
Shared Data-Aware Dynamic Resource Provisioning and Task Scheduling for Data
Intensive Applications on Hybrid Clouds using Aneka

Shreshth Tuli1,2, Rajinder Sandhu3, Rajkumar Buyya1

Abstract

In the recent years, data-intensive applications have been growing at an increasing rate and there is a critical need to solve the high-
performance and scalability issues. Hybrid Cloud Computing paradigm provides a promising solution to harness local infrastructure
and remote resources and provide high Quality of Service (QoS) for time sensitive and data-intensive applications. Generally,
hybrid cloud deployments have a heterogeneous pool of resources and it becomes a challenging task to efficiently utilize resources
to provide optimum results. In modern data hungry applications, it is crucial to optimize bandwidth consumption, latency and
networking overheads. Moreover, most of them have large extent of file sharing capability. The existing algorithms do not explicitly
consider file sharing scenarios that leads large data transmission times and has severe effects on latency. In this direction, this paper
focuses on building upon existing dynamic resource provisioning and task scheduling algorithms to provide better QoS in hybrid
cloud environments for data intensive applications in a shared file task environment. The efficiency of proposed algorithms is
demonstrated by deploying them on Microsoft Azure using Aneka, a platform for developing scalable applications on the Cloud.
Experiments using real-world applications and datasets show that proposed algorithms are able to allocate tasks and extend to public
cloud resources more efficiently, reducing deadline violations and improving response times to give response time reduction of upto
40.12% for a sample local alignment search application on genome sequences.

Keywords: Shared file aware, Dynamic Provisioning, Task Scheduling, Hybrid Cloud, Aneka Platform as a Service,
Data-intensive applications

1. Introduction

Cloud computing has emerged as one of the most effective
computing paradigms for hosting and executing data-intensive
applications. Cloud computing can serve most of the require-
ments of data intensive applications such as large amount of
computation, storage, dynamic provisioning, pricing, scalabil-
ity, and reliability [1]. Cloud computing paradigm also guar-
antees to fulfill the Quality of Service (QoS) requirement of
the application based on the signed Service Level Agreement
(SLA). When private cloud resources are not able to fulfill the
demand of data intensive applications, it can be easily offloaded
to public cloud for more computation power or storage, this
type of setup is commonly known as hybrid cloud computing.

With the advancements in network technologies and com-
puting paradigms, data intensive applications have increased
multiple folds. Applications in different domains are gener-
ating large amount of structured and unstructured data which

1Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School
of Computing and Information Systems, The University of Melbourne, Aus-
tralia

2Department of Computer Science and Engineering, Indian Institute of
Technology (IIT), Delhi, India

3Department of Computer Science and Engineering, Jaypee University of
Information Technology, Solan, Himachal Pradesh, India
E-mail addresses: shreshthtuli@gmail.com (S. Tuli), ra-
jsandhu1989@gmail.com (R. Sandhu), rbuyya@unimelb.edu.au (R. Buyya)

need to be analyzed in timely and effective manner. Many sci-
entific applications like genome sequencing, drug testing and
design have large scope for exploiting file sharing capabilities.
Other domains like nuclear physics, bio-informatics and real-
time mapping softwares like Google Maps have huge amounts
of shared data [2, 3]. Internet of Things (IoT) based architec-
tures further increases the data-intensive applications domain
with real-time data generation and strict deadlines for analysis.
Applications from multiple domains such as smart cities, smart
transport, smart healthcare etc. require data to be collected and
analyzed with high quality also within given deadlines to be
useful [4]. Even though modern cloud platforms support such
data intensive applications, they do fail to perform optimally
when large number of heavy files are shared. Primary chal-
lenge of deadline sensitive data intensive application running
on cloud computing infrastructure is to complete all tasks in
given deadline to achieve desired QoS.

For example, in smart healthcare applications, past health
data of a critical patient needs to be analyzed in a strict given
deadline so that treatment can be started at the earliest. To
achieve the vision of deploying such deadline sensitive applica-
tion on Cloud computing resources, efficient schedulers needs
to be developed which can utilize both private and public cloud
resources effectively. Schedulers should be able to add or re-
lease public cloud resources based on the deadline and cost
requirement of the application [5]. Key parameter in data in-
tensive applications running on public cloud is the data which

Preprint submitted to Future Generation Computing Systems January 10, 2020



need to be transferred along with the tasks. Without the data;
tasks can not perform the computation and it will further dent
the chances of meeting the desired deadline [6]. Data in these
kinds of applications can be classified as input data, output data
and shared data.

• Input Data: This data is unique to each task running on
cloud computing infrastructure. Each task is bundled with
its input data. For example, in any map service user pro-
vides the coordinates of source and destination to find the
best route.

• Output Data: This is the output generated by the appli-
cation after completing its execution on cloud computing
infrastructure. Output data is communicated to end user or
to another component of the application. In map services,
the route to follow based on the coordinates given by the
user is the final output.

• Shared Data: This is the data which is shared by all the
tasks generated by the application. For example, spatial
data containing roads, buildings, and constructions in any
location. Depending on the input coordinates, route can be
different or same for every users, but underling common
spatial information is shared by all the users using map
service application.

Multiple frameworks, architectures, middlewares have been
proposed in the literature for using public cloud resources along
with private cloud for achieving deadlines. Large volume of lit-
erature is focused on cost and execution time minimization of
tasks running in hybrid cloud setup [7, 8, 9, 10, 11]. Cloud data-
centres being at multiple hops from data intensive applications,
data transfer time is one of the key elements in meeting the
deadline of the application. However, existing works have not
considered type of data, data transfer time, network latency and
data locality collectively for migrating tasks to public Cloud in-
frastructure. Although, the issue of data locality and their role
in successful deployment of application in hybrid Cloud com-
puting has been discussed by Toosi et al. [6]. However, they
have ignored the shared data which also need to be transferred
to the public cloud for computation of tasks. Specially, consid-
ering deadline sensitive parameter sweep applications contain-
ing multiple Bag of Tasks (BoTs), each task performs analysis
on large shared data file (also known as common file) associated
with it. If application has shared data file, it is preferable to co-
locate tasks in multi-core machines on public cloud so that it
takes transfer time of only one shared file. As shared files are
of large size they consume more time to transfer as compared
to the input files which are generally of smaller size.

Public cloud contains multiple configuration of virtual ma-
chines with different number of cores and storage. It is also a
challenge to provision perfect combination of different config-
urations to offload the tasks on public cloud infrastructure. The
main aim of this paper is to consider type of data file, data trans-
fer time, network bandwidth, and data locality while scheduling
and dynamic provisioning public cloud resources of different
configuration for parameter sweep based data intensive appli-
cations.

To achieve this goal, algorithms have been proposed in this
paper which take various parameters related to application, task
and data into account and decide how many instances of dif-
ferent configuration need to be provisioned to satisfy the dead-
line of the application. Aneka platform is used to implement
the proposed algorithm. Aneka [12] is a Platform as a Service
(PaaS) middleware which provides Software Development Kit
(SDK) for rapid development and deployment of cloud appli-
cations on hybrid cloud infrastructure. Aneka was introduced
in 2009 and since then there have been various advancements
which has still kept it the most robust and reliable platform for
Cloud deployments. In recent years, Aneka has extended its
support to large number of public cloud providers like Amazon
AWS and Microsoft Azure. It has also been allowed to support
private clouds using Open Stack or GoGrid frameworks. Aneka
5.0, a recent vesion released in 2019, has been further extended
to work with Virtual Private Networks (VPNs) for creating se-
cure cloud computing environments. Moreover, new applica-
tions that support Ensemble Deep Learning and Computer Vi-
sion have been developed using Aneka. Recent works on Aneka
have also focused on developing enhanced task scheduling al-
gorithms for data intensive tasks [6]. This work, however, fo-
cuses on further enhancing the scheduling algorithms for mod-
ern applications which require large amount of shared data
across different tasks and physical machines, thereby leveraging
the computation resources with highest efficiency and improv-
ing performance of such cloud systems. Aneka has pre-built
Application Program Interfaces (APIs) from which, end user
can effectively deploy and mange cloud applications. Aneka
5.0 has multiple scheduling and dynamic provisioning algo-
rithms for hybrid Cloud computing infrastructure. However,
implementing proposed algorithms in Aneka further enhances
the capability and functionality to handle shared data intensive
application in efficient manner. The key contributions of this
paper are:

• Shared-file aware task scheduling and dynamic resource
provisioning algorithms for meeting the deadline con-
straints and provide optimal QoS parameters to the Cloud
applications.

• Aneka platform functionality has been extended by using
more than one resource pools of different configurations
by a single application.

• The proposed algorithms are implemented in Aneka us-
ing the Dynamic Provisioning Service which interact with
Azure Resource manager (ARM) and extend the Schedul-
ing class.

• The algorithms were tested on real private-public (Mi-
crosoft Azure) Cloud testbed to demonstrate their effi-
ciency and improvement compared to prior works.

The rest of the paper is organized as follows. Section 2 pro-
vides the related work to the proposed work from available liter-
ature. Section 3 discussed Aneka middleware for development
and deployment of applications. Section 4 provides explana-
tion of proposed algorithms for shared file aware task schedul-

2



Table 1: Comparison of relevant works with our proposed approach

Paper Deadline Cost Bandwidth Input File Shared File Dynamic Different Configuration Software for
Transfer time Transfer Time Provisioning Public Machines Implementation

[13] & [14] X X Open Nebula
[15] X X Open Nebula
[16] X X Partial Hadoop
[17] X X Simulations
[7] X X X X X X CPLEX optimization software
[10] X X X X X Java based simulator
[8] X X X X X Simulator
[9] X X X X X Simulator
[18] X X CloudSim Simulator
[5] X X X Aneka
[19] X X X Aneka
[6] X X X X X Aneka

This work X X X X X X X Aneka

ing and dynamic provisioning with implementation details in
Section 5. Section 6 has performance evaluation of proposed
algorithms on Aneka platform. Section 7 concludes the paper
along with discussion on future directions.

2. Related Work

Many works have explored Multi Criteria Decision Making
(MCDM) and meta-heurtics based scheduling algorithms in hy-
brid cloud which are compiled by Kalra and Singh in [20].
Nayak and Tripathy proposed an AHP [13] and MCDM [14]
based scheduling algorithm for deadline sensitive applications
in Cloud computing environment. They used Open Nebula
for implementation of proposed scheduler and did not consider
dynamic provisioning on public Clouds. Nayak et al. [15]
again used Open Nebula to devise a backfilling based schedul-
ing algorithm for deadline constraint tasks on cloud comput-
ing environment. Proposed algorithm resulted in better results
as compared with default FCFS algorithm. Fan et al. [16]
used agent based framework for selection of appropriate VM
instances from multiple Cloud providers based on the dead-
line of the job. They consider network bandwidth partially
while selection of appropriate public Cloud provider but do
not consider data transfer time in their algorithm. Moschakis
and Karatza [17] proposed a simulated annealing meta-heuristic
based scheduler for multi criteria deadline sensitive BoT appli-
cations. Although, approach used deadline sensitive BoT ap-
plications which are similar to application used in this paper
but failed to consider transfer time and different configurations
available in public Cloud. Zuo et al. [11] proposed an ant
colony based scheduling algorithm for deadline sensitive ap-
plication in Cloud computing. They did not consider dynamic
provisioning and data transfer time as compared to proposed
algorithms in this paper.

Other related works have considered data transfer time of in-
put file and discussed benefit of using different configuration
and providers. Some of the relevant work has been cited and
discussed however no relevant literature was found which con-
sider shared file and actual implementation of scheduler in hy-
brid Cloud setup. Abdi et al. [7] consider the deadline sensi-
tive BoT applications to schedule on multiple clouds. However,

they consider data transfer time and different configuration of
cloud resources, but they failed to separate the shared file and
input file. Their proposed model is mathematical and numerical
results were generated using optimization software rather than
actual implementation. Bossche et al. [10] proposed a model
named HICCAM similar to [7] model and consider data transfer
of input data file while making scheduling decision. They used
backfilling similar to [15] for taking shortest jobs infront of the
queue but failed to experimentally test in actual cloud comput-
ing environment. Malawski et al. [8] tried to minimize the cost
of using public cloud for deadline sensitive application by for-
mulating it as mixed integer nonlinear programming problem.
Like other models, they failed to take shared file transfer time
into account and used a simulator to test the proposed method.
Malawski et al. [9] proposed a model which schedule as well as
dynamically provisioned resources for deadline sensitive scien-
tific workflow applications. They simulated the proposed model
and did not consider the shared file transfer time for workflow
tasks. Xiong et al. [18] considered the deployment of dead-
line sensitive data intensive applications on Cloud computing
infrastructure. They designed a framework for the scheduling
purpose but did not consider dynamic provisioning, different
configuration of public resources, and data transfer time.

The algorithms proposed in this paper are part of novel work
extending previously designed algorithms in Aneka platform
for scheduling data intensive applications on hybrid cloud. Vec-
chiola et al. [5] implemented deadline sensitive scheduling
algorithm in Aneka for data intensive BoT task applications.
However, they did not consider the booting time of public ma-
chines, data transfer of files and different configuration require-
ment which resulted in bad performance when data size is large.
Calheiros et al. [19] used the reservation service in Aneka
and developed an algorithm which considers the spot market
and reserved resources price of public clouds. Toosi et al. [6]
mentioned that in data intensive application; data plays an im-
portant role and not considering data transfer time will further
decrease the performance of scheduling algorithm. They de-
vised the algorithm after considering input data file size and
dynamically decided how many public cloud resources will be
required. Taking data transfer time into account enhanced the

3



Application Development and Management

Software Development Kit Management Kit

API Tutorials Samples Management Studio Admin Portal Web Service

Middleware - Container

Execution Services
Thread Model Task Model Map-Reduce Model ...

Pe
rs

is
te

nc
e

Foundation Services
Licensing Membership Accounting Reservation Storage

Fabric Services
Resource Provisioning Hardware Profiling ...

Se
cu

rit
y

Platform Abstraction Layer

Infrastructure

Desktop Cloud Datacenter Cluster Cloud

Figure 1: Aneka framework overview

performance of scheduler to large extent. However, all these
proposed algorithms failed to discuss the role of shared file
in BoT data intensive applications. They also used only sin-
gle type of public cloud resource and did not provision ma-
chines with multiple configurations. Work done in this paper
further enhanced the performance and functionalities of Aneka
platform by adding multiple resource pools with different con-
figuration and providers which also consider shared file while
scheduling.

3. Background - Aneka

Aneka [12] is a Platform as a Service (PaaS) that provides
users and developers to deploy distributed computing appli-
cations on Grid or Cloud computing platforms. Aneka pro-
vides many services, tools and APIs that enable developers to
build, control and integrate new capabilities to test and realize
their optimized algorithms. Aneka allows developers to make
use of private and public cloud resources. These features dif-
ferentiate Aneka from other Cloud management software and
characterize it as a platform for development and deployment
of applications. It provides four different programming mod-
els: Bag-of-Tasks model, Distributed Threads model, Parame-
ter sweep Model and Map-Reduce model. A summary of the
Aneka framework with architecture and services is provided in
Figure 1.

3.1. Architecture
In this section, the Aneka architecture and the fundamental

services are discussed along with scheduling and dynamic pro-
visioning services which are central to this work. Aneka is built
in a multi-layer modular fashion where the lower most layer
provides the computation resources which comprises the infras-
tructure including the desktop clouds, datacenters, clusters and
cloud environments. This layer is the collection of computing
nodes that interact with the Middleware containers and provide
themselves as the hosts for Aneka containers.

The Middleware containers provide a layer to glue the in-
frastructure to the Aneka distributed applications and manage-
ment. The Middleware containers contain diverse services and
tools that act as the backbone of the Aneka platform. The Plat-
form Abstraction Layer (PAL) provides the core services to
manage and control the cloud resources. The PAL also pro-
vides an interface to manage the containers and configure their
deployment on the underlying infrastructure. The Middleware
consists of two major components: Aneka Daemon and Aneka
Container. The former has only one instance in each host and
controls the containers instances installed in a host. The latter
can have many instances in a host and controld the schedul-
ing and execution of the Aneka applications. In a cloud en-
vironment, there exist one or more Aneka Master containers
that manage worker containers, provision resources and sched-
ule tasks among them. The hosts on which the Aneka worker
containers are installed perform the computation necessary for
execution of tasks and provide results to Aneka master. The

4



services are divided into three classes:

• Execution Services that perform scheduling and execution
of tasks.

• Foundation Services that perform monitoring, accounting
and storage management.

• Fabric services that perform resource provisioning and
profiling for dynamic growth of shrinkage of resources to
meet the QoS requirements and deadlines of applications.

To allow file sharing without compromising the security of
the tasks, Aneka support encryption in each of its layers. It
allows users to deploy their custom security measures for en-
cryption and firewalls but also provides base security schemes
in its default configuration. A collection of transversal services
operate at all the levels of the container and provide persistence
and security for the run-time environment. Persistence provides
support for recording the status of the Cloud. The persistence
infrastructure is composed of a collection of storage facilities
that can be configured separately for tuning the performance
and the quality of service of the Cloud. Apart from this all com-
munication across Aneka Broker and worker nodes is encrypted
via public-private key management. Furthermore, modules sup-
ported by the public cloud providers can also be integrated to
further secure the system.

3.2. Scheduling and dynamic resource provisioning in Aneka

Aneka provides the ability to dynamically extend resources
to public cloud and integrate them with the local infrastruc-
ture/resources through the Aneka Dynamic Provisioning Ser-
vice. This service is part of the Fabric Services in the Middle-
ware container and it is achieved by allocating virtual machines
from public cloud resources in addition to the local compute
nodes. This feature is enabled by the interaction of three main
services: scheduling, monitoring and resource provisioning ser-
vices. The Scheduling service triggers on-demand resource ex-
tension requests based on the status of the private infrastructure
provided by the monitoring service. If applications are data and
compute intensive, the Monitoring service detects this and for-
wards the resource utilization characteristics to the Scheduling
service which then decides the number and types of public re-
sources to be acquired and send this request to the Resource
Provisioning service. This then interacts with Infrastructure as
a Service (IaaS) to meet the requirements of the Scheduling
service. The Scheduling service then gets to know the current
number and status of resources and dynamically allocates tasks
to the current pool of resources. The scheduling algorithm de-
cides how many resource allocations must take place to meet
the application deadline constraints and QoS requirements.

Aneka currently allows dynamic resource provisioning with
Microsoft Azure, Amazon Elastic Computer Cloud (EC2),
XenServer and GoGrid. The management of dynamic provi-
sioning requests and notification of the provisioning service
when dynamic resources are activated or terminated is the job
of the pool manager. The Resource Provisioning service of
Aneka interacts with this pool manager to acquire and destroy

Scheduling Algorithm
(Resource Provisioning

Aware)
Scheduling

Context

Scheduling Service

Provisioning Service

Resource Pool Manager

Xen
Resource

Pool

GoGrid
Resource

Pool

Azure
Resource

Pool

EC2
Resource

Pool

XenServer GoGrid Azure Amazon

Figure 2: Schematic Overview of Aneka Dynamic Provisioning

resources as requested by the Scheduling service as shown in
Figure 2.

4. Proposed Algorithm

In this section, we propose and discuss algorithms for task
scheduling and dynamic resource provisioning. As noted in
Sections 2, the earlier algorithms do not consider that data in-
tensive applications have high scope of sharing files and data
among various parallel tasks. This fact can be exploited to im-
prove the task placement in a hybrid cloud environment and
provide better QoS characteristics by reducing the number of
shared-file transfers across nodes. This can be achieved by pro-
visioning cloud resources and scheduling tasks so that shared
files can be shared to reduce cost and enhance QoS.

4.1. Shared-File Aware Resource Provisioning Algorithm

In typical hybrid cloud deployments, local compute nodes
are available for execution of data-intensive and time sensitive
applications. Most of these tasks are generated as Bag-of-Tasks
which consists of multiple tasks that usually are independent
and can be executed in parallel. Furthermore, many tasks come
with deadlines under which they must be completed. This is
usually common in healthcare applications, traffic management
and other time sensitive applications [4]. To execute such ap-
plications in their deadlines, dynamic provision becomes neces-
sary in cloud environments to extend the private cloud resources
to public cloud to be able to complete tasks in the required dead-
lines [19, 6, 5]. However, existing dynamic resource provision-
ing algorithms do not consider the possibility of shared files to
allow better QoS in terms of response time and reduce the net-
work bandwidth consumption.

5



Algorithm 1 also called Shared-File aware resource Provi-
sioning, provides a seamless solution to extend the private cloud
resources and allows use of shared file across tasks to a high
extent. Like the Data-aware resource provisioning algorithm
provided by Toosi et al. [6], proposed algorithm in this paper
considers start-up time of public cloud VMs, file transfer times
and available cores in private and public clouds. Addition-
ally, it considers the transfer time of shared files. The variable
coreEstimated estimates the number of public cores required
without considering the transfer time of input and shared files.
This estimate is initially calculated as the quotient of total re-
maining task run-time (product of average task runtime and re-
maining time) and number of remaining tasks. This is because
each task is run on a single core and for the remaining time if
divided equally among all tasks gives us an average value of
cores required for the remaining tasks. If number of estimated
cores is finite then the total machines for each resource pool is
calculated as quotient of estimated core count and number of
cores in that resource pool.

The variable coreEstimated is then used to allocate resources
to the public cloud. For each resoure pool we obtain the num-
ber of machines required in terms of core count. This core
requirement is stored in required list and is subtracted from
coreEstimated. The total cloud machines required (saved in
variable totalMachinesRequired) is the sum of the required
list. The total transfer time of all files (shared and input files,
and saved as totalTrans f erT ime) is then estimated as sum of
transfer times of shared files and input file. The input file’s
transfer time is the quotient of input file size and uplink band-
width. This is multiplied by the number of remaining tasks
to estimate total transfer time for all input files. For each
shared file, the transfer time is quotient of shared-file size and

Algorithm 1 Shared File Aware Resource Provisioning

Inputs:
1: availablePrivateCore← Available cores in private cloud
2: upBandwidth← Bandwidth of uplink
3: startupT ime← Startup time of a public resource (VM)
4: publicResourcePool ← Total public cloud resource pools

available with increasing number of cores
5: publicResourcePool[i].core ← Number of cores in ith re-

source pool
6: publicResource ← Total public cloud resource available

from all pools
7: actualTaskRuntimePublic← Average run-time of tasks on

public resource
8: timeRemaining← Time to application deadline
9: avgTaskRuntime← Average task runtime on private core

10: totalTasks← Total number of tasks in the application
11: taskCompleted ← Total number of tasks completed
12: provisionedCores ← Total resources already provisioned

to application on public and private cloud
13: tasksS ubmitted ←

⌊
timeRemaining

avgTaskRuntime × provisionedCores
⌋

Output:
14: tasksToS end

Begin
15: tasksRemaining ← (totalTasks - tasksCompleted -

tasksSubmitted)+

16: coreEstimated ← Requirement of public core estimated
before taking transfer time into account

17: do
18: coreEstimated ← avgTaskRuntime×timeRemaining

tasksRemaining
19: if coreEstimated > 0 then
20: for i = publicResourcePool to i > 0 do
21: required[i] ← Total number of machines required

for ith resource pool
22: j← coreEstimated

publicResourcePool[i].core
23: if j ≥ 1 then
24: required[i]← j
25: coreEstimated ← coreEstimated − j ×

publicResourcePool[i].core
26: end if
27: end for
28: end if
29: totalMachinesRequired ←

∑
i required[i]

30: inputDataS ize← Total size of input of each task
31: sharedFileS ize← Size of shared-file used by tasks
32: trans f erT imeS hared ← totalMachinesRequired ×

sharedFileS ize
upBandwidth

33: trans f erT imeData← tasksRemaining × inputDataS ize
upBandwidth

34: totalTrans f erT ime ← trans f erT imeS hared +

tran f erT imeData
35: actualT imeRemaining ← (timeRemaining −

startupT ime − totalTrans f erT ime)
36: tasksToS end ←

⌊
actualT imeRemaining

avgTaskRuntimePublic × coreEstimated
⌋

37: if tasksToS end < tasksRemaining then
38: timeRemaining← actualT imeRemaining
39: end if
40: while tasksToS end < tasksRemaining
41: if tasksToS end < 1 then
42: Do not provision resources from public cloud
43: else
44: Provision tasksToS end resources from public cloud
45: end if

End

uplink bandwidth. This is used because this quotient gives
a rough estimate of the transfer time on an average for all
files. However, this is multiplied by totalMachinesRequired
instead of remaining tasks as shared file is shared across
all tasks on the same machine. Hence, actual remaining
time becomes actualT imeRemaining = (timeRemaining −
startupT ime − totalTrans f erT ime). The number of tasks
to send to public cloud is then estimated as product of
coreEstimated and estimate of remaining tasks in public cloud
(actualT imeReaming/avgTaskRuntimePublic). This gives a
new estimate of remaining time as actualT imeRemaining. The
steps described above are repeated till convergence. The vari-
able containing actual remaining time subtracts start-up time
and transfer time from total remaining time, to get a better es-

6



timate of the execution time left. This helps in estimating the
number of tasks to be sent to public cloud. The tasks that are
sent to public cloud are those which if executed on public cloud
can allow execution of all tasks within the remaining time and
hence not violating the agreed deadline limit Finally, if esti-
mated number of tasks to send to cloud is < 1 then public cloud
resources are not used and all tasks are provisioned on private
cloud.

4.2. Shared-File Aware Task Scheduling Algorithm

Consider a Bag-of-Tasks (BoT) being sent to a hybrid cloud
environment for computation. Generally, many of the tasks
that belong to this BoT share files required for computation.
This can be observed in many real-life applications such as
healthcare, traffic management, and other distributed compu-
tation tasks [4]. It is assumed that the workload of applications
consist of many tasks that are trivially parallelizable, each re-
quiring specific input data files, some of which may be shared,
located in the local infrastructure. For the simplicity it is as-
sumed that the size of tasks that is the number of cores they
require is of the form 2n so that the tasks (and sub-tasks) can be
partitioned into two equal sub-tasks always.

Exploiting the fact of file sharing across different tasks, a new
task scheduling algorithm has been proposed, shown in Algo-
rithm 2. This aims to assign tasks to VMs in such a manner that
minimizes the number of shared-file transfers by having maxi-
mum extent of file sharing among the tasks. Algorithm 2, also
called Shared-File aware scheduling takes into account differ-
ent tasks which may be subdivided into different cores as per
their size. This group of sub-tasks divided from a single task
can share files and hence the algorithm prefers to schedule such
sub-tasks to the same Aneka container. To achieve this, the al-
gorithm considers the tasks in decreasing order of their sizes as
taskList, and tries to schedule them to the container with the
highest number of cores possible to maximize the extent of file
sharing. The algorithm maintains containerCapacity of each
Aneka container to prevent overloading of containers. If a task
can not be completely assigned to any of the available contain-
ers then it is partitioned into two equal size sub-tasks and these
are inserted into the taskList. If size of remaining tasks is 1
and they can not be assigned to any container then they are as-
signed in the next scheduling interval. Now, when considering
the tasks/sub-tasks in decreasing order of size, the tasks/sub-
tasks that have not been partitioned are considered first. This is
because it is more likely that the partitioned sub-tasks of a task
may be scheduled in different intervals and hence the whole
task would complete only after the latest sub-task is complete.
This helps in reducing the completion time of tasks on an av-
erage and is achieved by the ModifiedSort procedure. Overall,
this allows tasks that have largest task/file size to be allocated to
VMs with largest capacity and hence allowing highest possible
size of shared file with reduction in the number of instances of
shared files being resent for execution across different task run-
ning on different cores. As number of instances of shared file
is lower across cores of different VMs and higher across cores
on same VMs, it reduces the number of times the file must be

Algorithm 2 Shared File Aware Task Scheduling

Inputs:
1: taskList ← List of tasks [x1, x2, ..., xn]
2: sizeO f Task(x)← Number of cores required by x = 2n

3: partioned(x)←Whether task x has been partitioned (false
by default)

4: containerList(x)← List of containers [c1, c2, ..., cn]
5: containerCapacity(c)← Capacity of container c

Output:
6: containerAssigned(x) ← Container assigned to task x ∈

containerList
Procedure ModifiedSort(list)

7: Sort list based on task size in decreasing order
8: Break ties for tasks x1, x2, the one with partioned(x) =

f alse comes first
End Procedure
Begin

9: Sort taskList in decreasing order of task size
10: Sort containerList in decreasing order of number of cores
11: for task x in taskList do
12: for container c in containerList do
13: if complete task x can be assigned on c then
14: containerAssigned(x)← c
15: containerCapacity(c)− = sizeO f Task(x)
16: Break
17: end if
18: end for
19: if x is unassigned then
20: if sizeO f Task(x) == 1 then
21: Push remaining tasks in taskList to queue for next

scheduling interval
22: Break
23: end if
24: containerList.remove(x)
25: y, z← partition x into equal subtasks
26: partioned(y)← true
27: partioned(z)← true
28: containerList.append([y, z])
29: modifiedSort(containerList)
30: end if
31: end for

End

uploaded to public cloud, thus reducing file transfer time and
total response time.

In Section 5 we provide the details of how the two proposed
algorithms are implemented for resource provisioning and task
scheduling in Aneka.

5. Implementation in Aneka

Aneka provides support for dynamically extending resources
to public cloud using Aneka Dynamic Resource Provisioning
service. This service currently supports provisioning resources
from providers including Microsoft Azure, Amazon EC2 and

7



GoGrid. For provisioning resources from Microsoft Azure, two
sets of APIs exist: Azure Resource Manager (ARM) and Clas-
sic. Among these, ARM uses the definition of resource group
as a container for resources that have a common lifecycle. To
implement the Shared-File aware dynamic resource provision-
ing algorithm 1 we used Microsoft Azure resource pools and
Aneka’s ARM APIs which dynamically serve provisioning re-
quests.

Moreover, to allow communication between the Aneka con-
tainers, we had to setup Azure Virtual Private Network (VPN)
and Azure VPN Gateway. The Point-To-Site configuration of
the Azure VPN allows communication of Aneka Master in lo-
cal infrastructure connected to Azure VPN Gateway, with the
Aneka Worker containers installed in Azure VMs connected
to the same VPN. The connection is established using Secure
Socket Tunneling Protocol (SSTP) which allows connecting to
a VPN device without the need of a public-facing IP address.
Aneka provides automatic installation of Aneka containers in
on-demand VMs using a pre-designed configuration file.

Finally, for Aneka to adopt the proposed algorithms, pro-
posed algorithms are incorporated in Aneka scheduling API
[21]. Aneka source code provides template interfaces for in-
tegrating custom scheduling and provisioning algorithms. The
proposed algorithms are implemented as a new scheduling and
provisioning algorithms by utilizing the IS chedulingAlgorithm
interface in Aneka source code. The algorithms invoke the pro-
visioning service to add extra resources to the pool of available
resources based on the parameters of the shared files, deadline
constraints and QoS requirement of the application. Additional
field of sharedFileS ize are added in the QoS class to allow the
algorithms to collect shared file parameters and use them to pro-
vide optimum scheduling and provisioning decisions. Further,
once a file is declared as ”shared” in the Aneka environment
it remains shared even if its size changes with time. New files
are automatically considered as shared if more than one tasks
require those files.

6. Performance Evaluation

We compare the performance of both shared-file aware
scheduling and resource provisioning algorithms with prior
work to show their efficacy in terms of total execution time
and/or file transfer time, VM run-time and number of VMs
launched in public cloud. In this regard, this section presents
application workload, experimental test-bed and performance
results in static and dynamic cloud environments.

6.1. Basic Local Alignment Search Tool (BLAST) and Dataset

To evaluate the efficacy of the proposed algorithm, the data-
intensive application with high degree of file sharing capability
was used as a Bag-Of-Tasks of input sequences of Basic Local
Alignment Search Tool (BLAST) [22] inputs. The set of pro-
grams part of the BLAST tool are widely used for searching
sequence similarities among proteins and DNA databases. For
protein comparisons, a variety of definitional, algorithmic and
statistical refinements described here permits the execution time

Table 2: Summary of different Bag-of-Tasks

Bag-of-Tasks Number Average Input Shared File
of Tasks File Size Size

BoT-1 10 1 KB 1132 MB
BoT-2 20 2 KB 1132 MB
BoT-3 30 2.5 KB 1132 MB

of the BLAST programs to be decreased substantially while en-
hancing their sensitivity to weak similarities. Different Bag-of-
Tasks were tested to demonstrate the robustness and variation
of performance improvement compared to related work for dif-
ferent cases. The Dataset comprises of the K-12 MG1655 sec-
tion of Escherichia coli 1 of 400 of the complete genome of file
size 1132 MB and the input sequences varied from 560 to 5600
letters in length. For experiments with the static cloud envi-
ronment, different Bag-of-Tasks are used summary of which is
shown in Table 2.

6.2. Static Cloud Environment

To compare the shared-file aware scheduling algorithm a
static test setting is used. A fixed number of resources on
the public and private cloud are sent Bag-of-Tasks which dif-
fer in the number and size of tasks. For different settings which
comprised of private cloud, public cloud in East-US and pub-
lic cloud in South-East Australia, execution times of different
Bag-of-Tasks are compared.

6.2.1. Hybrid Cloud Setup
The experimental test-bed used for evaluating the perfor-

mance of the proposed shared file aware resource provision-
ing and task scheduling algorithms consisted of both private
and public cloud settings. The private cloud was deployed us-
ing multiple machines in the CLOUDS Lab, University of Mel-
bourne, Australia. Microsoft Azure VMs act as the public cloud
resources and are provisioned as and when local resources are
not able to meet the application deadlines. The public cloud
resources are deployed on two Azure geographical locations:
Virginia (East US) and Victoria (South-East Australia). The
test-bed consisted of the following cloud configuration adapted
from other commonly used private cloud systems [6]:

I Private Cloud:
(a) Dual Core Dell XPS 13 laptops with Intel i5-7200

CPU @ 2.50GHz, 8.00 GB DDR4 RAM, SSD Stor-
age and 64-bit Windows 10. These are in CLOUDS
Lab at University of Melbourne, Victoria, Australia.
2 systems of this type were used.

(b) Quad Core Dell Latitude 5490 laptop with Intel i7-
8650U CPU @ 1.9GHZ, 16.00 GB DDR4 RAM,
SSD Storage and 64-bit Windows 10. This was also
at CLOUDS Lab, University of Melbourne, Victoria,
Australia. 3 systems of this type were used, giving a
total of 5 laptops in private cloud.

II Azure Public Cloud in Victoria, Australia or Virgina, US:

8



Public Cloud

Aneka MasterUser

Aneka Worker 1 Aneka Worker 2

Input fileShared File

VPN Gateway

Private Cloud

Blast Application

B4ms

B1ls B1ls B1ls B1ls

Azure South-East Australia 
Virtual Network

B4ms

B1ls B1ls B1ls B1ls

Azure East US 
Virtual Network

VPN Gateway

Dual core Intel i5
8 GB RAM

Quad Core Intel i7
16 GB RAM

Figure 3: Experimental test-bed for Shared file aware Scheduling

(a) 4 - Single Core Azure B1ls virtual machines with 0.5
GiB RAM, SSD Storage and 64-bit Microsoft Win-
dows Server 2016

(b) 1 - Quad Core Azure B4ms virtual machine with 16
GiB RAM and SSD Storage and 64-bit Microsoft
Windows Server 2016

The Aneka Master container was installed in a Dell XPS 13
Laptop at University of Melbourne, Australia and all Azure
VMs are connected to the Master device through Azure Vir-
tual Private Network (VPN) and Azure Gateway. A diagram-
matic representation of the test-bed is shown in Figure 3. The
master and worker nodes in the private cloud are connected
through high-speed 1 GiBps LAN with very low data transfer
time among private cloud machines. The data transfer from
master device to the public cloud VMs are through Internet.
The master device was connected to Internet with uplink band-
width of 867 Mbps.

6.2.2. Experimental Results
In order to test the performance of the proposed shared-file

aware task scheduling and resource provisioning algorithms we
used the BLAST application dataset and ran different Bags-of-
tasks on the deployment described in Section 6.2.1. We com-
pared the following algorithms: First In First Out (FIFO), Data
Aware scheduling, and Shared file aware scheduling. The exe-
cution times for the different cloud settings for these algorithms
are shown in Figure 4.

As shown in Figure 4a, time taken by the proposed shared-
data aware algorithms is lest compared to the other two: First
In First Out (FIFO) and Data-aware algorithm. Here the config-
uration is where there is only a public cloud used which is close
to the Aneka Broker node. As shown by results, the shared-file
aware scheduler has much lower execution time compared to
the other two policies. The reduction in total execution time
is much higher when multi-core systems are deployed. If we
use a single quad core machine then file sharing is possible to
the maximum extent as at each core we can run separate task
with shared data across all cores. This however is limited in the

FIFO Data Aware Shared File Aware
Input 1 0.780373 0.768853333 0.783786667
Input 2 1.446827 1.291946667 1.160106667
Input 3 2.17984 2.048 2.019413333
Input 1 0.504747 0.53632 0.45056
Input 2 1.184 1.050453333 0.923306667
Input 3 1.88544 1.788586667 1.536426667

4x Single Core 
machines (B1ls)

1x Quad Core 
machine (B4ms)

0

0.5

1

1.5

2

2.5

Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

4x Single Core machines (B1ls) 1x Quad Core machine (B4ms)

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Comparison - Azure Public Cloud (Southeast Australia)

FIFO Data Aware Shared File Aware

(a) Execution Times for Public Cloud in South-East Australia

FIFO Data Aware Shared File Aware
Input 1 1.202773 1.190826667 1.195093333
Input 2 1.835947 1.712213333 1.57824
Input 3 2.644053 2.504106667 2.456746667
Input 1 0.899413 0.942933333 0.86016
Input 2 1.586773 1.454933333 1.197653333
Input 3 2.30912 2.176853333 1.303466667

4x Single Core 
machines (B1ls)

1x Quad Core 
machine (B4ms)

0

0.5

1

1.5

2

2.5

3

Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

4x Single Core machines (B1ls) 1x Quad Core machine (B4ms)

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Comparison - Azure Public Cloud (East US)

FIFO Data Aware Shared File Aware

(b) Execution Times for Public Cloud in East US

FIFO Data Aware Shared File Aware
Input 1 0.759893 0.8192 0.81024
Input 2 1.458773 1.62176 1.4976
Input 3 2.599253 2.68544 2.941013333
Input 1 0.410027 0.410026667 0.410026667
Input 2 1.13152 1.13152 1.088853333
Input 3 1.875627 1.875626667 1.747626667

2x Dual Core 
machines

1x Quad Core 
machine

0

0.5

1

1.5

2

2.5

3

3.5

Input 1 Input 2 Input 3 Input 1 Input 2 Input 3

2x Dual Core machines 1x Quad Core machine

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Comparison - Private Cloud

FIFO Data Aware Shared File Aware

(c) Execution Times for Private Cloud

Figure 4: Execution Times for different cloud configurations

other case where there are 4 single core machines. Thus, the
reduction in the total execution time is higher in the case with
a single quad-core machine than in 4 separate single-core ma-
chines. This is expected because the shared files are sent only
once when a bag of tasks is sent to quad core machine, but is
sent multiple times when there are four single-core machines.

The reduction is further increased when the public cloud is
far away as shown in Figure 4b. In this case, the public cloud is
in East US, away from the Aneka broker which is in Southeast
Australia. Here having a shared file aware scheduler allows us
to send as many tasks together which have shared data so that
this data does not have to be sent multiple times. This saves
data transfer time and hence reduce total response time for the
system. Here too, the difference is more significant in the multi-

9



core case than in multiple single-core system.
Additionally, the results show that the shared-file aware

scheduling provides a higher speedup when the file transfer
time to worker devices is higher. The private cloud does not
show any improvement compared to Data-aware scheduler as
shown in Figure 4c. Instead there is a small amount of over-
head for large number of file with higher size when tasks are
sent to multiple single core machines and there is no scope
of file sharing. The speedup is higher for the public cloud at
South-East Australia, compared to private cloud due to higher
file transfer time to Azure VMs across the VPN compared to
time taken to transfer files on same LAN. The speedup further
increases when the file transfer time increases in the case with
public cloud at East-US. In this case, the speedup increases to as
high as 1.67 (reduction in response time by 40.12%) compared
to Data-aware scheduler for the sub-case of Quad-Core B4ms
machine at BoT-3. This is due to high transfer time of files from
the Aneka master container at CLOUDS lab to Azure VMs at
Virginia USA. This shows that the shared-file aware schedul-
ing algorithm provides best results when multi-core machines
are deployed and transfer times are very high between Aneka
Master and Worker containers.

Finally, as this is a static cloud environment where the num-
ber of cloud VMs remain constant at all times, the cost of task
execution is same in each case.

6.3. Dynamic Cloud Environment
For the Shared-File Aware provisioning algorithm heteroge-

neous set of resource pools was used to compare the extent of
file sharing and how well the algorithm chooses the type and
number of resources to be used from the public cloud. Instead
of comparing just execution times as done for shared-file aware
scheduler, now tasks have deadlines and deadline-violations are
also compared. Hence, a dynamic environment is used here
where Aneka can instantiate new resources in the form of Azure
VMs for completing tasks in required deadlines.

6.3.1. Hybrid Cloud Setup
Similar to the setup described earlier, the private Cloud was

deployed in CLOUDS Lab, University of Melbourne, Australia.
Public cloud resources were provisioned from Microsoft Azure
when additional resources are required for meeting the task
deadlines. The initial start-up time, used by the proposed algo-
rithm, of the Azure VMs is assumed to be 150 seconds which
was average of 10 boot-ups conducted for recording this time.
Since the master container has a relatively high internet connec-
tion speed, for the experiments NetLimiter Version 4 was used
to limit both the upload and download bandwidth of the mas-
ter node to 50 MB/s. The Aneka Dynamic provisioning service
was used to boot up new VMs and extend resources to public
cloud. The following resources in private cloud and different
types of resource pools were used:

I Private Cloud:
(a) Four Quad Core laptops with Intel i5-7200 CPU @

2.50GHz, 4.00 GB DDR4 RAM, SSD Storage and
64-bit Windows 10. These were in CLOUDS Lab at
University of Melbourne, Victoria, Australia.

Public Cloud

Aneka MasterUser

Aneka Worker 1 Aneka Worker 2

Input fileShared File

Private Cloud

Blast Application

Gateway

Resource Pool 1

Single Core
1 GB RAM
50 GB Storage

Resource Pool 2

Dual Core
2 GB RAM
50 GB Storage

Resource Pool 3

Quad Core
2 GB RAM
50 GB Storage

Resource Pool 4

Octa Core
4 GB RAM
50 GB Storage

Quad Core Intel i5, 4 GB RAM

Figure 5: Experimental testbed for Shared file aware Provisioning

Table 3: Experiment parameters

Parameter Value
Average task completion time 10 minutes

Boot up time 2.5 minutes
Internet speed 50 MB/s
Shared file size 1132 MB

Number of private cores 8
Number of task 50
Input File size 100 MB

transferTimeShared 3 Minutes
transferTimeFile 0.4 Minutes

Azure B1S machine cost1 0.02 USD/hour
Azure A1 machine cost1 0.08 USD/hour
Azure A2 machine cost1 0.15 USD/hour
Azure A3 machine cost1 0.33 USD/hour

II Azure Public Cloud: (Cost and details from Azure1)

(a) Resource Pool 1: Single Core Azure B1s virtual ma-
chines with 1a GiB RAM, SSD Storage and 64-bit
Microsoft Windows Server 2016

(b) Resource Pool 2: Dual Core Azure A1 virtual ma-
chine with 2 GiB RAM and SSD Storage and 64-bit
Microsoft Windows Server 2016

(c) Resource Pool 3: Quad Core Azure A3 virtual ma-
chine with 2 GiB RAM and SSD Storage and 64-bit
Microsoft Windows Server 2016

(d) Resource Pool 4: Octa Core Azure A4 virtual ma-
chine with 4 GiB RAM and SSD Storage and 64-bit
Microsoft Windows Server 2016

A diagrammatic representation of this test-bed is shown in
Figure 5. The Bag-of-Task parameters, file and network param-
eters are mentioned in Table 3.

10



Table 4: Number of Cores used for different deadlines

Number of Cores Used
Deadline 8-core 4-core 2-core 1-core Total cores

35 2 0 1 1 19
40 1 0 0 0 8
45 0 1 0 1 5
50 0 0 1 1 3
55 0 0 1 0 2

6.3.2. Experimental Results
To measure and compare the performance of the shared-file

aware dynamic resource provisioning algorithm, BLAST BoTs
were submitted to the Aneka Master and used the Aneka Dy-
namic provisioning to boot up public cloud VMs as and when
required. To demonstrate the robustness of the proposed provi-
sioner, tasks with different deadlines was submitted. For differ-
ent deadlines, the total number of cloud resources provisioned
in terms of number of cores and their distribution is shown in
Table 4. The Data-aware approach does not consider the het-
erogeneous number of cores in different machines and hence
boots up 10 machines for 10 tasks needs to send shared file 10
times. As these machines are boot up in parallel, the boot up
time is 2.5 minutes but the file transfer time is very high for
these tasks. Hence, as shown in Figure 6, for tight-deadline
cases the file transfer time and hence execution time is much
higher of Data-aware algorithm as compared with proposed al-
gorithms.

As data aware approach sends a separate instance of the
shared file for each task, the file transfer time is so high that for
small deadline cases ≤ 45 minutes (which is the transfer time),
the Data-aware provisioner does not send any task to the cloud
and executes them in private cloud itself. Due to this, the data-
aware provisioner is unable to finish tasks within deadline when
it is ≤ 45 minutes. However, the shared-file aware provisioner
is able to finish tasks within deadlines for all cases. Elaborating
further, Figure 6a shows that for deadline ≤ 45 minutes the to-
tal execution time is constant and equal to 60 minutes as it does
not send tasks to public cloud. However, shared data aware al-
gorithm is able to identify tasks where file sharing is possible
to reduce file transfer times (as shown in Figure 6b) and hence
complete tasks in the required deadlines. This shows that for
deadline-critical applications data-aware provisioner is unable
to utilize cloud resources due to its ignorance to the number of
cores of cloud resources. Hence for deadline critical applica-
tions, shared-file aware provisioner is much better in terms of
utilization of resources (compute and network bandwidth) and
providing results in required deadlines.

Experiments comparing cost of execution of the BLAST job
using the two scheduling algorithms is shown in Figure 7. For
the cases where deadline is less than 45 minutes, the Data-
aware algorithms is not able to complete within the deadline

1Azure Pricing calculator at https://azure.microsoft.com/en-au/
pricing/calculator/

35
40
45
50
55

0

10

20

30

40

50

60

70

35 40 45 50 55 No deadline

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Deadline (minutes)

Data Aware Shared File Aware

0

2

4

6

8

10

12

35 40 45 50 55 No deadline

L
au

nc
he

d 
Pu

bl
ic

 c
lo

ud
 m

ac
hi

ne
s

Deadline (minutes)

Data Aware Shared File Aware

(a) Execution Time comparison

0
5

10
15
20
25
30
35
40

35 40 45 50 55 No deadlineV
M

 R
un

ni
ng

 ti
m

e 
(m

in
ut

ss
)

Deadline (minutes)

Data Aware Shared File Aware

0
10
20
30
40
50
60
70
80

35 40 45 50 55 No deadlineF
il

e 
T

ra
ns

fe
r t

im
e 

(m
in

ut
es

)

Deadline (minutes)

Data Aware Shared File Aware

(b) File transfer time comparison

35
40
45
50
55

0

10

20

30

40

50

60

70

35 40 45 50 55 No deadline

E
xe

cu
ti

on
 T

im
e 

(m
in

ut
es

)

Deadline (minutes)

Data Aware Shared File Aware

0

2

4

6

8

10

12

35 40 45 50 55 No deadline

L
au

nc
he

d 
Pu

bl
ic

 c
lo

ud
 m

ac
hi

ne
s

Deadline (minutes)

Data Aware Shared File Aware

(c) Comparison of number of launched VMs in public cloud

0
5

10
15
20
25
30
35
40

35 40 45 50 55 No deadlineV
M

 R
un

ni
ng

 ti
m

e 
(m

in
ut

ss
)

Deadline (minutes)

Data Aware Shared File Aware

0
10
20
30
40
50
60
70
80

35 40 45 50 55 No deadlineF
il

e 
T

ra
ns

fe
r t

im
e 

(m
in

ut
es

)

Deadline (minutes)

Data Aware Shared File Aware

(d) Comparison of VM Run time in public cloud

Figure 6: Comparison of Data Aware and Shared File aware provisioning algo-
rithms

11

https://azure.microsoft.com/en-au/pricing/calculator/
https://azure.microsoft.com/en-au/pricing/calculator/


0
0.005

0.01
0.015

0.02
0.025

0.03
0.035

0.04

35 40 45 50 55 No deadline

T
ot

al
 C

os
t (

U
S

 D
ol

la
rs

)

Deadline (minutes)

Data Aware Shared File Aware

Figure 7: Comparison of total cost for job completion in public cloud

and does not use any resources from the public cloud. Even
though it has zero cost of public cloud usage, it is of little use
as deadlines were not met. In the case of shared-data aware al-
gorithm, the system is not only able to complete the tasks in the
required deadlines but also has lower monetary expenditure in
cases where deadline is more than 45 minutes. This is because
number of VMs instantiated is much lower (as data aware ap-
proach starts new VM for every task) even though VM run-time
is higher. Hence, the shared-data aware algorithm further pro-
vides better service affordability and is much more promising in
providing results withing deadlines, important for critical cases
like healthcare applications [4].

7. Conclusions and Future Work

Efficient utilization of the public cloud resources as an ex-
tension to the private resources is a complex problem for data-
intensive applications. This problem is complicated further due
to the heterogeneity of cloud environments. One approach to
efficiently utilize multi-core resources to prevent transfer of
shared-files multiple times across the network is provided in
this work. Prior work on Data-Aware algorithms exploit this
file -sharing capability with limited perspective. This work pro-
vide novel Shared-File aware Task Scheduling and Dynamic
resource provisioning to provide better quality of service in
terms of response time, lower number of deadline violations
and lower resource consumption both in terms of compute and
network bandwidth. The shared-file aware scheduling algo-
rithm tries to efficiently reduce the number of dependent task
groups and have maximum extent of file sharing which reduces
the number of transfers of shared files. File sharing can also be
used in dynamic provisioning. The shared-file aware dynamic
resource provisioning algorithm utilizes the fact that file shar-
ing can be achieved to maximum extent by employing mutli-
core systems. The larger tasks are sent to machines with high-
est number of cores to reduce the number of transfers of shared
files and hence be able to complete tasks within deadlines as
well as reduce resource utilization of both public and private
clouds.

As part of future work, we propose to include in the dy-
namic provisioning algorithm support for integration of multi-
ple cloud providers with different cost models. Among the dif-

ferent cloud providers or the geographically distributed cloud
resources from the same providers, the algorithm can utilize
the different data transfer times among different VMs and re-
source pools. Apart from the current Bag-of-Tasks model, other
models like Workflow and Map-Reduce can also be explored to
provide shared-file aware algorithms optimized for such mod-
els. Another direction is to integrate edge resources with cloud
resources and modify the proposed algorithms so that they are
applicable to Edge and Fog computing paradigm. Other QoS
parameters and budget constraints can also be imposed in the
scheduling and provisioning policies to further enhance the user
experience and hence the improve the policies. Moreover, we
also propose to work on managing the shared files in more se-
cure manner especially for mobile cloud or edge services and
also consider privacy and security aspects of scheduling and re-
source selection. We propose to add filtering approach based
on privacy vulnerability and sensitivity of data on the Aneka
platform [23, 24]. Mobile edge computing system has more de-
mands and thus it has the need for enhancing Aneka to adopt
such systems. Similarly, performance and reliability to get on
and off-loading for data can be made available [2] for large scale
applications.

Acknowledgements

This research work is supported by the Melbourne-Chindia
Cloud Computing (MC3) Research Network and Australian
Research Council. We thank Nipam Basumatary (Indian In-
stitute of Technology, Madras, India) and Shashikant Ilager
(CLOUDS Lab, University of Melbourne, Australia) for their
valuable comments on improving the quality of presentation.

References

[1] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. Ul-
lah Khan, The rise of ”big data” on cloud computing: Review and open
research issues (2015). doi:10.1016/j.is.2014.07.006.

[2] F. Zhang, J. Ge, C. Wong, C. Li, X. Chen, S. Zhang, B. Luo, H. Zhang,
V. Chang, Online learning offloading framework for heterogeneous mo-
bile edge computing system, Journal of Parallel and Distributed Comput-
ing 128 (2019) 167–183.

[3] H. Gelernter, J. Birnbaum, M. Mikelsons, J. Russell, F. Cochrane,
D. Groff, J. Schofield, D. Bromley, An advanced computer-based nuclear
physics data acquisition system, Nuclear Instruments and Methods 54 (1)
(1967) 77–90.

[4] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things
(IoT): A vision, architectural elements, and future directions, Future Gen-
eration Computer Systems 29 (7) (2013) 1645–1660. doi:10.1016/j.
future.2013.01.010.

[5] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, R. Buyya, Deadline-
driven provisioning of resources for scientific applications in hybrid
clouds with Aneka, in: Future Generation Computer Systems, Vol. 28,
2012, pp. 58–65. doi:10.1016/j.future.2011.05.008.

[6] A. Nadjaran Toosi, R. O. Sinnott, R. Buyya, Resource provisioning for
data-intensive applications with deadline constraints on hybrid clouds us-
ing Aneka, Future Generation Computer Systems 79 (2018) 765–775.
doi:10.1016/j.future.2017.05.042.

[7] S. Abdi, L. PourKarimi, M. Ahmadi, F. Zargari, Cost minimization
for deadline-constrained bag-of-tasks applications in federated hybrid
clouds, Future Generation Computer Systems 71 (2017) 113–128. doi:
10.1016/j.future.2017.01.036.

12

http://dx.doi.org/10.1016/j.is.2014.07.006
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1016/j.future.2011.05.008
http://dx.doi.org/10.1016/j.future.2017.05.042
http://dx.doi.org/10.1016/j.future.2017.01.036
http://dx.doi.org/10.1016/j.future.2017.01.036


[8] M. Malawski, K. Figiela, J. Nabrzyski, Cost minimization for com-
putational applications on hybrid cloud infrastructures, Future Genera-
tion Computer Systems 29 (7) (2013) 1786–1794. doi:10.1016/j.

future.2013.01.004.
[9] M. Malawski, G. Juve, E. Deelman, J. Nabrzyski, Algorithms for cost-

and deadline-constrained provisioning for scientific workflow ensembles
in IaaS clouds, Future Generation Computer Systems 48 (2015) 1–18.
doi:10.1016/j.future.2015.01.004.

[10] R. Van Den Bossche, K. Vanmechelen, J. Broeckhove, Online cost-
efficient scheduling of deadline-constrained workloads on hybrid clouds,
Future Generation Computer Systems 29 (4) (2013) 973–985. doi:

10.1016/j.future.2012.12.012.
[11] L. Zuo, L. Shu, S. Dong, Y. Chen, L. Yan, A multi-objective hybrid

cloud resource scheduling method based on deadline and cost constraints,
IEEE Access 5 (2017) 22067–22080. doi:10.1109/ACCESS.2016.

2633288.
[12] C. Vecchiola, X. Chu, R. Buyya, Aneka: A software platform for.NET

based cloud computing, in: Advances in Parallel Computing, Vol. 18,
2009, pp. 267–295. doi:10.3233/978-1-60750-073-5-267.

[13] S. C. Nayak, C. Tripathy, Deadline sensitive lease scheduling in cloud
computing environment using AHP, Journal of King Saud University -
Computer and Information Sciences 30 (2) (2018) 152–163. doi:10.

1016/j.jksuci.2016.05.003.
[14] S. C. Nayak, S. Parida, C. Tripathy, P. K. Pattnaik, An enhanced deadline

constraint based task scheduling mechanism for cloud environment, Jour-
nal of King Saud University - Computer and Information Sciencesdoi:
10.1016/j.jksuci.2018.10.009.

[15] S. C. Nayak, C. Tripathy, Deadline based task scheduling using multi-
criteria decision-making in cloud environment, Ain Shams Engineering
Journal 9 (4) (2018) 3315–3324. doi:10.1016/j.asej.2017.10.007.

[16] C. T. Fan, Y. S. Chang, S. M. Yuan, VM instance selection for dead-
line constraint job on agent-based interconnected cloud, Future Genera-
tion Computer Systems 87 (2018) 470–487. doi:10.1016/j.future.
2018.04.017.

[17] I. A. Moschakis, H. D. Karatza, Multi-criteria scheduling of Bag-of-
Tasks applications on heterogeneous interlinked clouds with simulated
annealing, Journal of Systems and Software 101 (2015) 1–14. doi:

10.1016/j.jss.2014.11.014.
[18] F. Xiong, C. Yeliang, Z. Lipeng, H. Bin, D. Song, W. Dong, Deadline

based scheduling for data-intensive applications in clouds, Journal of
China Universities of Posts and Telecommunications 23 (6) (2016) 8–15.
doi:10.1016/S1005-8885(16)60064-X.

[19] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The Aneka
platform and QoS-driven resource provisioning for elastic applications on
hybrid Clouds, in: Future Generation Computer Systems, Vol. 28, 2012,
pp. 861–870. doi:10.1016/j.future.2011.07.005.

[20] M. Kalra, S. Singh, A review of metaheuristic scheduling techniques in
cloud computing, Egyptian Informatics Journal 16 (3) (2015) 275–295.
doi:10.1016/j.eij.2015.07.001.

[21] R. Sandhu, A. N. Toosi, R. Buyya, An API for Development of User-
Defined Scheduling Algorithms in Aneka PaaS Cloud Software, in: B. B.
Gupta, P. D. Agarwal (Eds.), Handbook of Research on Cloud Computing
and Big Data Applications in IoT, IGI Global, 2019, pp. 170–187. doi:
10.4018/978-1-5225-8407-0.ch009.

[22] G. P. Rédei, Blast (basic local alignment search tool), in: Encyclopedia
of Genetics, Genomics, Proteomics and Informatics, 2008, pp. 221–221.
doi:10.1007/978-1-4020-6754-9_1879.

[23] X. Xu, X. Zhao, A framework for privacy-aware computing on hybrid
clouds with mixed-sensitivity data, in: 2015 IEEE 17th International Con-
ference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security,
and 2015 IEEE 12th International Conference on Embedded Software and
Systems, IEEE, 2015, pp. 1344–1349.

[24] S. Christey, J. Kenderdine, J. Mazella, B. Miles, Common weakness enu-
meration, Mitre Corporation.

Shreshth Tuli is an undergraduate stu-
dent at the Department of Computer Sci-
ence and Engineering at Indian Institute
of Technology - Delhi, India. He is a
national level Kishore Vaigyanic Protsa-
han Yojana (KVPY) scholarship holder
for excellence in science and innovation.
He is working as a visiting research fel-
low at the Cloud Computing and Dis-

tributed Systems (CLOUDS) Laboratory, School of Computing
and Information Systems, the University of Melbourne, Aus-
tralia. Most of his projects are focused on developing tech-
nologies for future requiring sophisticated hardware-software
integration. His research interests include Internet of Things
(IoT), Fog Computing, Network Design, Blockchain and Deep
Learning.

Rajinder Sandhu obtained his M.E.
with honours from Thapar University,
Patiala in 2013 and B.Tech with Distinc-
tion from MMEC, Mullana in 2011. He
completed his Ph. D. in cloud computing
and Big Data to Guru Nanak Dev Univer-
sity, Amritsar under the guidance of Dr.
Sandeep Sood. He has published his re-
search work in esteemed Scientific Cita-

tion Index journals of Elsevier, John Wiley and Springer. He
also filed two patents in Indian Patent Office. He served as
Honorary Academic Visitor by Department of Computing and
Information Systems, University of Melbourne, Australia. He
is reviewer of many reputed SCI journals of Elsevier, Wiley and
Springer. He has delivered multiple expert talks on cloud com-
puting for various workshops and FDPs of reputed universities
like JNU-Delhi, PEC-Chandigarh and IIT-Kharagpur. His cur-
rent research areas are cloud computing, Big Data and Internet
of Things (IoT).

Rajkumar Buyya is a Redmond
Barry Distinguished Professor and Di-
rector of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Aus-
tralia. He is also serving as the found-
ing CEO of Manjrasoft, a spin-off com-
pany of the University, commercializing
its innovations in Cloud Computing. He
served as a Future Fellow of the Aus-

tralian Research Council during 2012-2016. He has authored
over 700 publications and seven text books including Mastering
Cloud Computing” published by McGraw Hill, China Machine
Press, and Morgan Kaufmann for Indian, Chinese and interna-
tional markets respectively. He is one of the highly cited authors
in computer science and software engineering worldwide (h-
index=132, g-index=280, 92500+ citations). ”A Scientometric
Analysis of Cloud Computing Literature” by German scientists
ranked Dr. Buyya as the World’s Top-Cited (#1) Author and
the World’s Most-Productive (#1) Author in Cloud Computing.
Dr. Buyya is recognized as a ”Web of Science Highly Cited
Researcher” for four consecutive years since 2016, a Fellow of

13

http://dx.doi.org/10.1016/j.future.2013.01.004
http://dx.doi.org/10.1016/j.future.2013.01.004
http://dx.doi.org/10.1016/j.future.2015.01.004
http://dx.doi.org/10.1016/j.future.2012.12.012
http://dx.doi.org/10.1016/j.future.2012.12.012
http://dx.doi.org/10.1109/ACCESS.2016.2633288
http://dx.doi.org/10.1109/ACCESS.2016.2633288
http://dx.doi.org/10.3233/978-1-60750-073-5-267
http://dx.doi.org/10.1016/j.jksuci.2016.05.003
http://dx.doi.org/10.1016/j.jksuci.2016.05.003
http://dx.doi.org/10.1016/j.jksuci.2018.10.009
http://dx.doi.org/10.1016/j.jksuci.2018.10.009
http://dx.doi.org/10.1016/j.asej.2017.10.007
http://dx.doi.org/10.1016/j.future.2018.04.017
http://dx.doi.org/10.1016/j.future.2018.04.017
http://dx.doi.org/10.1016/j.jss.2014.11.014
http://dx.doi.org/10.1016/j.jss.2014.11.014
http://dx.doi.org/10.1016/S1005-8885(16)60064-X
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1016/j.eij.2015.07.001
http://dx.doi.org/10.4018/978-1-5225-8407-0.ch009
http://dx.doi.org/10.4018/978-1-5225-8407-0.ch009
http://dx.doi.org/10.1007/978-1-4020-6754-9_1879


IEEE, and Scopus Researcher of the Year 2017 with Excellence
in Innovative Research Award by Elsevier for his outstanding
contributions to Cloud computing. He served as the founding
Editor-in-Chief of the IEEE Transactions on Cloud Computing.
He is currently serving as Editor-in-Chief of Journal of Soft-
ware: Practice and Experience, which was established over 45
years ago. For further information on Dr. Buyya, please visit
his cyberhome: www.buyya.com

14


	Introduction
	Related Work
	Background - Aneka
	Architecture
	Scheduling and dynamic resource provisioning in Aneka

	Proposed Algorithm
	Shared-File Aware Resource Provisioning Algorithm
	Shared-File Aware Task Scheduling Algorithm

	Implementation in Aneka
	Performance Evaluation
	Basic Local Alignment Search Tool (BLAST) and Dataset
	Static Cloud Environment
	Hybrid Cloud Setup
	Experimental Results

	Dynamic Cloud Environment
	Hybrid Cloud Setup
	Experimental Results


	Conclusions and Future Work

