
Enhancement of Hadoop Clusters with Virtualization
Using the Capacity Scheduler

Aparna Raj
aparnaraj.k@iiitb.org

Kamaldeep Kaur
kamaldeep.kaur@iiitb.org

Uddipan Dutta
Uddipan.Dutta@iiitb.org

V Venkat Sandeep
Sandeep.VV@iiitb.org

Shrisha Rao
shrao@ieee.org

Abstract—We present a virtualized setup of a
Hadoop cluster that provides greater computing ca-
pacity with lesser resources, since a virtualized cluster
requires fewer physical machines. The master node
of the cluster is set up on a physical machine, and
slave nodes are set up on virtual machines (VMs)
that may be on a common physical machine. Hadoop
configured VM images are created by cloning of
VMs, which facilitates fast addition and deletion of
nodes in the cluster without much overhead. Also,
we have configured the Hadoop virtualized cluster to
use capacity scheduler instead of the default FIFO
scheduler. The capacity scheduler schedules tasks
based on the availability of RAM and virtual memory
(VMEM) in slave nodes before allocating any job. So
instead of queuing up the jobs, they are efficiently
allocated on the VMs based on the memory avail-
able. Various configuration parameters of Hadoop are
analyzed and the virtualized cluster is fine-tuned to
ensure best performance and maximum scalability.

Keywords-Hadoop, virtualization, capacity sched-
uler, MapReduce, VM cloning, virtualized cluster

I. Introduction
In this work, we propose a way to enhance the Hadoop

[1] cluster with virtualization, which reduces the time
and money spent on the infrastructure as well as the
manpower needed to maintain it, considerably. This ap-
proach increases the hardware utilization and improves
performance. Hadoop clusters are widely deployed to
process large amounts of data. Though large clusters
are preferred due to the improved computing power,
setting them up is both costly and time-consuming.
After installation of Hadoop, each node in the cluster
has to be configured individually for running MapReduce
tasks. Also, if the cluster is to be extended later by
adding a new physical machine, the whole procedure
of installation and configuration of Hadoop on the new
machine is to be repeated. Thus, allocation of new re-
sources is time-consuming for a normal cluster. Though
Hadoop MapReduce works well on physical systems,
quick provisioning of resources is a problem. Setting up
and configuring Hadoop on a new physical machine and
adding it as a node to an existing Hadoop cluster is time
consuming. But with virtualization, a new node config-
ured with Hadoop can be easily created with cloning of
an already configured VM.

1) As the computations involved are large, a lot
of resources should be quickly coordinated and
properly allocated. If there are a large number of
requests at a particular time, and if the Hadoop en-
vironment requires more resources to process these
requests, adding and configuring a new physical
machine takes a considerable amount of time.

2) For a large job, adding more TaskTrackers to the
cluster helps in faster computations, but there is
no flexibility in adding or removing nodes from
a Hadoop cluster set up entirely on physical ma-
chines.

This work aims at enhancing the Hadoop environment
with more virtualized infrastructure so that a Hadoop
cluster can be easily extended. If more nodes are required
to finish jobs in a cluster, a VM can be cloned to
produce a new node. Such a clone can be created from
a predefined machine image with the required Hadoop
configuration and software. As it is already configured
according to the requirements, it can be added to the
Hadoop cluster easily, to solve the problem of quick
resource provisioning on Hadoop. With multiple VMs
running, the overall utilization of the cluster is improved.
Integrating a Hadoop cluster with virtualization can
solve such management problems for Hadoop. In this
work we present a virtualized setup of Hadoop with
some nodes set up on VMs. This enhances an existing
cluster with quicker resource allocation capabilities and
improved performance. VM cloning is done for quicker
creation of new nodes in the cluster, and the perfor-
mance of the cluster is improved by configuring the
cluster to use the capacity scheduler. This reduces the
hardware footprint, which in turn reduces the cost. This
approach also works for Hadoop clusters where some
of the nodes are physical machines, i.e., it does not
require virtualization of the complete cluster. Along with
reducing the cost and time required for cluster setup,
the performance of the virtualized cluster is improved
by configuring the cluster to use the capacity scheduler
instead of the default FIFO scheduler. The capacity
scheduler takes the memory capacities of nodes into
consideration while scheduling jobs. Memory-intensive
jobs are well supported by this scheduler as such jobs can

2012 Third International Conference on Services in Emerging Markets

978-0-7695-4937-8/12 $26.00 © 2012 IEEE

DOI 10.1109/ICSEM.2012.15

50

specify higher memory requirements if necessary. With
the capacity scheduler, jobs get allocated considering
how much RAM is available on each node. This partic-
ularly suits a virtualized cluster, because though VMs
have less RAM when compared to physical machines,
jobs are allocated according to the RAM available. This
results in faster execution of jobs and hence performance
improvement.

To analyze the performance, a virtualized cluster was
compared with a cluster consisting of only physical
machines. Although both clusters had the same num-
ber of physical machines, the number of nodes on the
virtualized cluster was more. The execution time on
the virtualized cluster was measured against that in
the normal cluster. We observed a decrease of about
24 percent in the execution time of virtualized cluster
when compared to the normal cluster. The performance
of the virtualized cluster with and without capacity
scheduler was also analyzed experimentally. With all
other parameters remaining the same, the scheduler of
the virtualized cluster was changed. The execution times
with both FIFO scheduler and capacity scheduler were
measured on the virtualized cluster. We observed that
job execution took less time with the capacity scheduler
and an average improvement of 13 percent was achieved.
The improvement was especially significant for larger
input sizes.

The rest of this paper is organized as follows. Sec-
tion II outlines the technologies used in this work,
such as Hadoop, capacity scheduler and virtualization.
The modified architecture of a Hadoop cluster with
virtualization and the configuration details of VM and
capacity scheduler are described in Section III. VM
cloning and the required network settings for VM are
also explained. In Section IV, we present the results
showing the performance improvement achieved with the
virtual cluster. We conclude our paper in Section V with
suggested future work.

II. Background
In this section we give an overview of the working of

Hadoop and the capacity scheduler and the advantages
of using virtualization.

A. Hadoop
Hadoop has emerged as one of the most popular imple-

mentations for MapReduce [1]. Hadoop started with its
MapReduce implementation but expanded very fast, and
nowadays includes other projects to provide the required
infrastructure, such as HDFS (Hadoop Distributed File
System) [1] that provides the distributed file system
required for a MapReduce implementation, becoming in
this way a complete software solution. A Hadoop cluster
has one node acting as the master node, and the other

Figure 1. Architecture of Hadoop Cluster [1]

nodes are slave nodes. The Hadoop deamon, which deals
with the user-submitted jobs, known as JobTracker,
resides on the master node. The JobTracker receives a
request from the user, which is known as a job. It then
splits the job into different small tasks and schedules
these tasks on the TaskTrackers to execute. The Task-
Tracker is a Hadoop deamon where the actual execution
takes place, and each slave node has one TaskTracker.
The jobs also include the "map" and "reduce" functions
and their configurations.

The Hadoop cluster has a distributed file system
within it, known as the HDFS. It also has client server
architecture just like MapReduce. The basic architecture
of the Hadoop cluster is shown in Figure 1. The central
node here is known as the NameNode, and holds all the
meta data about the files. It also includes several slave
nodes known as DataNodes, which store the data. Thus
a master node in the cluster consists of a JobTracker and
a NameNode, while each of the slave nodes comprises a
TaskTracker and a DataNode. As shown in Figure 1, the
JobTracker on the master node controls the TaskTrack-
ers on the slave nodes, and similarly the NameNode on
the master node controls the DataNodes on the slave
nodes.

The JobTracker creates map and reduce tasks, once
the data is available in the DataNodes. The number of
map tasks is determined by the size of the input data.
The JobTracker keeps track of all running tasks, and
when the map tasks are finished, it starts the reduce
tasks [2]. Reduce tasks consists of three phases namely,
copy, sort and reduce. Normally, the reduce phase waits
untill the map phase is finished. But it is also possible to
run the first of the reduce task while the partial results
of the map phase arrive. As soon as the sort and copy

51

phases are done, the data is passed to the reduce function
and its output is written to the HDFS.

As the JobTracker has to maintain all the other nodes,
the overhead on it is considerably higher when compared
to the TaskTracker nodes. Similarly a NameNode has
more tasks at hand than the DataNodes. So the master
node of the cluster is configured on a dedicated physical
machine. The master node also has a SecondaryNameN-
ode, for use in case of failure of the NameNode.

B. Capacity Scheduler
Hadoop has a default FIFO scheduler that runs jobs

in the order of submission, and supports basic priorities.
Alternative and customized schedulers have also been
added, particularly for the multi-user and multi-job
scenarios. One such scheduler is the capacity scheduler
[3], which supports scheduling of tasks on a TaskTracker
based on a job’s memory requirements and the availabil-
ity of RAM and Virtual Memory (VMEM) [3] on the
TaskTracker node. Jobs are submitted to the multiple
queues of the capacity scheduler. The jobs allocated and
the fraction of the capacity allotted are balanced by
the scheduler to have a uniform allocation. The queues
support job priorities as well. Each queue enforces an
upper limit on the percentage of resource allocation
per user. This prevents a few jobs from dominating
the resources. The capacity scheduler takes only the
memory capacity of the nodes into consideration while
scheduling jobs and hence it is best suited for scheduling
memory intensive jobs. By using this scheduler, it is
possible to reduce the execution time of jobs, and it also
helps achieve improved throughput. The utilization of
the cluster can also be increased. Jobs can specify higher
memory requirements if necessary, and such jobs are run
only on TaskTrackers with more memory.

C. Virtualization
Virtualization is an older software technology that

has, within the past decade, become widely used and
is well on the way to transforming the practice of IT,
changing the manner that computing hardware (par-
ticularly for enterprise systems) is used. Virtualization
permits the running of multiple virtual machines (VMs)
on a single physical machine, sharing the resources of a
single hardware unit across multiple virtualized devices.
Different virtual machines can run different operating
systems and multiple applications on the same physical
computer. For instance, a single large blade server can
host VMs running a file server, a mail server, a web
server, etc. Since a given server is not utilized highly at
all times, such virtualization brings about an increase in
the effective utilization of the hardware. Organizations
can also reduce their “hardware footprint” by running
many VMs on a smaller set of physical machines, which

in turn brings about savings in costs for power, real
estate, and the like.

Likewise, we hold that by virtualizing nodes in a
Hadoop cluster, better resource utilization can be en-
sured. This also enables quicker addition and deletion of
nodes without much overhead. Partitioning each node to
a number of virtual machines (VMs), gives us a number
of benefits [4]:

1) Scheduling: With VMs, hardware utilization can
be increased. When more computing capacity is
required for scheduling batch jobs, the unused
capacity of the hardware can be used by other
VMs.

2) Resource Utilization: Different kinds of VMs can
be hosted on the same physical machine. Hadoop
VMs can be used along with VMs for other tasks.
This results in better resource utilization by con-
solidating different kinds of applications.

3) Datacenter Efficiency: There is a greater variety of
the types of tasks that can be run on a virtualized
infrastructure, and it is possible to run cross-
platform applications as well.

4) Deployment: Deployment times for new nodes in a
Hadoop cluster can be greatly reduced by virtual-
ization. Configuring Hadoop on a machine can be
done quickly by cloning an already configured VM.

By creating a Hadoop cluster with VMs, better re-
source utilization can be achieved. The Hadoop envi-
ronment is modified to use the capacity scheduler. Its
capability to schedule tasks based on a job’s memory
requirements in terms of RAM and virtual memory on a
slave node makes it better suited to a virtualized Hadoop
cluster.

III. Design And Implementation

To analyze the performance of Hadoop clusters with
virtualization, different Hadoop clusters were designed
with some of the nodes on virtual machines. Thus the
clusters formed contained Hadoop daemons on both
physical machines as well as on virtual machines. The
architecture, configuration and working of a virtualized
Hadoop cluster are explained further in this section.

A. Architecture
A virtualized Hadoop cluster was set up with the

master node on a physical machine and slave nodes
on VMs. The architecture of the system is depicted in
Figure 2.

As shown in Figure 2, the master node of the cluster
is set up on a physical machine. The Hadoop daemons,
NameNode and JobTracker are run on the master node.
Other slave nodes required to form the cluster are set
up on VMs. Multiple VMs are set up as slave nodes on

52

Figure 2. Architecture of Virtualized Hadoop Cluster

which the Hadoop daemons, DataNode and Task-
Tracker [1] are run. The addition of a new slave node can
be easily achieved by cloning of an already configured
VM. In order to extend the cluster, a new node can be
created by cloning an already configured VM. When the
new node is included in the list of slaves in the master
node, it also becomes a part of the cluster.

Once the input files are copied to the file system,
HDFS distributes it among the DataNodes. Once the
data is distributed and made available in the DataNodes,
the JobTracker creates map and reduce tasks. Depending
on the size of the input, the number of map tasks is
determined. On a standard Hadoop cluster, the FIFO
scheduler runs jobs in the order of submission. Here in
the proposed virtualized cluster, the capacity scheduler
is configured, which takes the memory and availability
of RAM on the TaskTrackers into consideration while
scheduling jobs.

B. VM Installation and Configurations
Oracle VM VirtualBox [5], a software package for

creating and maintaining VMs, was used for creating
VMs. Oracle VM VirtualBox was installed on an exist-
ing host operating system as an application. This host
application allows additional guest operating systems,
each known as a Guest OS, to be loaded and run, each
with its own virtual environment.

VM Installation
First, a virtual hard disk image was created, with

base memory 512 MB and a maximum of 8GB storage.
For more flexible storage management, a dynamically
allocated virtual disk file was created [6], which used
space on the physical hard disk as it fills up. Though
it does not shrink again automatically when space is
freed, it has much better performance than a statically

allocated hard disk. Initially the disk was very small and
did not occupy any space for unused virtual disk sectors.
Thereafter, the disk grows every time a disk sector is
written for the first time, until the drive reaches the
maximum capacity chosen.

Hadoop on VM
A VM was created with the above specification, and

Ubuntu was installed as the guest operating system.
The Sun Java was installed on the VM, after adding
the necessary repository to the VM [7]. SSH was then
installed and configured on the VM. The Hadoop source
folder was copied to the VM, by using the scp command,
i.e., secure copy command. scp is used for secure copying
of data. First a single node cluster was run on the VM.
After ensuring the correct working of hadoop on VM, it
was configured as a slave node in the cluster.

Network Settings for VM
To establish connection between the VM and the host

machine, network settings were changed. Bridge utils,
vtun and uml utilites [8] were installed on the host
machine. A bridge and a tap device were created on the
host machine for the guest to use. Two network adapters
were enabled in the VM. Along with the default Network
Address Translation (NAT) Adapter, a bridged adapter
was also configured to use the tap device [8] created on
the host. With these settings SSH connection was suc-
cessfully established between the Host and the VM. The
process of creating the bridge and the tap device, on the
host machine, was automated. A script was scheduled to
run at boot time. Thus at system startup, the bridge and
tap device were created automatically. For extending it
to multiple machines, multiple tap devices can be created
and each VM can be attached to one device.

53

VM Cloning
A virtual image of the Hadoop configured machine

was obtained by cloning the VM. The cloned VM is an
exact replica of the machine from which it is cloned.
This made the whole process of creating a new Hadoop
configured machine very much faster. As the machine
is cloned, the new machine also has the same name
and ip address as the first one. In order to distinguish
between each node in the cluster, the machine names
and ip addresses should be distinct. This was fixed by
editing the name of the new machine in /etc/hosts/
and /etc/hostname. A new ip address was assigned to
the bridged adapter interface by setting the network
parameters in /etc/network/ interfaces. Thus a fully
configured slave node was created to add to the Hadoop
cluster.

C. Configuration of Capacity Scheduler
The capacity scheduler was built from source by exe-

cuting the Ant package. The obtained jar file of capacity
scheduler was placed in hadoop/build/contrib/ folder.
The Hadoop master node was then configured to use the
capacity scheduler instead of the default scheduler.
The configuration settings for the capacity scheduler are
as follows.

HADOOP CLASSPATH [7] in conf/hadoop-env.sh
was modified by specifying the capacity-
scheduler jar. Then the file Mapred-site.xml
[3] was modified to include a new property,
mapred.jobtracker.taskScheduler with value
org.apache.hadoop.mapred.CapacityTaskScheduler
The configuration is given in Table I

Table I
Configuration for capacity scheduler in mapred-site.xml

[3]

<property>
<name>mapred.job.tracker.taskScheduler</name>
<value>org.apache.hadoop.Mapred.
capacityTaskSceduler</value>
<description>
The scheduler which is to be used by the jobtracker
</description>
</property>

The capacity scheduler does memory based scheduling
based on the VMEM or RAM on TaskTracker nodes. It
is done as follows [3].

1) After the necessary parameters are set, the capac-
ity scheduler enables scheduling based on VMEM.
For this, the free VMEM on a TaskTracker node
is computed. On each heartbeat, a TaskTracker
node sends the node’s total VMEM and the offset.
Available VMEM is the total VMEM minus the

offset. The free VMEM is then calculated as the
difference between the available VMEM and the
sum of VMEM task limits on the VMs already
allocated to running tasks. Now the scheduler com-
pares this value with the VMEM requirements for
the job at hand. If the job’s VMEM requirements
are less than the available VMEM on the node,
the job’s task can be scheduled. Otherwise, that
task is not scheduled on that TaskTracker. By
doing this, the scheduler ensures that jobs with
high memory requirements are not left out. It
gets executed as and when the TaskTracker has
enough VMEM available. In case the job with high
memory requirements does not have any task to
run, the scheduler goes on to the next job in queue.

2) The capacity scheduler can also consider RAM
on a TaskTracker node along with the VMEM.
Scheduling based on RAM is done in the same way
as that based on VMEM. The total RAM available
on a TaskTracker is taken into account along with
an offset. Then the available RAM on the node is
computed by the scheduler. Users can optionally
specify a RAM limit for the jobs submitted just like
a VMEM limit can be submitted. The scheduler
takes the RAM requirements of a job into account,
if specified.

3) Along with taking the specified RAM or VMEM
requirements into account, the scheduler also en-
sures that jobs cannot demand for RAM or VMEM
higher than certain limits. If higher RAM or
VMEM than the configured limit is specified by
any job, then the job is failed when it is submitted.

D. Setting Up Virtual Hadoop Cluster
Virtual clusters of varying size were set up. One of the

physical machines was configured to be the master node
of the cluster. VMs were configured to be the slave nodes
of the cluster. The master node was configured on a
physical machine so that the NameNode and JobTracker
daemons can be run on a machine with higher capacity.
This ensures better performance for the jobs run on the
cluster. In order to ensure scalability of the cluster, it
was extended to multiple VMs.

After establishing connection between all the nodes
of the cluster, MapReduce programs were run. The
execution of MapReduce tasks was repeated for different
input sizes. Clusters of different size were also configured
by repeating the above steps. The time taken for each
MapReduce job was analyzed. The performance of the
virtual cluster was enhanced by making use of the
capacity scheduler, which takes memory storage on each
node, into account. The master node was configured to
use capacity scheduler and the whole virtual cluster was
running MapReduce with capacity scheduling. Running

54

MapReduce Jobs: Following procedure was followed for
running MapReduce [1] tasks.

1) $HADOOP_PATH was configured in
/usr/local/hadoop.

2) Formatting NameNode: The NameNode was for-
matted prior to starting up the cluster, in case hdfs
size changes or new data comes in.
Command: $HADOOP_PATH/bin/hadoop namenode
-format

3) Starting Hadoop-Deamons : The Hadoop deamons
JobTracker, TaskTracker, NameNode, DataNode
and Secondary NameNode was started up.
Command: $HADOOP_PATH/bin/start-all.sh

4) The deamons can also be started individually on
each node.
Command: $HADOOP_PATH/bin/hadoop-deamon.sh
start <deamon-name>

5) Copying data files : The files on which the
MapReduce job is executed is first copied into the
HDFS.
Command: $HADOOP_PATH/bin/hadoop dfs-
copyFromLocal <local-path> <hdfs-location>

6) Running MapReduce : Once the data files are in
place, the MapReduce job is run.
Command: $HADOOP_PATH/bin/hadoop
<program-name> <input-path> <output-path>

Automated Running Through Scripts
Scripts were created to run Hadoop MapReduce.

Scripts were also created for cloning of VM to obtain
hadoop configured VM image. Scripts were also created
for the process of starting up VM and setting up network
configurations of the VM. The process of hadoop startup
in the VM was also automated. A script was created
for starting up the Hadoop daemons. The script was
scheduled to run at the boot time of the VM. Thus the
Hadoop daemons were started up automatically when
the VM was started [6].

IV. Performance Metrics
Virtualized clusters of various sizes were set up, and

performance was analyzed for varying input sizes by
running MapReduce tasks. The variation in execution
times was also observed by varying cluster size and
configuration parameters. The results of the experiments
are presented here.

A. Comparison of Normal and Virtualized Clusters
With the number of physical machines remaining the

same, normal and virtualized Hadoop clusters were set
up. Normal cluster consisted of only the physical ma-
chines as the nodes. Virtualized cluster was setup with
VMs in each system along with the physical machine
nodes.

Table II
Comparison between runtimes of Normal and Virtualized

Cluster

Input Size(MB) T1(s) T2(s) Improvement(%)
10 14 34 58.82
20 30 36 29.73
30 41 45 16.67
40 46 50 8.89
50 48 52 7.69
60 33 50 34.00
70 50 60 16.67

Thus the virtualized cluster had more nodes than
the normal cluster even though both had the same
number of physical machines. The virtual nodes on each
machine were decided according to the system capacity.
The performances of both clusters were analyzed by
running MapReduce jobs with inputs of varying sizes.
The experimental data are listed in Table II as input
file size in MB, time taken for execution of the job in
normal cluster and time taken for the execution in the
virtualized cluster.

Figure 3. Graph for Normal vs Virtualized Cluster Runtime

The experiment was repeated for the different input
sizes, as listed in Table II. In Table II, T1 denotes the
time taken for execution by a virtualized Hadoop cluster
and T2 denotes the time taken for execution by a normal
Hadoop cluster.

Figure 3 shows a comparison between the performance
of a normal cluster and a virtualized cluster on a single
physical machine. It shows that better performance was
achieved with virtual Hadoop cluster, meaning the bet-
ter resource utilization is achieved with virtualization.

55

B. Comparison of Virtualized Clusters With and With-
out Capacity Scheduler

On the virtualized cluster, execution times were mea-
sured with the default FIFO scheduler and with the ca-
pacity scheduler. While both gave almost similar results
for smaller file sizes, as the file size increased, the cluster
with the capacity scheduler was found to be significantly
faster. The experimental data are listed in Table III as
input file size in MB, time taken for the execution in
the virtualized cluster configured to use the capacity
scheduler and time taken for execution of the job in
virtual cluster with FIFO scheduler.

Table III
Virtualized Cluster With FIFO Scheduler vs Virtualized

Cluster With Capacity Scheduler

Input Size(MB) T1(s) T2(s) Improvement(%)
10 35 40 12.5
20 57 60 5
30 67 75 10.67
40 90 94 4.26
50 86 97 11.34
60 78 90 13.33
70 62 94 34.04

Figure 4. Graph for Comparison Between Virtualized Cluster with
FIFO Scheduler and with Capacity Scheduler

In Table III, T1 denotes the time taken for execution
on a Hadoop cluster with capacity scheduler and T2
denotes the time taken for execution on the cluster with
the default FIFO scheduler.

Figure 4 shows a comparison between the perfor-
mances of two virtualized clusters. One of the clusters
was configured to use the capacity scheduler while the

other was configured to use the default FIFO scheduler.
The execution times of both clusters were measured. The
experiment was repeated for different input sizes listed
in Table III. With smaller input sizes, the improvement
in execution time is less significant, but as the input file
size increases, the capacity scheduler gives significantly
better performance than the default FIFO scheduler.
The benefits of using virtualization and of using the
capacity scheduler are obviously cumulative, but we do
not present the experimental comparison of a normal
cluster and a virtualized cluster with capacity scheduler.

C. Performance Parameters for Real Time Clusters
In addition to the performance improvement achieved

with the use of virtualization, a Hadoop cluster can be
fine tuned for even better performance by setting some
configuration parameters. There are various Hadoop
configuration parameters which directly affect MapRe-
duce job performance under various conditions. These
parameters were analyzed in order to improve the per-
formance of the virtaulized cluster. These parameters
differ for each cluster depending on the input size, block
size etc. Some of the parameters that were analyzed for
the virtualized Hadoop cluster are listed below [9].

1) dfs.block.size: The input data is split into dif-
ferent blocks before processing. dfs.block.size de-
termines the size of the chunk to which the data is
split. Increasing the block size reduces the number
of map tasks. It is best to determine DFS block
size according to the complexity of the map tasks,
i.e., if the computations involved in each map task
is such that one data block takes a lot of time, then
the number of DFS blocks should be less.

2) Temporary space: If jobs are large, more space is
required to store the map output, during execuion.
By default, any intermediate data is stored in
temporary space. Increasing temporary space is
advantageous to large jobs.

3) mapred.local.dir: Any temporary Mapreduce
data is stored here. More space is advantageous
for jobs with large chunks of data.

4) mapred.map.tasks: This parameter indicates the
number of map tasks (see Section II-A) executed
for a job. The number of map tasks for a particular
job is determined by the number of DFS blocks
in the cluster. For example, if dfs.block.size is 256
MB and input size is 160 GB, minimum number
of maps is

(160 × 1024)/256 = 640.

Best performance is achieved when the number of
map tasks is set to a value approximately equal
to the number of map task slots in the cluster.

56

It can also be a multiple of the number of map
slots available. Network traffic is minimized when
tasks are sent to a slot on a machine with local
copy of the data. Setting the number of map tasks
as a multiple of the number of the nodes ensures
this and hence results in faster execution. As a
rule of thumb, number of map tasks can be set
as 10 times the number of slaves (i.e., number of
TaskTrackers).

5) mapred.reduce.tasks: Number of reduce tasks
for the job. After the data is sorted, the reduce
output is written to the local file system. The write
process requests a set of DataNodes that are used
to store the block. If the local host is a DataNode in
the file system, the local host is the first DataNode
in the returned set. Such a write to a DataNode
on localhost is much faster, as they do not require
bulk network traffic. Setting the number of reduce
tasks as 2 times the number of slaves (i.e., number
of TaskTrackers), reduces the network traffic and
hence results in better performance.

V. Conclusion and Future work
As Hadoop is widely used for processing huge datasets,

improvement of execution time on Hadoop is widely
researched upon. Though virtualization has been used
with Hadoop, use of the capacity scheduler along with
virtualization is a new approach. The advantage of using
the capacity scheduler with virtualization is clear from
the experimental results obtained. The results show that
the approach gives a significant reduction in execution
times, which in turn shows that the use of virtualization
helps in better utilization of the resources of the physical
machines used.

In the context of what Hadoop was designed for, the
clusters and data set used in the experiment are both
considered small. Though Hadoop is meant to handle
much larger data sets running on clusters with many
more nodes, the experiments on virtual cluster was
conducted on relatively small capacity machines. Given
the relatively under power of the machines used in the
real cluster the results were fairly relevant. The addition
of more machines in the cluster leads to an even greater
reduction in runtime. The virtual cluster can be scaled
up according to the resources available. The results were
especially significant for larger input sizes. This is an
indication that when the approach is applied on larger
machines and huge clusters, even better results with
significant economic benefits would be obtained.

The Hadoop version 0.23.1 released on 27th Febru-
ary, 2012 has improved significantly in the fields of
HDFS and MapReduce. It also addresses the issues of
having multiple masters in a single cluster. Hence, the
scalability issue can be dealt in a better manner in

the new version. Setting up of virtual cluster with the
latest Hadoop version can bring out much better results.
More configuration parameters can be analyzed and the
performance of the virtual clusters can be increased by
fine tuning the value of relevant parameters.

References
[1] “Hadoop,” The Apache Software Foundation, Dec.

2011. [Online]. Available: http://hadoop.apache.org/

[2] D. de Nadal Bou, “Support for managing dynamically
Hadoop clusters,” in Master in Information Technology
- MTI, Sep. 2010, Project Director : Yolanda Becerra.
[Online]. Available: http://hdl.handle.net/2099.1/9920

[3] “Capacity Scheduler Guide,” The Apache Software
Foundation, 2008, User Manual.

[4] M. Kontagora and H. GonzalezâĂŞVelez, “Benchmark-
ing a MapReduce Environment on a Full Virtualisation
Platform,” School of Computing, Robert Gordon
University, Aberdeen AB25 1HG, UK, 2010. [Online].
Available: http://www.rgu.ac.uk/computing/

[5] “Oracle VM VirtualBox,” User Manual [Ac-
cessed : January 19, 2012]. [Online]. Available:
http://www.virtualbox.org/manual/

[6] Ravindra, “Building a Hadoop Cluster us-
ing VirtualBox,” Xebia IT Architects In-
dia Private Limited, Oct. 2010. [Online].
Available: http://xebee.xebia.in/2010/10/21/building-
a-hadoop-cluster-using-virtualbox/

[7] M. G. Noll, “Running Hadoop on
Ubuntu Linux (Multi-Node Cluster),” Aug.
2007, My digital moleskine. [Online]. Avail-
able: http://www.michael-noll.com/tutorials/running-
hadoop-on-ubuntu-linux-multi-node-cluster/

[8] C. Macdonald, “VirtualBox host to
guest networking,” Oct. 2009, Callum on
life. [Online]. Available: http://www.callum-
macdonald.com/2009/10/28/virtualbox-host-to-guest-
networking/

[9] Impetus, “HADOOP PERFORMANCE TUNING,”
White Paper, Impetus Technologies Inc., Oct. 2009,
Partners in Software R&D and Engineering. [Online].
Available: www.impetus.com

[10] “gliffy,” online Diagram Software. [Online]. Available:
http://www.gliffy.com/

[11] J. Devine, “Evaluating the Scalability of Hadoop in
a Real and Virtual Environment,” Dec. 2008, cS380
Final Project. [Online]. Available: jamesdevine.info/wp-
content/uploads/2009/03/project.pdf

[12] J. Buell, “A Benchmarking Case Study of Virtualized
Hadoop Performance on VMware vSphere 5,” Technical
White Paper, VMware, Oct. 2011. [Online]. Available:
http://www.vmware.com/files/pdf/techpaper/VMW-
Hadoop-Performance-vSphere5.pdf

57

