
  

  

Abstract—Fusions of LiDARs (light detection and ranging) 
and cameras have been effectively and widely employed in the 
communities of autonomous vehicles, virtual reality and mobile 
mapping systems (MMS) for different purposes, such as 
localization, high definition map or simultaneous location and 
mapping. However, the extrinsic calibration between a camera 
and a 3D LiDAR is a fundamental prerequisite to guarantee its 
performance. Some previous methods are inaccurate, have 
calibration error that is several times the beam divergence, and 
often require special calibration objects, thereby limiting their 
ubiquitous use for calibration. To overcome these shortcomings, 
we propose a novel and high-accuracy method for the extrinsic 
calibration between a camera and a 3D LiDAR. Our approach 
relies on the infrared images from a camera with an infrared 
filter, and the 2D-3D corresponding points in a scene with the 
corners of a wall can be extracted to calculate the six extrinsic 
parameters. Experiments using the Velodyne VLP-16 sensor 
show that the method can achieve an extrinsic accuracy at the 
level of the beam divergence, which is fully analyzed and 
validated from two different aspects. Therefore, the calibration 
method in this paper is highly accurate, effective and does not 
require special complicated calibration objects; thus, it meets 
the requirements of practical applications. 
 

I. INTRODUCTION 

Environmental perception is a key technology for 
autonomous vehicles, virtual reality and mobile mapping 
systems (MMS). In general, there are two categories of 
perception sensors that are mounted on platforms: (i) range 
sensors (e.g., LiDARs (light detection and ranging), radars, 
and sonars) and (ii) cameras (e.g., perspective, stereo, 
omnidirectional). Range sensors with active illumination 
provide accurate 3D position information even in night light. 
However, these 3D points are discrete and sparse with poor 
radiation or color information. The cameras are an inexpensive 
and well-studied solution for machine vision and provide high 
resolution color images. However, cameras can be used only 
in appropriate lighting conditions, and problems may occur 
due to occlusion, shadows or night light. As such, these 
methods compensate for the shortcomings of the other. Thus, 
combinations of LiDARs and cameras have been effectively 
employed in many application scenarios, including the 
Waymo Self-Driving Car, the Apollo Self-Driving Platform, 
NavVis 
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Figure 1.  Observation of the corners of a wall by using a camera and a 3D 
LiDAR. The yellow lines present the field of view of the LiDAR. The red 
and V-shaped break lines draw and represent the laser’s trajectories. For the 
break point P (black) on the break line, the 2D pixel and 3D coordinate can 
be respectively obtained from manually pinpricking the infrared image and 
processing the point cloud of the LiDAR data. After establishing a PnP 
problem with many 2D-3D/pixel-laser corresponding points, the 
transformation parameters T can be solved by using a numerical nonlinear 
optimization method. 

3D Mapping Trolleys [1] and Google Cartographer backpacks 
[2], for different tasks, including localization, high definition 
maps (HD Maps), and simultaneous location and mapping 
(SLAM) [3-5]. 

The extrinsic calibration between a camera and a 3D 
LiDAR is a fundamental prerequisite for its applications, and 
it plays essential and vital roles in accomplishing high-
accuracy localization, mapping, and SLAM. Extrinsic 
parameters represent the translation and rotation between the 
sensor frame and the base reference frame [6, 7] and are 
required to integrate and fuse all of the measurements from 
different sensors into a global reference frame. Moreover, the 
accuracies of mapping and SLAM are strongly influenced by 
the extrinsic errors and are very sensitive to the extrinsic 
calibration [8]. Particularly in the case of a long measurement 
range, small rotation errors can cause significant distortions in 
the mapping. 

Calibrating a camera-LiDAR system has been studied for 
many years. These studies can be classified into two main 
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categories. The first category needs some special geometrical 
calibration objects to obtain 2D-3D corresponding points  
(CPs) or geometric constraints between a single camera and a 
LiDAR. Rodriguez et al. [9] and Alismail et al. [10] used a 
black circle-based planar board to estimate the 3D coordinates 
of the center of a circle and the normal vector of the plane and 
built an usual absolute orientation problem. Mirzaei et al. [11] 
proposed a novel algorithm for jointly estimating 3D LIDAR–
camera intrinsic and extrinsic calibration with a plane. Park et 
al. [12] used a white, homogeneous, planar polygonal board 
for calibration. The method with an arbitrary trihedron was 
published by Gong et al. [13], and a planar object containing 
four circular holes in front of a white background was utilized 
in Velas et al. [14]. In 2018, a new LiDAR-camera calibration 
was introduced that used ordinary cardboard boxes [15]. Some 
researches [16, 17] on autonomous vehicles (AVs) established 
the transformation between camera and LiDAR with 
geometric constraints in road scene. These 2D-3D geometric 
constraints included some errors because of sparse point 
clouds, thus influencing the calibration accuracy.  

The second category is mainly based on stereo 
reconstruction and point cloud matching. The KITTI 
Calibration Toolbox that was published by Geiger et al. [18] is 
a classical and representative method. It requires several 
chessboard boards to reconstruct a stereo pair of two camera 
images from different positions, and then it matches the point 
clouds from the two cameras’ stereo reconstruction and the 
one from the LiDAR. Hassanein et al. [19] developed a new 
automatic calibration method with two cameras and a well-
textured object. The camera system needs to be calibrated a 
priori; thus, a sparse point cloud can be reconstructed from 
speeded up robust features (SURF). Then, this point cloud is 
registered to that of the LiDAR sensor by using the iterative 
closed point (ICP). The point cloud from the cameras’ stereo 
reconstruction is unstable and inaccurate, thus influencing the 
accuracy of the matching and calibration.  

However, there are some drawbacks in the 
abovementioned methods. First, the accuracies of these 
calibrations are too low because of the inaccuracy of the 2D-
3D geometric constraints or the inaccuracy of the point cloud 
from the cameras’ stereo reconstruction, thus resulting in 
obvious errors in the environmental perception. The results in 
[15] show that the translation and angular errors of the 
proposed techniques in [12], [15], [18] and [19] exceed 0.1 m 
and 0.5°, respectively, in the case of a virtual Velodyne HDL-
64 with a fixed 0.03 Gaussian standard deviation and zero 
mean. Comparing that the beam divergence of each laser is 
0.18° (horizontal) x 0.07° (vertical), the calibration error is 
several times the beam divergence. In addition, these previous 
methods usually special complicated calibration objects, such 
as chessboard boards, geometric boxes and so on, which limit 
the ubiquitous use of the calibration. 

In this work, we try to overcome these shortcomings by 
proposing a novel and high-accuracy method for the extrinsic 
calibration between a camera and a 3D LiDAR. Our approach 
relies on infrared images from the camera. Infrared images 
record the laser footprints in a common view, which is a 
novelty and the most important idea in this paper. While a 
simple V-shaped object, such as the corner of a wall, is 
simultaneously imaged by the infrared camera and scanned by 

the LiDAR, the 2D-3D corresponding points can be 
respectively extracted from the infrared images and the point 
clouds to calculate the six extrinsic parameters. The 
experimental results with the Velodyne VLP-16 sensor show 
that the method can achieve an extrinsic accuracy at the level 
of the beam divergence (0.18°x 0.07°), which is fully analyzed 
and validated from two different aspects. There are two main 
advantages of the proposed method. The first is that it achieves 
high accuracy at the level of the beam divergence. The second 
is that the corners of walls are everywhere and easily available; 
thus, the method does not require special complicated 
calibration objects. 

 

II. METHODS 

The basic principle of the extrinsic calibration between a 
camera and a 3D LiDAR is to establish the point 
correspondences or geometric feature constraints between 
their observations and then to estimate the transformation 
matrix T  between sensors in a global reference frame. As 
shown in Figure 1, assuming that the camera body frame is 
labeled as the global reference frame in our calibration system, 
our target is to obtain the transformations T between the 
reference frame and the LiDAR coordinate frame, including 
the rotation R and the translation t. The camera assembled with 
an infrared filter can capture the laser footprints as infrared 
images, although the laser trajectories are not visible to the 
naked eye. When the LiDAR scans a corner of the wall with a 
V-shaped structure, the V-shaped break lines (red lines) can 
draw and represent the laser trajectories. The 2D pixel of the 
break point P on the break line can be easily pinpricked out 
from the infrared image, and the corresponding 3D point can 
also be extracted with the point cloud processing of the LiDAR 
data. While changing the pose of the sensor system relative to 
the V-shaped scene, we can obtain a series of 2D-3D/pixel-
laser corresponding points to establish the Perspective-n-Point 
problem—PnP in short—in computer vision, which can be 
solved by using a numerical nonlinear optimization method 
based on a least-square bundle adjustment (BA) with an initial 
estimation of the efficient PnP (EPnP) [20]. 

A. Processing Procedure 
The extrinsic calibration process between a camera and a 

3D LiDAR using infrared images is shown in Figure 2. There 
are two main processes: constructing 2D-3D corresponding 
points, and calibration. The input data includes the infrared 
images from the camera and the point cloud of the multiple-
channel LiDAR in a scene with V-shaped objects. The result 
is the transformation matrix between these sensor body frames. 

In the step of constructing 2D-3D corresponding points, 
the processing is different for the data from different sensor 
types. For the multiple-channel LiDAR, we need to preprocess 
the point cloud with an appropriate filter condition, segment 
each V-shape, and then extract the break points. The infrared 
images require the undistorted calibration and manual 
pinpricking of the break’s pixel coordinates. Then, multiple 
pairs of CPs can be obtained from lots of observations. 

Finally, the basic calibration model is built based on the 
geometric constraint of the multiple pairs of CPs. After this, 
the calibration equation is solved by using a least-squares 

4964

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on October 14,2020 at 06:22:32 UTC from IEEE Xplore.  Restrictions apply. 



  

bundle adjustment solution, resulting in the calibration 
parameters. There are many ways to calculate the derivative. 
In this paper, the Lie algebraic perturbation model is used to 
calculate the derivative of the calibration equation. 

 

 
 
 
 
 

B. Constructing 2D-3D Corresponding Points 

1) Filtering 
Each scan from a LiDAR sensor is composed of hundreds 

or even thousands of 3D points. According to the size of the 
corner of the wall and the relative positions between the 
sensors and the scene, we can establish an appropriate 
coordinate interval as a filter condition to crop the area of 
interest w.r.t. the corner of the wall.  

2) Segmentation 
The multiple V-shaped trajectories are recorded in the point 

cloud data when the multichannel LiDAR such as the Velodyne 
VLP-16 scans the V-shaped object. By calculating the altitude 
angle of the LiDAR points, we can segment the point cloud 
from different channels. The points at the same altitude are 
labeled with the same channel number. 

3) 3D Break Extract on the V-shaped Line  
The random sample consensus (RANSAC) is an iterative 

and nondeterministic algorithm that is employed to estimate 
the parameters of a mathematical model from a set of observed 
data that contains certain outliers [21]. Assuming that there is 
a V-shaped trajectory within the observations from the LiDAR, 
we can detect the line model with the RANSAC algorithm.  

The model parameters of the two lines will be obtained after 
RANSAC line fitting, and then the break of the V-shape that 
is composed by these two lines needs to be calculated. In three-
dimensional Euclidean geometry, the intersection of the two 
lines can be an empty set, a point, or a line [22]. In the general 
case, two lines will not precisely intersect at a single point, and 
there is a distance between the two 3D lines. A least-squares 
solution can be derived that minimizes the sum of the 
perpendicular distances from the unique solution point to both 
lines. If the distance of the two lines is less than a threshold 

dε , the solution point is selected as the 3D break point. The 
threshold dε  was set to 1 mm in this test. 

4) 2D-3D Corresponding Points 
When the LiDAR scans the corner of the wall, the images 

from the infrared camera record the laser trajectories. 
Unfortunately, low-cost pinhole cameras inherently come with 
significant distortions. Therefore, camera distortion 
calibration is a prerequisite and necessary step in order to 
extract accurate metric information from 2D undistorted 
images. A flexible and classical method is “Zhang’s Camera 
Calibration” [23], which is provided in a popular MATLAB 
toolbox [24]. For original distorted infrared images, we use 
this toolbox to conduct the camera distortion calibration and 
then obtain undistorted images. The 2D pixel coordinate 

(u,v)u  corresponding to the V-shape’s 3D break point 
P(X,Y,Z) can be manually pinpricked from the undistorted 
infrared image and become a pair of CPs for the transformation 
matrix between the camera and the LIDAR. The 
correspondences can be quickly associated by hand because of 
the limited rings. While the camera doesn’t observe the entire 
reflection of the LiDAR off the target, we can obtain the 
top/bottom ring number by blocking the LiDAR sensor partly.  

For the multichannel LiDAR, we can obtain multiple pairs 
of CPs from one observation with one image and its 
corresponding point cloud. To avoid a poor or abnormal state 
of the calibration model, the collected CPs should be 
distributed as uniformly as possible in the common field of 
view of the camera and LiDAR. In the practical experiment, 
the size and number of corners of a wall are limited, and one 
scene cannot usually meet the uniform distribution condition 
of CPs. Therefore, more scenes using different sensor system 
poses relative to the wall should be collected, which will 
increase the uniformity of the distribution and the numbers of 
CPs. 

C. Calibration with Bundle Adjustment 

1) Calibration Model 
The above processing has resulted in a set of CPs whose 3D 

coordinates and 2D image projections are known in the LiDAR 

Figure 2. Extrinsic calibration process of a LiDAR-camera system using 
infrared images. Step 1: constructing 2D-3D corresponding points, where 
the processing is different for the data from different sensor types. Step 
2: establishing and solving the extrinsic calibration model. 
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coordinate system and in the camera coordinate system, 
respectively. Then, it is necessary to determine the rotation and 
translation of a camera and LiDAR coordinate system. It also 
called the Perspective-n-Point problem—PnP for short—in 
computer vision. There are many ways to solve typical PnP 
problems, such as the P3P with just three points [25], the direct 
linear transformation (DLT) [26], the efficient PnP (EPnP) [20], 
and the UPnP [27]. In this paper, we solve the PnP problem by 
using a numerical nonlinear optimization method based on a 
least-squares bundle adjustment with an initial estimation from 
the EPnP. 

If a set of pairs of CPs completely exist, according to the 
pinhole camera model, the geometric constraint can be written 
as (1) for CP pair i: 

 , ' .i i i' '
i i

1 1i u K P K T P
z z

∀ = =     (1) 

where K is the intrinsic matrix of the camera, and 
i i i i iP' (x' , y' ,z' )= T P , iP'  is the correspondence after 

transforming the point iP with the transformation matrix T. 
Then, the projection error is as follows (2): 

 i i'
i

i
1u - Ke = •T P.
z

   (2) 

Equation (2) is the basic calibration model in this paper. The 
objective is to solve the rigid transformation matrix T that 
minimizes the projection error. The projection error 
minimization metric (3) is the objective optimization function 
of the least-squares bundle adjustment: 

 
,

min .
2n

i i'R t i=1 i 2

1 1F = u - K T P
2 z∑     (3) 

2) Solution of Equations 
For the convenience of taking the derivative of (2), the Lie 

algebra form ξ  of the transformation matrix exp( )T ξ ∧=  
can be introduced as follows[8, 28, 29]: 
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where ξ  is a six-dimensional vector corresponding to the six 
degrees of freedom of the transformation matrix T; the first 
dimension ρ  is related to the translation but does not equal t ; 
the last dimension φ  is the Lie algebra or rotation vector 
responding to rotation matrix R; θ  and a  are respectively the 
rotation angle and rotation axis of the rotation vector φ  in 

Rodrigues' formula; and B  is an intermediate variable 
according to the Lie algebra and Lie group theory[30]. 

Then, using ξ  to represent the pose, taking partial 
derivative and linearization for Equation (3), the error 
equation can be rewritten as follows: 

 '

1- exp( ) .i
i ii i

i

e eu K P d l
z

ξ ξ
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∧ ∂
= = −

∂
    (5) 

where - il  is the constant vector in a Taylor expansion, and the 
gradient is the first-order term. 

Based on the Lie algebraic perturbation model, taking the 
derivative of (5) with respect to ξ  can be expressed as follows: 
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 (6) 
where [ ], TXδξ δρ δφ= =  is the correction for the calibration 
parameters, and ' ' ' 'exp( ) =( , , )T

i i i iP P x y zξ ∧=  . 
Considering different CP pairs, the error equation can be 

written as follows: 
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
  (7) 

For convenience, (7) can be simplified as (8): 

 e J d Lξ= −   (8) 
Equation (8) is the basic error equation, which can be 

solved through nonlinear iterations of the Levenberg-
Marquardt method by minimizing e towards zero. 

 ( ) ( )1
diag( )T T TJ J J J J Lξ ξ λ

−
← − +   (9) 

where λ  is a factor that is determined by the Levenberg-
Marquardt method. 
 

III. EXPERIMENTS AND ANALYSIS 

A.  Data Introduction 
The VLP-16 LiDAR from the Silicon Valley-based 

manufacture Velodyne is an active sensor that emits near-
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infrared light at 903 nm. The Velodyne VLP-16 performance 
parameters are shown in TABLE I. 

TABLE I 
THE VELODYNE VLP-16 PERFORMANCE PARAMETER TABLE 

Item Velodyne VLP-16 
Announced November 2014 
Measurement Principle Time of Flight 
Channels 16 
Light Source   903 nm 
Range 100 m 
Accuracy ±3 cm (Typical) 

Beam Size @ Screen 12.7 mm (Horizontal) x 9.5 mm 
(Vertical) 

Beam Divergence  0.18° (Horizontal) x 0.07° (Vertical) 
Field of View (Horizontal) 360° 
Field of View (Vertical) +15.0° to -15.0° (30°) 
Angular Resolution 
(Horizontal) 0.1° – 0.4° 

Angular Resolution (Vertical) 2.0° 
Rotation Rate 5 Hz – 20 Hz 

The camera in this paper is assembled with a near infrared 
absorption filter, which only allow light above 850 mm to pass. 
Therefore, the footprint of the laser with the 903 nm light 
source can be recorded on the infrared images. It is noted that 
the filter has on effect on the geometric performance of the 
camera. Therefore, the geometric calibration parameters are 
invariable before and after the filter assembly. Sometimes we 
need to turn off the light in the room to reduce the interference 
of visible light. The angular resolution of the camera is 
approximately 0.002° from the calculations, and the field of 
view is approximately 80° in the horizontal and approximately 
60° in the vertical directions. 

To sufficiently validate the proposed method in the 
experiment, several scenes between a camera and a 3D LiDAR 
observing the corners of the wall were collected by moving the 
pose of the sensor system. Figure 3 shows some detailed 
information of the experimental scenes covering the corners of 
the wall. 

 
Figure 3. A LiDAR-camera system observing the corners of the wall. 
Several scenes were collected by changing the pose of the sensor system.  

B. Calibration and Accuracy Analysis 
The external parameters calculated according to the 

calibration model are translated into an equal and simpler 
interpretation style consisting of the Euler extrinsic rotation 

angles of yaw-pitch-roll (Y-P-R) around a fixed Z-Y-X axis 
and the translation. The values of the calibration parameters 
are shown in TABLE II, and the frame configurations are 
shown in Figure 4. 

 
Figure 4. The laser frame configurations corresponding to the calculated 
transformation parameters, which is defined by a six dimensional vector, 
including the Euler extrinsic rotation angles of the YPR around a fixed Z-Y-
X axis and the translation. 

TABLE II 
RESULTING CALIBRATION PARAMETERS 

Calibration 
Parameters 

Rotation angles (°) Translation (cm) 
Y P R X Y Z 

Values 79.47 0.08 90.72 -0.250 -8.235 -10.589 
Standard deviation  0.053 0.058 0.049 0.438 0.378 0.093 

At this point, we have estimated the rigid transformation 
between the camera and the laser range finder frame. Although 
the ground truth for the relative pose of the sensors can be used 
to compare the estimated transformation with the exact 
transformation among the sensors, requiring the availability of 
the ground truth complicates an absolute evaluation of the 
method. Considering the difficulty that is involved in precisely 
measuring the correct pose between a pair of sensors, we 
cannot guarantee high precision even if the obtained 
calibration is correct. This problem is particularly difficult 
with rotations (i.e., it is possible to have a fairly reasonable 
evaluation of the translation with simple measurements using 
a tape measure), which is critical since small errors in a 
rotating system may result in large errors within the final 
registered data[8]. In this paper, the accuracy of the calibration 
results can be estimated from two aspects: 1) the standard 
deviation of the estimated parameters, 2) the reprojection error 
of the control points.  

1) Standard Deviation of Estimated Parameters 
First, analyzing the standard deviation of the estimated 

parameters with the covariance of the solution is one way to 
assess the quality of the solution that is returned by a nonlinear 
least squares solver. Under the assumption that measurement 
errors are normally distributed, the standard deviation of the i-
th estimated parameter is defined as follows [31]: 

 ( )
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where 0σ  represents the root mean squared error that is 
defined by n, which is the number of control points; m is the 
number of estimated parameters (3 rotations and 3 translations); 
and e is the residual of the nonlinear objective function. 2

0σ  is 
called the variance factor and is the unit weight variance or the 
prior variance factor. J  represents the Jacobian matrix of the 
last LM-algorithm iteration, and Cov  is the covariance matrix 
of the estimated parameters. 

In our experiment, the standard deviations of the Euler 
extrinsic rotation angles of the yaw-pitch-roll (YPR) around a 
fixed Z-Y-X axis and the translation are d the translation are 
listed in TABLE II. It shows that the accuracy of the rotation and 
translation are approximately 0.05° and are better than 0.01 m, 
respectively. The method is obviously more accurate than the 
proposed techniques in [12], [15], [18] and [19], which 
translation and angular errors exceed 0.1 m and 0.5°, for a 
virtual Velodyne HDL-64 with a fixed 0.03 Gaussian standard 
deviation and zero mean. 

2) Reprojection Error of Control Points 

  

 
Figure 5.  The distribution and residual errors of the control points in 
scenes 01 (top) and 02 (bottom). The red points represent the 2D pixel 
coordinates from infrared images, and the red arrows represent the 
magnitude and direction of the residual errors. 

TABLE III 
THE REPROJECTION ERROR OF CONTROL POINTS 

Scen
e 

CP 
Pairs region 

RMSE (Pixel) Mean (Pixel) 

x y 2 2x y+   x y 2 2x y+   

01 47 Right 3.98 2.18 1.92 0.60 -0.22 4.07 

02 48 Left 3.22 3.76 2.24 -0.78 0.13 4.37 

all 95 total 3.60 3.07 2.08 -0.10 -0.04 4.22 

Second, the reprojection error of the control points is one 
indication of the quality of the calibration process. Once the 
calibration is computed, the 3D control point is reprojected on 
the infrared images where it appears. A geometric error 
corresponding to the image distance between a projected point 
and a measured one is the reprojection error, which is defined 
in (2). This error depends on the quality of the calibration 
(position and orientation), as well as on the quality of the 
marked point on the images (the position and zoom level at 
which the point is marked). 

The angular resolution of the camera is 0.02°, and the beam 
divergence of each laser is 0.18° (horizontal) x 0.07° (vertical). 
Therefore, a beam will take up 9 x 3.5 pixels on the infrared 
images. In TABLE III, the mean values of the residuals along 
each coordinate axis are small and close to zero, and the RMSE 
values of the residuals are approximately 4 x 3.5 pixels at the 
level of beam divergence. Figure 5 shows the residual 
distribution of the control points in scenes 01 and 02, which 
indicates that there is no systematic error after calibration. 
Therefore, the extrinsic orientation accuracy after calibration is 
highly accurate at the level of beam divergence and is effective 
for further application. 

IV. CONCLUSION 
This paper presents a novel methodology for calibrating 

the extrinsic parameters between a camera and a 3D LiDAR 
using infrared images. The proposed method provides high-
accuracy solutions. Moreover, the method does not require 
complicated calibration objects and simply uses the corners 
of walls, which are ubiquitous and widely available. 
Experiments are conducted using a sensor system consisting 
of a Velodyne VLP-16 LiDAR and a camera that is assembled 
with an infrared filter, and the system is pointed towards to 
the corners of the wall. The appropriate distribution and high 
accuracy of the 2D-3D corresponding points bring the fine 
performance of the calibration. Two different accuracy 
assessment methods consistently and sufficiently reflect that 
the calibration is highly accurate at the level of the beam 
divergence. 

However, there are some weaknesses in this method. 
Infrared photography is easily affected by visible light, so the 
method can not work outdoors. Second, the IR cameras are 
not typically used on robots and AVs, and cameras on robots 
and AVs are not easy to install an IR filter. In the future, we 
plan to conduct some research to overcome these limitations 
and increase its availability. 
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