

Energy Consumption Targets for Network Systems

Tohru Asami

The University of Tokyo

&

Shu Namiki

National Institute of Advanced Industrial Science and Technologies (AIST)

Part of this work is supported by The New Energy and Industrial Technology Development Organization (NEDO).

Part of this presentation is after SAINT2008 Workshop PCFNS'08 and the Related Panel

• Source

- Workshop Title: Power Consumptions in Future Network Systems
- Panel: Power Consumption Target of Network Systems in the 2030's
- Summary
 - Possible Technologies exist
 - Mobile Business has a lot of possible improvements
 - Carriers' or ISPs' Incentive?
 - Cost of energy over lifetime (5 years) is 1.5% of the average carrier-class router or switch CAPEX*

* Source Luc Ceuppens, SAINT 2008

2 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008 http://www.aist.go.ip

Outline

- Energy Consumption and Technologies Outlook and Our Target
- A Value Proposition for Optical Path Networks
- NEDO project on All Optical LAN using Dynamic Optical Path Switching
- Enabling Technologies
- Summary

3 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

http://www.aist.go.jp

Energy Consumption in Japan since 1990

UTYO

Energy Reduction

ICT Shares Power Consumptions at Home & Office

http://www.enecho.meti.go.jp/info/statistics/ jukyu/resource/xls/2006.xls

Forecast of the energy consumption for IT equipment

7 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

http://www.aist.go.jp AIST

• The current technologies can't scale to the increasing traffic in future.

• 3-4 digit energy saving is necessary, which means we need a new paradigm.

'Super Hi-Vision(SHV)' by NHK

Cisco CRS-1 Router: Largest on earth

Network Topology: Today

CRS-1 Class Routers in Core Networks only

12

Network Topology: Tomorrow???

0

Network technologies: What's **Our Target!**

	Data(PC-PC)	Video(person-person		
Application aspects	Bandwidth Eaters	Email WWW	P2P YouTube	IPTV Video Conference	Immersive, Remote Presence
	Video Definition	SD 0.2 Gbps	HDTV 1.5 Gbps	4k 20 Gbps	8k(SHV) 72 Gbps
	Storage Media	CD 700MB	DVD 9 GB	Blu-ray 50 GB	Multi-layer Near field
	Year	1990's	2000's	2010's	2020's
Network aspects	Network Traffic	0.01	1	> 100	> 1,000
	Ethernet I/F to user	100BASE-T	1000BASE-T	10G-BASE-T	100G?
	Access Connectivity	Dial-up	ADSL/Cable	PON-FTTH	Dedicated connections
	Granularity per user	Voice 10 kbps	Twisted pair 1-10Mbps	Sub-wavelength to wavelegnth > 100Mbps	Wavelength to Fiber > 10Gbps
	Type of Network	Telephone	Internet	NGN/ROADM	Dynamic Optical Networks
		Digital Packets		Fiber Link	

14 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

~

http://www.aist.go.jp

Two Measures for Energy Efficiency

Energy Consumption of Router Modules

Power Consumption by Mobile Business

Misc, 6% Office, 6% Core, 15% BTS, 73%

China Mobile

7,890GWh, 357 M Subscribers in 2007

http://www.aist.go.jp

#Base Stations: 305 x 1000

Minoru Etoh, SAINT 2008

19 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

Power Consumption by Mobile Business

- China Mobile's Information in 2007
 - 7,890 GWh, 357 M Subscribers, 455min phone calls/month
- 7,890GWh /357 M users /365 days
 - ≒ 60Wh/User/Day
- [455min/30(days)]*60(sec) *12Kbps(AMR) =10.92Mbits/User/Day (1.365MBytes/User/Day)
- Operating EER =10.92Mbits/60Wh
 - = 182Kbits/Wh (22.8KBytes/Wh)
 - = 50.6 bits/J

Equipment EER =163Mbits/J for Juniper Networks T1600

(Operating EER of Data center is not known)

Source http://www.chinamobileltd.com/images/pdf/2008/crr/

➤The broadband subscribers in the world=215M Why so much energy is in 2005(Penetration=3.35%:WHITE PAPER required to transfer Information and Communications in Japan). weightless information?

➤World Population in 2020=7,500M. Energy consumption per capita =1/35

Assuming 30% penetration ratio, Energy consumption per capita in 2020=1/10 of that in 2005 (per capita)

21 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

Incentive in Industry

http://www.aist.go.jp

 Cost of energy over lifetime (5 years) is 1.5% of the average carrier-class router or switch CAPEX*.

- No economical reason for energy reduction

- Green IT is driven as a governmental policy.
- Ground-breaking technology has to be sought through 'cross-layer' approach.

* Source Luc Ceuppens, SAINT 2008

Possible Technologies

Power dissipation of SFQ and high-speed semiconductor gates After H. Akaike et. al. Nagoya University & SRL

A hypothesis: why can't we be simple?

- Circuit switching better suits real-time video services.
- At 82 Tb/s throughput, Optical circuit switch operates almost at four orders of magnitude lower electricity than IP routers.

Fundamental Queueing Theory

UTYO

• Packet Switching: M/G/1-PrSh

$$T_{PS} = \frac{E[S]/C_1}{1 - \lambda_1 E[S]/C_1}$$

• Circuit (Path) Switching: M/G/1-FIFO

$$T_{OCS} = \frac{E[S]/C_2}{1 - \lambda_2 E[S]/C_2} \left(1 + \frac{\lambda_2 E[S]}{2C_2} \left(\frac{Var[S]}{E[S]^2} - 1 \right) \right) + G$$

S is the file size, E[S] is the mean file size, C is the transmission speed, λ is the frequency of requests of file transfer, Var[S] is the variance of the file size, G is the guard time of the optical switch.

S. Shioda and S. Namiki, ICC2008, Beijing. P. Molinero-Fernández and N. McKeown, J. Opt. Netw. **2**, 83-96 (2003)

Data- versus Video-centric Network: Rough comparisons

Service:	Data-based	High-Def Video-based
File Size:	From tiny to large	Huge
File Size Variance:	Large	Modest
Delay Fluctuation:	Tolerant	Intolerant
Call Blocking:	Intolerant	Can be tolerant
QoS/QoE:	Depends	Very important
Suitable Net- work Mode: 27 T. Asami and S. Namiki, E	Connection-less Packet switching	23, 2008 http://www.aist.go.jp

Post-NGN: Large Scale Dynamic Optical Path Network

ZZZZ T. Asami and S. Namiki, ECCC 2000, Tu.t.r.o, II Drussels, Belgium, Spet. 23, 2008

Technologies

Network Topology: An Image

Logical Topology of Fiber Mesh Everywhere

NEDO Project on Ultra-fast OTDM-NIC

The New Energy and Industrial Technology Development Organization (NEDO)

The challenge still almost completely remains:

- Potential technologies are there...
- But still need breakthroughs at practical levels.
 - Scalable optical switches and fiber deployment
 - Truly practical all-optical signal processing
 - New 'clean-slate' network architecture
- Need to overcome another Chicken-Egg dilemma
 - Top down and proactive, yet cross-layer approach from applications to optical layer is the key.
 - Need to concurrently identify migration paths and market drivers.

31 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

Key Enabling Optical Technologies User- and/or Application-Driven Optical Path Switching (1) Optical Path Processing Switches and fibers!! Scalable Matrix or WSS - Low cost fiber deployment, like FTTH in Japan **Optical TDM Switching** - Burst Switching Optical Delay Control (2) Optical Path Conditioning Monitorina - Sophisticated fast optical performance monitors **Optical regeneration** Optical dispersion compensators Faster than Electronics Wavelength converters Seamless band – O3R Colorless All-optical format converters **Fast Response** (3) Optical Path Interface Format-agnostic Integrated network interface cards (Tx/Rx) Wavelength Division Multiplexing (WDM) Optical Time Division Multiplexing (OTDM)

32 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

Multi-level optical coherentBurst-mode Operation

http://www.aist.go.jp

http://www.aist.go.jp AIST

Summary

- Identified the bottleneck of energy consumption in near future
- Proposed Dynamic Optical Path Network to be very energy-saving
- Introduced efforts on optical NIC development in NEDO project
- Listed enabling technologies and many challenges
- In conclusion, in the long run, the energy bottleneck will emerge from completely different levels to drastically modify the telecom industry.
- Governmental and/or academic, 'proactive' and global initiatives will be the key.
 - AIST recently launched a project called, "VICTORIES"; Vertically Integrated Center for Technologies of Optical Routing toward Ideal Energy Savings
- 33 T. Asami and S. Namiki, ECOC 2008, Tu.4.A.3, in Brussels, Belgium, Spet. 23, 2008

http://www.aist.go.jp

Contact: Shu Namiki shu.namiki@aist.go.jp