Overview

- To imitate the reconstruction procedure followed by Human Visual System (HVS).
- Human Visual System → High Curvature points and Edge Variations
- Reconstruction of torn document using a unique feature, Edge Envelope.
 - Mapping from two-dimensional spatial co-ordinate points to one-dimension
 - Captures Edge Variations using High Curvature points to imitate HVS.
- Normalized Edge Envelope Difference (NEED) → Effective quantitative measure for matching the edges
- Matching of Edges in time domain rather than in space domain.

Proposed Algorithm

- Preprocessing phase
 - Background estimation
 - Threshold computation using histogram
 - Binarization
 - Canny edge detection
 - Contour tracking
 - Corner point detection using bending value and spurious corners are removed using angle threshold.
- Matching Phase
 - HVS finds the one-to-one similarity by comparing the edge patterns of the torn pieces
 - In a similar way, the degree of similarity between Edge Envelopes is compared using NEED
 \[\text{NEED} = \frac{1}{2} \sum_{j=1}^{n} |E_i(j) - S_i(j)| \]
 \[M = \max(\text{length}[E_i(j)], \text{length}[S_i(j)]) \]
 \[S_j(j) \to 1\text{-D mapping of } E \text{ edge envelope of the torn piece } i \]
 \[S_j(j) \to 1\text{-D mapping of } S \text{ edge envelope of the torn piece } i \]
 - Edge envelopes are filtered to remove digital imperfections during scanning or shearing
 - Lower the value of NEED, better is the degree of similarity
 - The outcome of matching phase is the matched edges of the torn pieces that are to be joined to get a single reconstructed document
- Joining Phase
 - Matched edges of the torn pieces may have different orientations because of the positioning of the torn pieces during scanning
 - To join the pieces, it is required to rotate and translate the pieces under consideration. This requires the computation of rotation and translation parameters.
 - Rotation Angle \(\theta = \tan^{-1} \left(\frac{CP_j(1) - CP_i(1)}{CP_j(0) - CP_i(0)} \right) \)
 - Translation Parameters \(T = \frac{1}{2} \left[\left| CP_j(1) + CP_i(1) \right| - \left| CP_j(1) - CP_i(1) \right| \right] \)
 - Conclusions and Future Work
 - A new novel technique for reconstruction of document ripped-up by hand is proposed using a feature, Edge Envelope.
 - Filtering of Edge Envelopes overcome the ambiguity created due to shearing, during matching of edges.
 - A newly defined parameter NEED proves to be an effective quantitative measure for matching the edges of torn pieces.
 - Even in spite of using a single feature, the proposed algorithm is able to reconstruct the document ripped-up by hand very effectively and is demonstrated through preliminary results by taking limited amount of torn pieces.
 - Automatic reconstruction of a document from larger number of torn pieces from single and multiple pages is the scope of future work.

Feature Extraction

- HVS uses the edge variations of torn pieces for matching with its counterpart.
- Akin to that, edge variation between the two corner points is captured and is referred as Edge Envelope.
- The mapping of two-dimensional spatial co-ordinate points to its one-dimensional Edge Envelope is as follows
 \[a_i = \tan \left(\frac{CP_i(1) - CP_i(0)}{CP_i(0) - CP_i(1)} \right) \]
 \[a_i = \tan \left(\frac{CP_i(1) - CP_i(0)}{CP_i(0) - CP_i(1)} \right) \]
 \[\theta = \cos^{-1} \left(\frac{u \cdot v}{\| u \| \| v \|} \right) \]
 \[\theta = \cos^{-1} \left(\frac{u \cdot v}{\| u \| \| v \|} \right) \]

Conclusions and Future Work

- For our experiments, we have used torn pieces of document and book.
- Two set of such scanned images of torn pieces and their respective reconstructed documents are shown for illustration.
- The typical edge envelope \(S' \), with its matched \(S \) and unmatched \(S' \) counterpart are shown.