
\[\phi(\lambda) := \langle F(z + \lambda(z' - z)), \theta \rangle = \frac{\langle Az + \lambda(Az' - Az), \theta \rangle}{\| Az + \lambda(Az' - Az) \|_2} \]
Since \(z \) maximizes \(\langle F(v), \theta \rangle \) for all \(v \in V \), \(\phi(\lambda) \) attains the local maximum at 0. Then by Lemma 2.4, we have
\[\frac{\langle Az', \theta \rangle}{\langle Az, \theta \rangle} \geq 1 - \frac{\| (Az' - Az) \|_2}{\| Az \|_2} = \frac{\| Az \|_2 - \| (Az' - Az) \|_2}{\| Az \|_2} \]
hence
\[
\frac{\langle F(z), \theta \rangle}{\langle F(z'), \theta \rangle} = \frac{\langle Az'/\|Az'\|_2, \theta \rangle}{\langle Az/\|Az\|_2, \theta \rangle} = \frac{\|Az\|_2}{\|Az'\|_2} \times \frac{\langle Az', \theta \rangle}{\langle Az, \theta \rangle} \\
\geq \frac{\|Az\|_2 + \|(Az' - Az)\|_2}{\|Az\|_2} \times \frac{\|Az\|_2 - \|(Az' - Az)\|_2}{\|Az\|_2} \\
= \frac{\|Az\|_2 - \|(Az' - Az)\|_2}{\|Az\|_2} \\
= \frac{\|Az\|_2 - \varepsilon}{\|Az\|_2 + \varepsilon} = 1 - \frac{2\varepsilon}{\|Az\|_2 + \varepsilon}.
\]

By definition, \(z \in \text{Cone}(s_0, k_0) \). Hence we apply \(\text{RE}(k_0, s_0, A) \) condition and (2.12) to obtain
\[
\|Az\|_2 \geq \frac{\|z_I\|_2}{K(s_0, k_0, A)} \geq \frac{1}{\sqrt{1 + k_0 K(s_0, k_0, A)}}.
\]

Now we can set \(\varepsilon = \frac{\delta}{2\sqrt{1 + k_0 K(s_0, k_0, A)}} \) which yields
\[
\frac{\langle F(z'), \theta \rangle}{\langle F(z), \theta \rangle} \geq 1 - \delta
\]
and thus (2.11) holds. Finally, by (2.13), we have
\[
m \leq s_0 \max_{j \in I^c} \|Ae_j\|_2^2 \left(\frac{16K^2(s_0, k_0, A)k_0^2(k_0 + 1)}{\delta^2} \right)
\]
and hence the inclusion (2.10) holds in view of (2.14) and (2.15). \(\square \)

2.3 Proof of the reduction principle

To prove the restricted isomorphism condition (2.2), we apply Lemma 2.5 with \(k_0 \) being replaced by \(3k_0 \). The upper bound in (2.2) follows immediately from the lemma. To prove the lower bound, we consider a vector \(x \in \text{Cone}(s_0, k_0) \) as an endpoint of an interval, whose midpoint is a sparse vector from the same cone. Then the other endpoint of the interval will be contained in the larger cone \(\text{Cone}(s_0, 3k_0) \). Comparison between the upper estimate for the norm of the image of this endpoint with the lower estimate for the midpoint will yield the required lower estimate for the point \(x \).

\textbf{Proof} of Theorem 2.1. Let \(v \in \text{Cone}(s_0, 3k_0) \setminus \{0\} \), and so \(\|Av\|_2 > 0 \) by \(\text{RE}(s_0, 3k_0, A) \) condition. Let \(d(3k_0, A) \) be defined as in (2.9). As in the proof of Lemma 2.5, we may assume that \(d(3k_0, A) < p \). By Lemma 2.5, applied with \(k_0 \) replaced with \(3k_0 \), we have
\[
\frac{Av}{\|Av\|_2} \in A \left(\text{Cone}(s_0, 3k_0) \right) \cap S^{q-1} \subset (1 - \delta)^{-1} \text{conv} \left(\bigcup_{|J| = d(3k_0, A)} AE_J \cap S^{q-1} \right)
\]
and
\[
\frac{\hat{\Psi} Av}{\|Av\|_2} \leq \frac{1}{1 - \delta} \max_{u \in \text{conv}(AE \cap S^{q-1})} \|\hat{\Psi} u\|_2 = \frac{1}{1 - \delta} \max_{u \in AE \cap S^{q-1}} \|\hat{\Psi} u\|_2.
\]
The last equality holds, since the maximum of $\|\tilde{\Psi}u\|_2$ occurs at an extreme point of the set $\text{conv}(AE \cap S^{q-1})$, because of convexity of the function $f(x) = \|\tilde{\Psi}x\|_2$. Hence, by (2.1)

$$\forall x \in A \left(\text{Cone}(s_0, 3k_0) \right) \cap S^{q-1}, \quad \|\tilde{\Psi}x\|_2 \leq (1 + \delta)(1 - \delta)^{-1} \leq 1 + 3\delta \quad (2.16)$$

where the last inequality is satisfied once $\delta < 1/3$, which proves the upper estimate in (2.2).

We have to prove the opposite inequality. Let $x = x_I + x_I^c \in \text{Cone}(s_0, k_0) \cap S^{q-1}$, where the set I contains the locations of the s_0 largest coefficients of x in absolute values. We have

$$x = x_I + \|x_I^c\|_1 \sum_{j \in I^c} \frac{|x_j|}{\|x_I^c\|_1} \text{sgn}(x_j)e_j, \quad \text{where} \quad 1 \geq \|x_I\|_2 \geq \frac{1}{\sqrt{k_0 + 1}} \quad \text{by (2.6)} \quad (2.17)$$

Let $\varepsilon > 0$ be specified later. We now construct a $d(3k_0, A)$-sparse vector $y = x_I + u \in \text{Cone}(s_0, k_0)$, where u is supported on I^c which satisfies

$$\|u\|_1 = \|y_I^c\|_1 = \|x_I^c\|_1 \quad \text{and} \quad \|Ax - Ay\|_2 = \|A(x_I^c - y_I^c)\|_2 \leq \varepsilon \quad (2.18)$$

To do so, set

$$w := Ax_I = \|x_I^c\|_1 \sum_{j \in I^c} \frac{|x_j|}{\|x_I^c\|_1} \text{sgn}(x_j)Ae_j.$$

Let $\mathcal{M} := \{j \in I^c : x_j \neq 0\}$. Applying Lemma 2.2 with vectors $u_j = \|x_I^c\|_1 \text{sgn}(x_j)Ae_j$ for $j \in \mathcal{M}$, construct a set $J' \subset \mathcal{M}$ satisfying

$$|J'| \leq m := \frac{4 \max_{j \in \mathcal{M}} \|x_I^c\|_1^2 \|Ae_j\|_2^2}{\varepsilon^2} \leq \frac{4k_0^2 s_0 \max_{j \in \mathcal{M}} \|Ae_j\|_2^2}{\varepsilon^2} \quad (2.19)$$

and a vector

$$w' = \|x_I^c\|_1 \sum_{j \in J'} \beta_j \text{sgn}(x_j)Ae_j, \quad \text{where} \quad J' \subset \mathcal{M}, \beta_j \in [0, 1] \quad \text{and} \quad \sum_{j \in J'} \beta_j = 1$$

such that $\|Ax - Ay\|_2 = \|w' - w\|_2 \leq \varepsilon$. Set $u := \|x_I^c\|_1 \sum_{j \in J'} \beta_j \text{sgn}(x_j)e_j$ and let

$$y = x_I + u = x_I + \|x_I^c\|_1 \sum_{j \in J'} \beta_j \text{sgn}(x_j)e_j \quad \text{where} \quad \beta_j \in [0, 1] \quad \text{and} \quad \sum_{j \in J'} \beta_j = 1.$$

By construction, $y \in \text{Cone}(s_0, k_0) \cap E_J$, where $J := I \cup J'$ and

$$|J| = |I| + |J'| \leq s_0 + m. \quad (2.20)$$

This, in particular, implies that $\|Ay\|_2 > 0$. Assume that ε is chosen so that $s_0 + m \leq d(3k_0, A)$, and so by (2.1)

$$\|\tilde{\Psi}Ay\|_2 \geq 1 - \delta.$$
Set
\[v = x_I + 2y_I - x_I^c = y + (y_I^c - x_I^c). \]
(2.21)

Then (2.18) implies
\[\|Av\|_2 \leq \|Ay\|_2 + \|A(y_I^c - x_I^c)\| \leq \|Ay\|_2 + \varepsilon, \]
(2.22)
and we have
\[v \in \text{Cone}(s_0, 3k_0) \]
and
\[\|v_I\|_1 \leq 2\|y_I\|_1 + \|x_I\|_1 = 3\|x_I\|_1 \leq 3k_0 \|x_I\|_1 = 3k_0 \|v_I\|_1 \]
where we use the fact that \(\|x_I\|_1 = \|y_I\|_1 \). Hence, by the upper estimate (2.16), we have
\[\|\hat{\Psi}Av\|_2 \leq (1 + \delta)(1 - \delta)^{-1} \]
(2.23)

Since \(y = \frac{1}{2}(x + v) \), where \(y_I = x_I \), we have by the lower bound in (2.1) and the triangle inequality,
\[1 - \delta \leq \frac{\|\hat{\Psi}Ax\|_2}{\|Ay\|_2} \leq \frac{1}{2} \left(\frac{\|\hat{\Psi}Ax\|_2}{\|Ay\|_2} + \frac{\|\hat{\Psi}Av\|_2}{\|Ay\|_2} \right) \]
\[\leq \frac{1}{2} \left(\frac{\|\hat{\Psi}Ax\|_2}{\|Ax\|_2} + \frac{\|\hat{\Psi}Av\|_2}{\|Ax\|_2} \right) \cdot \frac{\|Ay\|_2 + \varepsilon}{\|Ay\|_2} \]
\[\leq \frac{1}{2} \left(\frac{\|\hat{\Psi}Ax\|_2}{\|Ax\|_2} + \frac{1 + \delta}{1 - \delta} \right) \cdot (1 + \delta/6) \]

where in the second line, we apply (2.22) and (2.18), and in the third line, (2.23). By the RE\((s_0, k_0, A)\) condition and (2.17) we have
\[\|Ay\|_2 \geq \frac{\|y_I\|_2}{K(s_0, k_0, A)} = \frac{\|x_I\|_2}{K(s_0, k_0, A)} \geq \frac{1}{K(s_0, k_0, A) \cdot \sqrt{k_0 + 1}}. \]

Set
\[\varepsilon = \frac{\delta}{6\sqrt{1 + k_0}K(s_0, k_0, A)} \]
so that
\[\|Ay\|_2 + \varepsilon \leq (1 + \delta/6). \]

Then for \(\delta < 1/5 \)
\[\left\| \frac{\hat{\Psi}Ax}{\|Ax\|_2} \right\|_2 \geq 2 \frac{1 - \delta}{1 + \delta/6} - (1 + \delta)(1 - \delta)^{-1} \geq 1 - 5\delta. \]

This verifies the lower estimate. It remains to check the bound for the cardinality of \(J \). By (2.19) and (2.20), we have for \(k_0 > 0 \),
\[|J| \leq s_0 + m \leq s_0 + s_0 \max_{j \in \mathcal{M}} |Ae_j|_2 \left(\frac{16K^2(s_0, k_0, A)(3k_0)^2(k_0 + 1)}{\delta^2} \right) < d(3k_0, A) \]
as desired. This completes the proof of Theorem 2.1.
Remark 2.6. Let $\varepsilon > 0$. Instead of v defined in (2.21), one can consider the vector

$$v_\varepsilon = x_I + y - \varepsilon(x - y) \in \text{Cone}(s_0, (1 + \varepsilon)k_0).$$

Then replacing v by v_ε throughout the proof, we can establish Theorem 2.1 under the assumption $\Re(s_0, (1 + \varepsilon)k_0, A)$ instead of $\Re(s_0, 3k_0, A)$, if we increase the dimension $d(3k_0)$ by a factor depending on ε.

3 Subgaussian random design

Theorem 1.6 can be reformulated as an almost isometry condition for the matrix $X = \Psi A$ acting on the set $\text{Cone}(s_0, k_0)$. Recall that

$$d(3k_0, A) = s_0 + s_0 \max_j \|Ae_j\|_2 \left(\frac{16K^2(s_0, 3k_0, A)(3k_0)^2(3k_0 + 1)}{\delta^2} \right).$$

Theorem 3.1. Set $0 < \delta < 1$, $0 < s_0 < p$, and $k_0 > 0$. Let A be a $q \times p$ matrix satisfying $\Re(s_0, 3k_0, A)$ condition as in Definition 1.1. Let $m = \min(d(3k_0, A), p) < p$. Let Ψ be an $n \times q$ matrix whose rows are independent isotropic ψ_2 random vectors in \mathbb{R}^q with constant α. Assume that the sample size satisfies

$$n \geq \frac{2000m\alpha^4}{\delta^2} \log \left(\frac{60ep}{m\delta} \right).$$

(3.1)

Then with probability at least $1 - 2 \exp(\delta^2 n / 2000\alpha^4)$, for all $v \in \text{Cone}(s_0, k_0)$ such that $v \neq 0$,

$$1 - \delta \leq \frac{1}{\sqrt{n}} \|\Psi Au\|_2 \leq 1 + \delta.$$ \hspace{1cm} (3.2)

Theorem 1.6 follows immediately from Theorem 3.1. Indeed, by (3.2), for all $u \in \text{Cone}(s_0, k_0)$ such that $u \neq 0$,

$$\left\| \frac{1}{\sqrt{n}} \Psi Au \right\|_2 \geq (1 - \delta) \|Au\|_2 \geq (1 - \delta) \frac{\|u_{r_0}\|_2}{K(s_0, k_0, A)} > 0.$$ \hspace{1cm} (3.4)

To derive Theorem 3.1 from Theorem 2.1 we need a lower estimate for the norm of the image of a sparse vector. Such estimate relies on the standard ε-net argument similarly to Mendelson et al. (2008, Section 3).

Theorem 3.2. Set $0 < \varepsilon < 1$. Let A be a $q \times p$ matrix, and let Ψ be an $n \times q$, matrix whose rows are independent isotropic ψ_2 random vectors in \mathbb{R}^q with constant α. For $m \leq p$, assume that

$$n \geq \frac{80m\alpha^4}{\tau^2} \log \left(\frac{12ep}{m\tau} \right).$$

(3.3)

Then with probability at least $1 - 2 \exp(-\tau^2 n / 80\alpha^4)$, for all m-sparse vectors u in \mathbb{R}^p,

$$1 - \tau \|Au\|_2 \leq \frac{1}{\sqrt{n}} \|\Psi Au\|_2 \leq (1 + \tau) \|Au\|_2.$$ \hspace{1cm} (3.4)
We note that Theorem 3.2 does not require the RE condition to hold. No particular upper bound on \(\rho_{\text{max}}(m, A) \) is imposed here either.

We now state a large deviation bounds for \(m \)-sparse eigenvalues \(\rho_{\text{min}}(m, \tilde{X}) \) and \(\rho_{\text{max}}(m, \tilde{X}) \) for random design \(\tilde{X} = n^{-1/2} \Psi A \) which follows from Theorem 3.2 directly.

Corollary 3.3. Under conditions in Theorem 3.2, we have with probability at least \(1 - 2 \exp(-n \delta^2/200\alpha^4) \),

\[
(1 - \tau)\sqrt{\rho_{\text{min}}(m, A)} \leq \sqrt{\rho_{\text{min}}(m, \tilde{X})} \leq \sqrt{\rho_{\text{max}}(m, \tilde{X})} \leq (1 + \tau)\sqrt{\rho_{\text{max}}(m, A)}. \tag{3.5}
\]

3.1 Proof of Theorem 3.1

For \(n \) as bounded in (3.1), where \(m = \min(d(3k_0, A), p) \), we have (3.3) holds with \(\tau = \delta/5 \). Then by Theorem 3.2, we have with probability at least \(1 - 2 \exp(-n \delta^2/(200\alpha^4)) \),

\[
\forall m\text{-sparse vectors } u, \quad \left(1 - \frac{\delta}{5}\right) \|Au\|_2 \leq \frac{1}{\sqrt{n}} \left\| \tilde{\Psi} Au \right\|_2 \leq \left(1 + \frac{\delta}{5}\right) \|Au\|_2.
\]

The proof finishes by application of Theorem 2.1.

3.2 Proof of Theorem 3.2

We start with a definition.

Definition 3.4. Given a subset \(U \subset \mathbb{R}^p \) and a number \(\varepsilon > 0 \), an \(\varepsilon \)-net \(\Pi \) of \(U \) with respect to the Euclidean metric is a subset of points of \(U \) such that \(\varepsilon \)-balls centered at \(\Pi \) covers \(U \):

\[
U \subset \bigcup_{x \in \Pi} (x + \varepsilon B^p_2),
\]

where \(A + B := \{a + b : a \in A, b \in B\} \) is the Minkowski sum of the sets \(A \) and \(B \). The covering number \(N(U, \varepsilon) \) is the smallest cardinality of an \(\varepsilon \)-net of \(U \).

The proof of Theorem 3.2 uses two well-known results. The first one is the *volumetric estimate*; see e.g. Milman and Schechtman (1986).

Lemma 3.5. Given \(m \geq 1 \) and \(\varepsilon > 0 \). There exists an \(\varepsilon \)-net \(\Pi \subset B^m_2 \) of \(B^m_2 \) with respect to the Euclidean metric such that \(B^m_2 \subset (1 - \varepsilon)^{-1} \text{conv} \Pi \) and \(|\Pi| \leq (1 + 2/\varepsilon)^m \). Similarly, there exists an \(\varepsilon \)-net of the sphere \(S^{m-1} \), \(\Pi' \subset S^{m-1} \) such that \(|\Pi'| \leq (1 + 2/\varepsilon)^m \).

The second lemma with a worse constant can be derived from Bernstein’s inequality for subexponential random variables. Since we are interested in the numerical value of the constant, we provide a proof below.

Lemma 3.6. Let \(Y_1, \ldots, Y_n \) be independent random variables such that \(\mathbb{E} Y_j^2 = 1 \) and \(\|Y_j\|_{\psi_2} \leq \alpha \) for all \(j = 1, \ldots, n \). Then for any \(\theta \in (0, 1) \)

\[
\mathbb{P} \left(\left| \frac{1}{n} \sum_{j=1}^{n} Y_j^2 - 1 \right| > \theta \right) \leq 2 \exp \left(-\frac{\theta^2 n}{10\alpha^4} \right).
\]
For a set \(J \subset \{1, \ldots, p\} \), denote \(E_J = \text{span}\{e_j : j \in J\} \), and set \(F_J = AE_J \). For each subset \(F_J \cap S^{q-1} \), construct an \(\varepsilon \)-net \(\Pi_J \), which satisfies
\[
\Pi_J \subset F_J \cap S^{q-1} \quad \text{and} \quad |\Pi_J| \leq (1 + 2/\varepsilon)^m.
\]
The existence of such \(\Pi_J \) is guaranteed by Lemma 3.5. If \(\Pi = \bigcup_{|J|=m} \Pi_J \), then the previous estimate implies
\[
|\Pi| = (3/\varepsilon)^m \left(\frac{p}{m} \right) \leq \left(\frac{3ep}{m\varepsilon} \right)^m = \exp \left(m \log \left(\frac{3ep}{m\varepsilon} \right) \right).
\]
For \(y \in S^{q-1} \cap F_J \subset F \), let \(\pi(y) \) be one of the closest point in the \(\varepsilon \)-cover \(\Pi_J \). Then
\[
\frac{y - \pi(y)}{\|y - \pi(y)\|_2} \in F_J \cap S^{q-1} \quad \text{where} \quad \|y - \pi(y)\|_2 \leq \varepsilon.
\]
Denote by \(\Psi_1, \ldots, \Psi_n \) the rows of the matrix \(\Psi \), and set \(\Gamma = n^{-1/2}\Psi \). Let \(x \in S^{q-1} \). Applying Lemma 3.6 to the random variables \(\langle \Psi_1, x \rangle^2, \ldots, \langle \Psi_n, x \rangle^2 \), we have that for every \(\theta < 1 \)
\[
\mathbb{P} \left(\left| \|\Gamma x\|_2^2 - 1 \right| > \theta \right) = \mathbb{P} \left(\left| \frac{1}{n} \sum_{i=1}^n \langle \Psi_i, x \rangle^2 - 1 \right| > \theta \right) \leq 2 \exp \left(-\frac{n\theta^2}{10\alpha^4} \right). \quad (3.6)
\]
For
\[
n \geq \frac{20m\alpha^4}{\theta^2} \log \left(\frac{3ep}{m\varepsilon} \right),
\]
the union bound implies
\[
\mathbb{P} \left(\exists x \in \Pi \text{ s. t.} \left| \|\Gamma x\|_2^2 - 1 \right| > \theta \right) \leq 2 \Pi |\exp \left(-\frac{n\theta^2}{10\alpha^4} \right) \leq 2 \exp \left(-\frac{n\theta^2}{20\alpha^4} \right)
\]
Then for all \(y_0 \in \Pi \)
\[
1 - \theta \leq \|\Gamma y_0\|_2^2 \leq 1 + \theta \quad \text{and so} \quad 1 - \theta \leq \|\Gamma y_0\|_2 \leq 1 + \frac{\theta}{2}
\]
with probability at least \(1 - 2 \exp \left(-\frac{n\theta^2}{20\alpha^4} \right) \). The bound over the entire \(S^{q-1} \cap F_J \) is obtained by approximation. We have
\[
\|\Gamma \pi(y)\|_2 - \|\Gamma(y - \pi(y))\|_2 \leq \|\Gamma y\|_2 \leq \|\Gamma \pi(y)\|_2 + \|\Gamma(y - \pi(y))\|_2 \quad (3.7)
\]
Define
\[
\|\Gamma\|_{2,F_J} := \sup_{y \in S^{q-1} \cap F_J} \|\Gamma y\|_2.
\]
The RHS of (3.7) is upper bounded by \(1 + \frac{\theta}{2} + \varepsilon \|\Gamma\|_{2,F,J}\). By taking the supremum over all \(y \in S^{q-1} \cap F_j\), we have

\[
\|\Gamma\|_{2,F,J} \leq 1 + \frac{\theta}{2} + \varepsilon \|\Gamma\|_{2,F,J}
\]

and hence

\[
\|\Gamma\|_{2,F,J} \leq \frac{1 + \theta/2}{1 - \varepsilon}.
\]

The LHS of (3.7) is lower bounded by \(1 - \theta - \varepsilon \|\Gamma\|_{2,F,J}\), and hence for all \(y \in S^{q-1} \cap F_j\)

\[
\|\Gamma y\|_2 \geq 1 - \theta - \varepsilon \|\Gamma\|_{2,F,J} \geq 1 - \theta - \varepsilon \left(\frac{1 + \theta/2}{1 - \varepsilon}\right).
\]

Putting these together, we have for all \(y \in S^{q-1} \cap F_j\)

\[
1 - \theta - \varepsilon \left(\frac{1 + \theta/2}{1 - \varepsilon}\right) \leq \|\Gamma y\|_2 \leq \frac{1 + \theta/2}{1 - \varepsilon}
\]

which holds for all sets \(J\). Thus for \(\theta < 1/2\) and \(\varepsilon = \frac{\theta}{1 + 2\theta}\),

\[
1 - 2\theta < \|\Gamma y\|_2 < 1 + 2\theta.
\]

For any \(m\)-sparse vector \(u \in S^{p-1}\)

\[
\frac{Au}{\|Au\|_2} \in F_J \quad \text{for } J = \text{supp}(u),
\]

and so

\[
(1 - 2\theta) \|Au\|_2 \leq \|\Gamma Au\|_2 \leq (1 + 2\theta) \|Au\|_2.
\]

Taking \(\tau = \theta/2\) finishes the proof for Theorem 3.2.

3.3 Proof of Lemma 3.6

Note that \(\alpha \geq \|Y_1\|_{\psi_2} \geq \|Y_1\|_2 = 1\). Using the elementary inequality \(t^k \leq k!s^ke^{t/s}\), which holds for all \(t, s > 0\), we obtain

\[
\|E(Y_j^2 - 1)^k\| \leq \max(EY_j^{2k}, 1) \leq \max(k!\alpha^{2k}, E\alpha^2, 1) \leq 2k!\alpha^{2k}
\]

for any \(k \geq 2\). Since for any \(j \ EY_j^2 = 1\), for any \(\tau \in \mathbb{R}\) with \(|\tau|\alpha^2 < 1\)

\[
E\ exp\left[\tau(Y_j^2 - 1)\right] \leq 1 + \sum_{k=2}^{\infty} \frac{1}{k!} |\tau|^k \cdot \|E(Y_j^2 - 1)^k\| \leq 1 + \sum_{k=2}^{\infty} |\tau|^k \cdot 2\alpha^{2k}
\]

\[
\leq 1 + \frac{2\tau^2\alpha^4}{1 - |\tau|\alpha^2} \leq \exp\left(\frac{2\tau^2\alpha^4}{1 - |\tau|\alpha^2}\right).
\]

By Markov’s inequality, for \(\tau \in (0, \alpha^{-2})\)

\[
P\left(\frac{1}{n} \sum_{j=1}^{n} Y_j^2 - 1 > \theta\right) \leq E\ exp\left(\tau \sum_{j=1}^{n} (Y_j^2 - 1) - \tau \theta n\right)
\]

\[
= e^{-\tau \theta n} \cdot (E\ exp\left[\tau(Y^2 - 1)\right])^n \leq \exp\left(-\tau \theta n + \frac{2\tau^2\alpha^4 n}{1 - |\tau|\alpha^2}\right).
\]
Set $\tau = \frac{\theta}{5\alpha^2}$, so $\tau \alpha^2 \leq 1/5$. Then the previous inequality implies
\[
\mathbb{P} \left(\frac{1}{n} \sum_{j=1}^{n} Y_j^2 - 1 > \theta \right) \leq \exp \left(-\frac{\theta^2 n}{10\alpha^4} \right).
\]
Similarly, considering $\tau < 0$, we obtain
\[
\mathbb{P} \left(1 - \frac{1}{n} \sum_{j=1}^{n} Y_j^2 > \theta \right) \leq \exp \left(-\frac{\theta^2 n}{10\alpha^4} \right).
\]

\section{RE condition for random matrices with bounded entries}

We next consider the case of design matrix X consisting of independent identically distributed rows with bounded entries. As in the previous section, we reformulate Theorem 1.8 in the form of an almost isometry condition.

\textbf{Theorem 4.1.} Let $0 < \delta < 1$ and $0 < s_0 < p$. Let $Y \in \mathbb{R}^p$ be a random vector such that $\|Y\|_\infty \leq M$ a.s., and denote $\Sigma = \mathbb{E}YY^T$. Let X be an $n \times p$ matrix, whose rows X_1, \ldots, X_n are independent copies of Y. Let Σ satisfy the RE$(s_0, 3k_0, \Sigma^{1/2})$ condition as in Definition 1.1. Set
\[
d = d(3k_0, \Sigma^{1/2}) = s_0 + s_0 \max_j \left\| \Sigma^{1/2} e_j \right\|_2^2 \left(\frac{16K^2(s_0, 3k_0, \Sigma^{1/2})(3k_0)^2(3k_0 + 1)}{\delta^2} \right).
\]

Assume that $d \leq p$ and $\rho = \rho_{\min}(d, \Sigma^{1/2}) > 0$. If for some absolute constant C
\[
n \geq \frac{CM^2d \cdot \log p}{\rho \delta^2} \cdot \log^3 \left(\frac{CM^2d \cdot \log p}{\rho \delta^2} \right),
\]
then with probability at least $1 - \exp\left(-\delta \rho n / (6M^2d)\right)$ all vectors $u \in \text{Cone}(s_0, k_0)$ satisfy
\[
(1 - \delta) \|u\|_2 \leq \frac{\|X u\|_2}{\sqrt{n}} \leq (1 + \delta) \|u\|_2.
\]

Similarly to Theorem 3.1, Theorem 4.1 can be derived from Theorem 2.1, and the corresponding bound for d-sparse vector, which is proved below.

\textbf{Theorem 4.2.} Let $Y \in \mathbb{R}^p$ be a random vector such that $\|Y\|_\infty \leq M$ a.s., and denote $\Sigma = \mathbb{E}YY^T$. Let X be an $n \times p$ matrix, whose rows X_1, \ldots, X_n are independent copies of Y. Let $0 < m \leq p$. If $\rho = \rho_{\min}(m, \Sigma^{1/2}) > 0$ and
\[
n \geq \frac{CM^2m \cdot \log p}{\rho \delta^2} \cdot \log^3 \left(\frac{CM^2m \cdot \log p}{\rho \delta^2} \right),
\]

(4.1)
then with probability at least \(1 - 2 \exp \left(\frac{-\varepsilon m}{6M^2 m} \right)\) all \(m\)-sparse vectors \(u\) satisfy

\[
1 - \delta \leq \frac{1}{\sqrt{n}} \left\| \frac{Xu}{\|Xu\|_2} \right\|_2 \leq 1 + \delta.
\]

To prove Theorem 4.2 we consider random variables \(Z_u = \frac{\|Xu\|_2}{(\sqrt{n} \|\Sigma^{1/2} u\|_2)} - 1\), and estimate the expectation of the supremum of \(Z_u\) over the set of sparse vectors using Dudley’s entropy integral. The proof of this part closely follows Rudelson and Vershynin (2008), so we will only sketch it. To derive the large deviation estimate from the bound on the expectation we use Talagrand’s measure concentration theorem for empirical processes, which provides a sharper estimate, than the method used in Rudelson and Vershynin (2008).

Proof. For \(J \subset \{1, \ldots, p\}\), let \(E_J\) be the coordinate subspace spanned by the vectors \(e_j, j \in J\). Set

\[
F = \bigcup_{|J| = m} \Sigma^{1/2} E_J \cap S^{p-1}.
\]

Denote \(\Psi = \Sigma^{-1/2} X\) so \(\mathbb{E}\Psi\Psi^T = \text{id}\), and let \(\Psi_1, \ldots, \Psi_n\) be independent copies of \(\Psi\). It is enough to show that with probability at least \(1 - \exp \left(\frac{-\varepsilon m}{6M^2 m} \right)\) for any \(y \in F\)

\[
1 - \frac{1}{n} \sum_{j=1}^n \langle \Psi_j, y \rangle^2 \leq \delta.
\]

To this end we estimate

\[
\Delta := \mathbb{E} \sup_{y \in F} \left| 1 - \frac{1}{n} \sum_{j=1}^n \langle \Psi_j, y \rangle^2 \right|.
\]

The standard symmetrization argument implies that

\[
\mathbb{E} \sup_{y \in F} \left| 1 - \frac{1}{n} \sum_{j=1}^n \langle \Psi_j, y \rangle^2 \right| \leq \frac{2}{n} \mathbb{E} \sup_{y \in F} \left| \sum_{j=1}^n \varepsilon_j \langle \Psi_j, y \rangle^2 \right|,
\]

where \(\varepsilon_1, \ldots, \varepsilon_n\) are independent Bernoulli random variables taking values \(\pm 1\) with probability \(1/2\). The estimate of the last quantity is based on the following Lemma, which is similar to Lemma 3.6 Rudelson and Vershynin (2008).

Lemma 4.3. Let \(F\) be as above, and let \(\psi_1, \ldots, \psi_n \in \mathbb{R}^p\). Set

\[
Q = \max_{j=1, \ldots, n} \left\| \Sigma^{1/2} \psi_j \right\|_\infty.
\]

Then

\[
\mathbb{E} \sup_{y \in F} \left| \sum_{j=1}^n \varepsilon_j \langle \psi_j, y \rangle^2 \right| \leq \sqrt{CmQ^2 \cdot \log n \cdot \log p} \cdot \log \left(\frac{CmQ^2}{\rho} \right) \cdot \sup_{y \in F} \left(\sum_{j=1}^n \langle \psi_j, y \rangle^2 \right)^{1/2}.
\]
Assuming Lemma 4.3, we finish the proof of the Theorem. First, note that by the definition of Ψ_j,

$$\max_{j=1,\ldots,n} \left\| \Sigma^{1/2} \Psi_j \right\|_\infty \leq M \text{ a.s.}$$

Hence, conditioning on Ψ_1, \ldots, Ψ_n and applying Lemma 4.3, we obtain

$$\Delta \leq \frac{2}{n} \sqrt{\frac{CmM^2 \cdot \log n \cdot \log p}{\rho}} \cdot \log \left(\frac{CmM^2}{\rho} \right) \cdot \mathbb{E} \sup_{y \in F} \left(\sum_{j=1}^n (\Psi_j, y)^2 \right)^{1/2},$$

and by Cauchy–Schwartz inequality,

$$\mathbb{E} \sup_{y \in F} \left(\sum_{j=1}^n (\Psi_j, y)^2 \right)^{1/2} \leq \left(\mathbb{E} \sup_{y \in F} \sum_{j=1}^n (\Psi_j, y)^2 \right)^{1/2},$$

so

$$\Delta \leq \frac{2}{\sqrt{n}} \sqrt{\frac{CmM^2 \cdot \log n \cdot \log p}{\rho}} \cdot \log \left(\frac{CmM^2}{\rho} \right) \cdot (\Delta + 1)^{1/2}.$$

If n satisfies (4.1), then

$$\Delta \leq \delta \cdot (\Delta + 1)^{1/2},$$

and thus $\Delta \leq 2\delta$.

For $y \in F$ define a random variable $f(y) = (\langle \Psi, y \rangle)^2 - 1$. Then $|f(y)| \leq (X, \Sigma^{-1/2}y)^2 + 1 \leq M^2 \rho^{-1}m + 1 := a$ a.s., because $\Sigma^{-1/2}y$ is an m-sparse vector, whose norm does not exceed $\rho^{-1/2}$. Set

$$Z = \sup_{y \in F} \sum_{j=1}^n f_j(y),$$

where $f_1(y), \ldots, f_n(y)$ are independent copies of $f(y)$. The argument above shows that $\mathbb{E} Z \leq 2\delta n$. Then Talagrand’s concentration inequality for empirical processes Ledoux (2001) reads

$$\mathbb{P}(Z \geq t) \leq \exp \left(-\frac{t}{6\delta} \right) \leq \exp \left(-\frac{t\rho}{6M^2m} \right)$$

for all $t \geq 2\mathbb{E}Z$. Setting $t = 4\delta n$, we have

$$\mathbb{P}(\sup_{y \in F} \sum_{j=1}^n (\langle \Psi_j, y \rangle^2 - 1) \geq 4\delta n) \leq \exp \left(-\frac{4\delta n \rho}{6M^2m} \right).$$

Similarly, considering random variables $g(y) = 1 - (\langle \Psi, y \rangle)^2$, we show that

$$\mathbb{P}(\sup_{y \in F} \sum_{j=1}^n (1 - (\langle \Psi_j, y \rangle)^2) \geq 4\delta n) \leq \exp \left(-\frac{4\delta n \rho}{6M^2m} \right),$$

which completes the proof of the theorem. \qed
It remains to prove Lemma 4.3. By Dudley’s inequality

\[\mathbb{E} \sup_{y \in F} \left| \sum_{j=1}^{n} \varepsilon_j \langle \psi_j, y \rangle^2 \right| \leq C \int_0^{\infty} \log^{1/2} N(F, d, u) \, du. \]

Here \(d \) is the natural metric of the related Gaussian process defined as

\[
d(x, y) = \left[\sum_{j=1}^{n} \left(\langle \psi_j, x \rangle^2 - \langle \psi_j, y \rangle^2 \right)^2 \right]^{1/2} \leq \left[\sum_{j=1}^{n} \left(\langle \psi_j, x \rangle + \langle \psi_j, y \rangle \right)^2 \right]^{1/2} \cdot \max_{j=1, \ldots, n} |\langle \psi_j, x - y \rangle| \leq 2R \cdot \|x - y\|_Y,\]

where

\[R = \sup_{y \in F} \left(\sum_{j=1}^{n} \langle \psi_j, y \rangle^2 \right)^{1/2}, \quad \text{and} \quad \|z\|_Y = \max_{j=1, \ldots, n} |\langle \psi_j, z \rangle|. \]

The inclusion \(\sqrt{m}B_1^p \supset \bigcup_{|J|=m} E_J \cap S^{p-1} \) implies

\[\sqrt{m} \Sigma^{1/2} B_1^p \supset \Sigma^{1/2} \text{conv} \left(\bigcup_{|J|=m} E_J \cap S^{p-1} \right) \supset \rho^{1/2}F. \]

Hence, for any \(y \in F \)

\[\|z\|_Y \leq \rho^{-1/2} \sqrt{m} \max_{j=1, \ldots, n} \|\Sigma^{1/2} \psi_j\|_\infty = \rho^{-1/2} \sqrt{m}Q. \] (4.2)

Replacing the metric \(d \) with the norm \(\|\cdot\|_Y \), we obtain

\[\mathbb{E} \sup_{y \in F} \left| \sum_{j=1}^{n} \varepsilon_j \langle \psi_j, y \rangle^2 \right| \leq CR \int_0^{\rho^{-1/2} \sqrt{m}Q} \log^{1/2} N(F, \|\cdot\|_Y, u) \, du. \]

The upper limit of integration is greater or equal than the diameter of \(F \) in the norm \(\|\cdot\|_Y \), so for \(u > \rho^{-1/2} \sqrt{m}Q \) the integrand is 0. Arguing as in Lemma 3.7 Rudelson and Vershynin (2008), we can show that

\[N(F, \|\cdot\|_Y, u) \leq N(\rho^{-1/2} \sqrt{m} \Sigma^{1/2} B_{1,1}^p, \|\cdot\|_Y, u) \leq (2p)^l, \] (4.3)

where

\[l = \frac{C \rho^{-1} m \left(\max_{i=1, \ldots, p} \max_{j=1, \ldots, n} |\langle \Sigma^{1/2} e_i, \psi_j \rangle| \right)^2}{u^2} \cdot \log n = \frac{C m Q^2 \cdot \log n}{\rho u^2}. \]

Also, since \(F \) consists of the union \(\binom{p}{m} \) Euclidean spheres, the inclusion (4.2) and the volumetric estimate yield

\[N(F, \|\cdot\|_Y, u) \leq \binom{p}{m} \cdot \left(1 + 2\rho^{-1/2} \sqrt{m}Q \right)^m \leq \left(\frac{ep}{m} \right)^m \cdot \left(1 + 2\rho^{-1/2} \sqrt{m}Q \right)^m. \] (4.4)
Estimating the covering number of F as in (4.3) for $u \geq 1$, and as in (4.4) for $0 < u < 1$, we obtain

$$\mathbb{E} \sup_{y \in F} \left| \sum_{j=1}^{n} \varepsilon_j \langle \psi_j, y \rangle^2 \right|$$

$$\leq CR \int_0^1 \sqrt{m} \cdot \left(\log \left(\frac{ep}{m} \right) + \log \left(1 + \frac{2p^{-1/2} \sqrt{mQ}}{u} \right) \right)^{1/2} du$$

$$+ CR \int_1^{\rho^{-1/2} \sqrt{mQ}} \sqrt{\frac{C m Q^2 \cdot \log n}{\rho^2}} \cdot \sqrt{\log 2p} du$$

$$\leq CR \sqrt{\frac{mQ^2 \cdot \log n \cdot \log p}{\rho}} \cdot \log \left(\frac{C m Q^2}{\rho} \right). \quad \Box$$

Remark 4.4. Note that unlike the case of a random matrix with subgaussian marginals, the estimate of Theorem 4.2 contains the minimal sparse singular value ρ. This is, however, necessary, as the following example shows.

Let $m = 2^l$, and assume that $p = k \cdot m$, for some $k \in \mathbb{N}$. For $j = 1, \ldots, k$ let D_j be the $m \times m$ Walsh matrix. Let A be a $p \times p$ block-diagonal matrix with blocks D_1, \ldots, D_k on the diagonal, and let $Y \in \mathbb{R}^p$ be a random vector, whose values are the rows of the matrix A taken with probabilities $1/p$. Then $\|Y\|_{\infty} = 1$ and $\mathbb{E}Y Y^T = (m/p) \cdot \text{id}$, so $\rho = m/p$. Hence, the right-hand side of (4.1) reduces to

$$\frac{C p \cdot \log p}{\delta^2} \cdot \log \left(\frac{C p \cdot \log p}{\delta^2} \right)$$

From the other side, if the matrix X satisfies the conditions of Theorem 4.2 with, say, $\delta = 1/2$, then all rows of the matrix A should be present among the rows of the matrix X. An elementary calculation shows that in this case it is necessary to assume that $n \geq C p \log p$, so the estimate (4.1) is exact up to a power of the logarithm.

Unlike the matrix Σ, the matrix A is not symmetric. However, the example above can be easily modified by considering a $2p \times 2p$ matrix

$$\tilde{A} = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}.$$

This shows that the estimate (4.1) is tight under the symmetry assumption as well.

References

DONOHO, D. (2004). For most large underdetermined systems of equations, the minimal ℓ_1-norm near-solution approximates the sparsest near-solution. Tech. rep., Stanford University.

DONOHO, D. (2006b). For most large underdetermined systems of equations, the minimal ℓ_1-norm solution is also the sparsest solution. *Communications in Pure and Applied Mathematics* **59** 797–829.

VERSHYNIN, R. (2011b). How close is the sample covariance matrix to the actual covariance matrix?
Journal of Theoretical Probability, to appear.

WAINWRIGHT, M. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ_1-

ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the lasso selection in high-dimensional

ZHOU, S. (2009b). Thresholding procedures for high dimensional variable selection and statistical estima-

ZHOU, S., LAFFERTY, J. and WASSERMAN, L. (2009a). Compressed and privacy sensitive sparse regres-
