Shu Quan

Shu Quan
East China University of Science and Technology | ECUST · School of Biotechnology

Doctor of Philosophy

About

40
Publications
6,210
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
753
Citations
Citations since 2016
29 Research Items
535 Citations
2016201720182019202020212022020406080100120140
2016201720182019202020212022020406080100120140
2016201720182019202020212022020406080100120140
2016201720182019202020212022020406080100120140

Publications

Publications (40)
Article
Human mixed-lineage leukemia (MLL) family methyltransferases methylate histone H3 lysine 4 to different methylation states (me1/me2/me3) with distinct functional outputs, but the mechanism underlying the different product specificities of MLL proteins remains unclear. Here, we develop methodologies to quantitatively measure the methylation rate dif...
Article
Full-text available
Dumpy-30 (DPY30) is a conserved component of the mixed lineage leukemia (MLL) family complex and is essential for robust methyltransferase activity of MLL complexes. However, the biochemical role of DPY30 in stimulating methyltransferase activity of MLL complexes remains elusive. Here, we demonstrate that DPY30 plays a crucial role in regulating ML...
Article
Full-text available
Molecular chaperones play a central role in regulating protein homeostasis, and their active forms often contain intrinsically disordered regions (IDRs). However, how IDRs impact chaperone action remains poorly understood. Here, we discover that the disordered N terminus of the prototype chaperone Spy facilitates client release. With NMR spectrosco...
Article
Full-text available
RNA-binding proteins (RBPs) play an essential role in regulating the function of RNAs in a cellular context, but our ability to control RBP activity in time and space is limited. Here, we describe the engineering of LicV, a photoswitchable RBP that binds to a specific RNA sequence in response to blue light irradiation. When fused to various RNA eff...
Article
Molecular chaperones are diverse biomacromolecules involved in the maintenance of cellular protein homeostasis (proteostasis). Here we demonstrate that in contrast to most chaperones with defined three-dimensional structures, the acid-inducible protein Asr in Escherichia coli is intrinsically disordered and exhibits varied aggregation-preventing or...
Article
Antigen 43 is a surface-displayed autotransporter protein that mediates bacterial self-association and pathogenicity. The quality control factors that facilitate Ag43 crossing the periplasm and inserting into the outer membrane remain enigmatic, mostly because Ag43 is phase variable and associated with heterologous phenotypes, which obscures the mu...
Article
Full-text available
Outer membrane proteins (OMPs) play critical roles in bacterial pathogenicity and provide a new niche for antibiotic development. A comprehensive understanding of the OMP quality control network will strongly impact antimicrobial discovery.
Article
Full-text available
In this information era, there is an urgent need for tighter integration of bioinformatics and experimental biology. The enormous amount of data generated by biological experiments calls for extensive computational analysis. Many bioinformatics textbooks at present mainly focus on theories, which hinders the vigorous development of scientific resea...
Article
Full-text available
The methyltransferases MLL3 and MLL4 primarily catalyze the mono-methylation of histone H3 lysine 4 (H3K4) on enhancers to regulate cell-type-specific gene expression and cell fate transition. MLL3 and MLL4 share almost identical binding partners and biochemical activities, but perform specific and non-redundant functions. The features and function...
Article
Full-text available
Significance Protein stability is central to the pathogenesis of several major human diseases and is the key to extensive research. Improved methods are needed for protein stability engineering. Here, we present a high-throughput screening strategy to stabilize proteins by linking their stabilities to the fluorescent readout of cells expressing an...
Article
Full-text available
Saccharomyces cerevisiae TBP associated factor 14 (Taf14) is a well-studied transcriptional regulator that controls diverse physiological processes and that physically interacts with at least seven nuclear complexes in yeast. Despite multiple previous Taf14 structural studies, the nature of its disparate transcriptional regulatory functions remains...
Article
Full-text available
Chaperones are essential components of the protein homeostasis network. There is a growing interest in optimizing chaperone function, but exactly how to achieve this aim is unclear. Here, using a model chaperone, the bacterial protein Spy, we demonstrate that substitutions that alter the electrostatic potential of Spy’s concave, client-binding surf...
Article
Full-text available
In the original publication of the article, under the “Acknowledgement” section, the Grant No. 31611011097 should read as No. 31661143021.
Article
Full-text available
Abstract Terpenoids are a group of largest natural products with important biological functions, and their efficient biosynthesis is of particular importance to both academia and industry. As the building blocks for terpenoid biosynthesis, a suitable supply of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) is extremely crucial...
Article
Full-text available
A central aspect of aging research concerns the question of when individuality in lifespan arises1. Here we show that a transient increase in reactive oxygen species (ROS), which occurs naturally during early development in a subpopulation of synchronized Caenorhabditis elegans, sets processes in motion that increase stress resistance, improve redo...
Article
Substrate inhibition of enzymes is one of the main obstacles encountered frequently in industrial biocatalysis. Haloketone reductase SsCR was seriously inhibited by substrate 2,2',4'-trichloroacetophenone. In this study, two essential loops were found that have a relationship with substrate binding by conducting X-ray crystal structure analysis. Th...
Article
Full-text available
Abstract Protein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establis...
Article
The soluble expression of recombinant proteins in Escherichia coli is vital for protein applications in biotechnology and pharmaceuticals. However, the use of E. coli for efficient heterologous protein expression is hampered by several factors, such as poor expression and protein aggregation. Changing the culture or purification conditions may alle...
Preprint
A central aspect of aging research concerns the question as to when individuality in lifespan arises and what mechanism(s) promote and potentially manifest individual differences in longevity. We have now discovered that a transient increase in reactive oxygen species (ROS), which occurs naturally during early development in a subpopulation of sync...
Article
Full-text available
It is important that bacterium can coordinately deliver several effectors into host cells to disturb the cellular progress during infection, however, the precise role of effectors in host cell cytosol remains to be resolved. In this study, we identified a new bacterial virulence effector from pathogenic Edwardsiella piscicida, which presents conser...
Article
Bacterium usually utilizes type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host-pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide...
Article
Full-text available
Objective: To investigate the application of the TEM-1 β-lactamase protein fragment complementation assay (PCA) in detecting weak and unstable protein-protein interactions as typically observed during chaperone-assisted protein folding in the periplasm of Escherichia coli. Results: The TEM-1 β-lactamase PCA system effectively captured the intera...
Article
Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone-substrate complexes would ultimately reveal how c...
Article
Full-text available
Experimental study of the role of disorder in protein function is challenging. It has been proposed that proteins utilize disordered regions in the adaptive recognition of their various binding partners. However apart from a few exceptions, defining the importance of disorder in promiscuous binding interactions has proven to be difficult. In this p...
Article
Proteomic analysis on cell envelope proteins from Gram-negative bacteria requires specific isolation techniques. We found that conventional extraction methods such as osmotic shock cause extracts to be heavily contaminated with soluble cytoplasmic proteins. These cytoplasmic protein contaminants constitute the major signal in proteomic analysis and...
Article
Molecular chaperones assist de novo protein folding and facilitate the refolding of stress-denatured proteins. The molecular chaperone concept was coined nearly 35 years ago, and since then, tremendous strides have been made in understanding how these factors support protein folding. Here, we focus on how various chaperone proteins were first ident...
Article
Full-text available
Amyloid formation is an ordered aggregation process, where β-sheet rich polymers are assembled from unstructured or partially folded monomers. We examined how two Escherichia coli cytosolic chaperones, DnaK and Hsp33, and a more recently characterized periplasmic chaperone, Spy, modulate the aggregation of a functional amyloid protein, CsgA. We fou...
Article
Full-text available
To optimize the in vivo folding of proteins, we linked protein stability to antibiotic resistance, thereby forcing bacteria to effectively fold and stabilize proteins. When we challenged Escherichia coli to stabilize a very unstable periplasmic protein, it massively overproduced a periplasmic protein called Spy, which increases the steady-state lev...
Article
Protein folding is assisted by molecular chaperones and folding catalysts in vivo. Understanding how chaperones are regulated and how they function in vivo may provide new avenues for developing protein folding modulators. We used directed evolution which combines DNA manipulation and powerful selection procedures for beneficial mutations in protei...
Article
Full-text available
SecA is an obligatory component of the Escherichia coli general secretion pathway. However, the oligomeric structure of SecA and SecA conformational changes during translocation processes are still unclear. Here we obtained the three-dimensional structure of E. coli wild-type full-length SecA in solution by single particle cryo-electron microscopy...
Article
Full-text available
Thioredoxin exported into the Escherichia coli periplasm catalyzes the oxidation of protein thiols in a DsbB-dependent function. However, the oxidative activity of periplasmic thioredoxin is insufficient to render dsbA(-) cells susceptible to infection by M13, a phenotype that is critically dependent on disulfide bond formation in the cell envelope...
Article
Full-text available
The CXXC active-site motif of thiol-disulfide oxidoreductases is thought to act as a redox rheostat, the sequence of which determines its reduction potential and functional properties. We tested this idea by selecting for mutants of the CXXC motif in a reducing oxidoreductase (thioredoxin) that complement null mutants of a very oxidizing oxidoreduc...
Article
As a member of small heat shock proteins, HSP16.3 was identified as the major membrane-bound protein of Mycobacterium tuberculosis during stationary phase. Previous studies revealed that HSP16.3 was in a nonameric form in solution. Here, two-dimensional crystal of HSP16.3 molecules on lipid monolayer was obtained for the first time. The crystal exh...

Network

Cited By