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Abstract In social networking services (SNSs), persistent

topics are extremely rare and valuable. In this paper, we

propose an algorithm for the detection of persistent topics

in SNSs based on Topic Graph. A topic graph is a subgraph

of the ordinary social network graph that consists of the

users who shared a certain topic up to some time point.

Based on the assumption that the time evolutions of the

topic graphs associated with persistent and non-persistent

topics are different, we propose to detect persistent topics

by performing anomaly detection on the feature values

extracted from the time evolution of the topic graph. For

anomaly detection, we use principal component analysis to

capture the subspace spanned by normal (non-persistent)

topics. We demonstrate our technique on a real dataset we

gathered from Twitter and show that it performs sig-

nificantly better than a baseline method based on power-

law curve fitting, the linear influence model, ridge regres-

sion, and Support Vector Machine.

Keywords Social networks � Information diffusion �
Anomaly detection � Principal component analysis �
Complex networks � Topic graph

1 Introduction

Various human behaviors are highly influenced by social

networks (Christakis and Fowler 2008; Watts and Strogatz

1998). In particular, online social networking services

(SNSs), such as Facebook and Twitter, are increasing their

roles in our daily life (Purcell et al. 2010). Hence, SNSs

have been studied from many perspectives (Bakshy et al.

2012; Boyd and Ellison 2007; Cha et al. 2010; Lerman and

Ghosh 2010).

Previous studies in data mining have addressed the issue

of detecting emerging topics or trends from social network

streams(Allan et al. 1998a, b; Cataldi et al. 2010; Klein-

berg 2002; Takahashi et al. 2011). Here the main concern

is the speed or earliness of the detection. However, we may

argue that the value of a topic that bursts for a day or two

and then fades out is questionable. On the other hand, a

topic that receives continuous interest may be considered

as a valuable topic. For example, if we can detect such a

topic before it becomes obvious, we can start an action

before everyone else.

In this paper, we aim to detect topics that receive con-

tinuous attention, which we call persistent topics, as early

as possible. This is a challenging task, because it appears

that by definition, a long period of observation would be

necessary to decide if a topic is persistent or not.

To this end, we leverage the rich graphical structure

among the people who shared a topic and build a model

that predicts whether a topic becomes persistent in the

future. Here persistency of a topic is measured by a

quantity we call amplification factor; see Fig. 1. Note that

although the amplification factor can only be calculated

after a relatively long period of time (say 50 days), our

model allows us to make quantitative prediction from a

short (say 10 days), but richer, sequence of observation.
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More precisely, we collect data from Twitter and aim

to predict whether the amplification factor exceeds a pre-

determined threshold based on the connectivity of the

users who shared (retweeted) a topic. The connectivity of

the users who shared a topic is modeled as a time-

varying directed graph, which we call a topic graph.

Here a topic graph is a subgraph of the ordinary fol-

lower/followee graph that consists of the users who

shared a certain topic up to some time point (see Fig. 3).

Since the number of nodes of a topic graph equals the

number of people who shared the topic up to a time

point, our goal is to show that the proposed method,

which looks at the global graphical structure, performs

better than simply extrapolating the number of people

who shared the topic.

Assuming that the temporal profiles of the topic graphs

associated with persistent and non-persistent topics are

different (see Fig. 4), we formulate the problem as an

anomaly detection problem over the time series of feature

vectors that we extract from the topic graph. We apply a

principal component analysis (PCA)-based anomaly de-

tection method (Lakhina et al. 2004) on various features

we derive from the time series of topic graphs.

Our experiments show that our approach is significantly

better than a power-law curve fitting approach and the

linear influence model (Yang and Leskovec 2010), and

supervised methods, ridge regression and Support Vector

Machine. The power-law curve fitting is related to our

definition of ground truth based on the amplification factor;

see Sect. 3.3. The linear influence model proposed by Yang

and Leskovec (2010) predicts the number of retweets as a

superposition of non-negative influence functions. Ridge

regression and Support Vector Machine are supervised

methods, and the experiments on these methods are con-

ducted based upon the same assumption as proposed

method, that is the temporal profiles of topic graph asso-

ciated with persistent and non-persistent topics are

different.

Our contribution can be summarized as follows:

– Instead of conventionally studied bursty or trending

topics, we focus on topics that receive continuous

attention over long period of time, which we call

persistent topics.

– The proposed method considers the global tempo-

ral/graphical structure of the topic graph. Thus it is

agnostic to the language or content of the posts.

– We empirically validate our assumption that the time

evolution of graphical structure of the people who share

a persistent topic (topic graph, see Fig. 3) is different

from a non-persistent topic by the experiment on

proposed method and supervised methods.

The preliminary version of this article appeared in the

proceedings of ASONAM 2014 (Saito et al. 2014). This

extended and revised version uses two supervised meth-

ods, ridge regression and Support Vector Machine based

upon the topic graph assumption, as comparison methods.

As we have a ground truth on the label of either persistent

or non-persistent topic, we could try supervised method

while the methods in the preliminary version have not

been repeated here. We show that our proposed method

outperforms these two supervised methods as well as the

power-law curve fitting and LIM. Given these supervised

methods work although the performance is lower than the

proposed method, the results of these two supervised

methods support the topic graph assumption. Moreover,

we give more discussion for the experiments, namely for

the normal and anomalous subspace taken by PCA. Fur-

thermore, the present version contains more illustrative

examples and figures, and more details of our proposed

method.

The remainder of this paper is organized as follows. In

Sect. 2, we give an overview of related work. In Sect. 3, we

explain the data we use in our paper and give a criterion to

distinguish between a persistent topic and a non-persistent

topic. We present our method in Sect. 4. In Sect. 5, we

empirically compare our technique to the existing ones and

also discuss the effect of feature combination. The con-

cluding remarks are given in Sect. 6.
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Fig. 1 The number of retweets within the first 50 days n50 against the

amplification factor n50=n10, i.e., the number of retweets within the

first 50 days n50 divided by that within the first 10 days n10. The

‘‘persistent’’ posts having amplification factor larger than hamp ¼ 1:1
are marked by red asterisks. Note that we can only get this picture

after 50 days and our goal is to detect persistent posts as early as

possible. We also remark that the choice of threshold hamp ¼ 1:1
(shown as the vertical dashed line) is not essential; see Sects. 3.3 and

5.3.3 for more discussion
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2 Related work

In this section, we review earlier studies that are related to

our paper.

Detecting topics in sequential data is studied in the area

of topic detection and tracking (TDT) (Allan et al.

1998a). Allan et al. (1998b) analyzed new topics from

news sentences. Kleinberg (2002) studied the bursty

structure in the time series of intervals when some pieces of

information arrive. Emerging events or topics were studied

intensively in the context of SNS based on the textural

context (Cataldi et al. 2010; Phuvipadawat and Murata

2010; Sakaki et al. 2010) and also based on the graphical

structure induced by the users’ mentioning behavior

(Takahashi et al. 2011). In our view, the above studies are

mainly focused on the emergence or bursts of topics and

not on persistent topics.

Information diffusion in SNSs is another well-developed

research area. Trusov et al. (2009) modeled diffusion in

SNSs and applied to viral marketing.

The works of Asur et al. (2011) and Wang and Huber-

man (2011) are very similar to our work in terms of their

motivation. However, their work is more explanatory than

predictive; in particular, they do not aim to predict if a post

is going to be persistent or not.

Cha et al. (2010) compares three different measures of

influence in Twitter: number of followers, number of

retweets, and number of mentions. They revealed that an

influencer in Twitter is not always the most followed us-

er. Bakshy et al. (2012) found that social networks’ weak

ties are important in information spreading in Facebook.

Further studies modeled information diffusion process in

Twitter. Kwak et al. (2010) modeled the diffusion process

of the retweets, which they called retweet tree. Bakshy

et al. (2011) made a model for the diffusion of URLs,

which they call information cascade. The idea of infor-

mation cascade is similar to our idea of a topic graph,

because both approaches consider networks associated with

a topic. However, Bakshy et al. simplified their networks to

tree structures while our present work does not. Further-

more, they do not analyze the time evolution of their graph

structure.

Analysis of non-stationary time series with principal

component analysis (PCA) is known in me-

teorology (Preisendorfer and Mobley 1988) and the

analysis of electroencephalography (Donchin and Heffley

1978); however, it seems to be rather rare in data min-

ing. Note that due to the non-stationarity of the dynamics

of topic graphs, popular techniques that assume station-

arity, such as, auto-regressive modeling, cannot be ap-

plied here.

3 Data

This section provides an overview of the data we collected

from Twitter. In Sect. 3.1, we provide a brief overview of

Twitter and in Sect. 3.2 we explain how our dataset is

constructed.

3.1 Twitter

To study persistent topics in social networking sites, we

analyze data from the microblogging service Twitter,

which is an extremely popular social networking service,

consisting of over 100 million users. This service has a

directed social network, where each user can choose to

subscribe certain other users if they wish to follow. Twitter

users can post a message about any topic within 140

characters called a tweet.

Twitter provides a function called retweet so that users

can share any tweet by other users with their followers.

Retweet is a key feature that spreads a topic over Twitter.

3.2 Collecting data

We collected data using Twitter API and from a third party

service Favstar. Twitter API enables us to crawl and collect

data efficiently. We also used Favstar to get a full list of

users who retweeted a particular post.

We randomly selected topics that are retweeted by over

500 users that have passed at least 50 days after the original

post from the trending topics listed by Favstar and topt-

weets offered by Twitter officially.

Next, for each topic, we obtained a list of people who

retweeted this topic from Favstar and using Twitter API,

extracted their followers and the time they retweeted it. In

this way,we obtain link informationwith time stamps, which

enables us to define the topic graph. For some of the retweets

that we cannot get the exact time stamps,we assumed that the

intervals between retweets are regular and used a linear in-

terpolation. Furthermore, we removed a few users whose

retweet time was missing due to their privacy setting.

Using this procedure for data collection, we obtained

698 topics retweeted by about 1.6 million users over the

period of July 2010–May 2012.

Although follower/followee relationship on Twitter is a

directed relation, we ignored the directions in this work,

because we are only interested in the topological features

of an information diffusion process.

In addition, although users can retweet any post re-

gardless of whether they follow the sender of the post or

not, we ignore this case since Twitter API is unable to track

this, and it is also a rather rare event.
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3.3 Amplification factor

In order to define whether a topic is persistent, i.e., going on

for a long period of time, we look at a quantity we call

amplification factor. To be more concrete, we have exam-

ined 698 posts from Twitter that have been retweeted

(shared) at least 500 times. Fig. 1 plots the number of

retweets (shares) within the first 50 days n50 against the

amplification factor n50=n10, i.e., the number of retweets

within the first 50 days divided by that within the first 10

days. We can clearly see that there is a dense concentration

of posts around amplification factor almost one (shown as

blue crosses), that is, although they received many retweets

in the first ten days, after that they are not retweeted any-

more. On the other hand, there are certain fractions of posts

on the right side of the plot that have large amplification

factors (shown as red asterisks), that is, although these posts

do not necessarily receive much attention in the beginning,

they grow steadily in the number of retweets. Note that the

total number of retweets shown on the vertical axes does not

discriminate these two sets of points well; although they

receive roughly the same number of retweets, they have

quite different temporal profiles. We remark that we define

persistent or not without any human judgement. Neverthe-

less, our definition of persistency involves a parameter

(threshold) which may seem arbitrary. However, the choice

of threshold hamp ¼ 1:1 (shown as the vertical dashed line in

Fig. 1) is not essential; see Sect. 5.3.3 for more discussion.

Examples of persistent tweets in Fig. 2 illustrate that the

persistent topics are not like ongoing issues, which can be

outdated after certain time. Persistent topics are more like

long-run social marketing campaign, emerging new trends

or time-invariant valuable aphorism, which can be valuable

pieces of information even after a long time. An example,

in this case, is a social ad campaign ran by Dropbox, Inc.

The persistency of the post can be considered as an indi-

cation of the success of the campaign. Another example of

persistent topics we found is like an aphorism related to

information technology and innovation, which are

emerging topics posted in Japanese by an engineer. The

tweet is about an insight when the author of the tweets

worked as an intern at Apple. Persistency of this post can

be considered as a sign of an emergence of an opinion

leader. We note that persistent topics are not only in

English, but also in other languages. Also we would like

our method to be agnostic to the language of the post.

The motivation of using amplification factor is from a

power-law model

Dt ¼ bt�a; ð1Þ

where Dt is the number of retweets that a post receives in

the tth time interval, and a and b are positive parameters

(see Fig. 6 for an illustrative example). Integrating the

above model, we have

nt /
t1�a ðif 0\a\1Þ;
logðtÞ ðif a ¼ 1Þ;

1� t�aþ1 ðif a[ 1Þ;

8
><

>:

where the interval of integration is taken as ½1; t� for a� 1.

Then the amplification factor is written as follows:

nt2
nt1

¼

t2

t1

� �1�a

ðif 0\a\1Þ;

logðt2Þ
logðt1Þ

ðif a ¼ 1Þ;

1� t�aþ1
2

1� t�aþ1
1

ðif a[ 1Þ:

8
>>>>>>>><

>>>>>>>>:

ð2Þ

From the above expressions, we can see that if a[ 1; the

cumulative number of retweets will asymptotically reach a

constant, and the amplification factor will be close to one

for sufficiently large t1 and t2. On the other hand, if

0\a\1, the cumulative number of retweets will con-

tinuously grow, in fact, the amplification factor becomes

strictly larger than one for any t2 [ t1.

The power-law model (1) suggests a simple method for

detecting a persistent post, that is, we estimate the exponent

a from a short, say 10 days of, observation and then use the

Fig. 2 Examples of persistent tweets in English and Japanese.

Persistent posts are typically not related to any ongoing issues, which

can be outdated after several time elapsed from the post. They look

more like what can be valuable even after a long time elapsed, such as

long-run marketing campaign, emerging new trends or time-invari-

antly valuable aphorism. These persistent posts can be challenging to

detect from their textual contents. We would also like our method to

be agnostic to the language of the post
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value of the estimated a as the criterion for persistency

(small a corresponds to high amplification factor); see

Sect. 5.1.3 for details.

The motivation of using amplification factor is also from

Pareto’s law, which says that a significant portion of

something occurs in the first 20 % of time (Newman 2005).

4 Proposed method

In this section, our proposed algorithm is presented. Our

algorithm consists of three components: a topic graph,

feature extraction from a topic graph, and anomaly detec-

tion. These three components are described in the follow-

ing three subsections.

4.1 Topic graph

The topic graph concerning a certain topic is a subgraph of

the original social network graph that consists of nodes that

correspond to the user who posted the original post, which

we call the topic origin, and other users who retweeted the

post. The edges of the topic graph correspond to the

friendship relation of the underlying social network, which

we assume to be symmetric and stationary.

More precisely, let G ¼ ðV;EÞ be the original social

network graph, where V ¼ fv1; . . .; vng is the set of nodes

and ðvi; vjÞ 2 E if and only if there is an edge between node

vi and vj. Let S be the set of topics and T be the set of time

points. The topic graph Gðs;tÞ concerning a certain topic

s 2 S at time t 2 T can be written as Gðs;tÞ ¼ V ðs;tÞ;Eðs;tÞ� �
,

where Vðs;tÞ is the set of nodes

V ðs;tÞ ¼ v
ðs;tÞ
0 ; v

ðs;tÞ
1 ; . . .; v

ðs;tÞ
n
ðsÞ
t

� �

;

where v
ðs;tÞ
0 is the topic origin, or the node that corresponds

to the user who posted the original post s, and the nodes

v
ðs;tÞ
1 ; . . .; v

ðs;tÞ
n
ðsÞ
t

correspond to the n
ðsÞ
t users who retweeted

the post up to time t. Eðs;tÞ is the subset of edges such that

ðvi; vjÞ 2 Eðs;tÞ if and only if vi; vj 2 V ðs;tÞ and ðvi; vjÞ 2 E.

An example of a topic graph is illustrated in Fig. 3b.

We also define the adjacency matrix and the degree

matrix of the topic graph V ðs;tÞ;Eðs;tÞ� �
as follows. Adja-

cency matrix Aðs;tÞ is a n
ðsÞ
t þ 1

� 	
� n

ðsÞ
t þ 1

� 	
matrix and

is defined as

A
ðs;tÞ
ij ¼ A

ðs;tÞ
ji ¼

1 if v
ðs;tÞ
i ; v

ðs;tÞ
j

� 	
2 Eðs;tÞ

� 	
;

0 ðotherwiseÞ:

8
<

:
ð3Þ

The degree matrix is defined as

D
ðs;tÞ
ij ¼

d v
ðs;tÞ
i

� 	
ðif i ¼ jÞ;

0 ðotherwiseÞ;

8
<

:
ð4Þ

where d v
ðs;tÞ
i

� 	
is the degree of node v

ðs;tÞ
i , given by

d v
ðs;tÞ
i

� 	
¼
X

j

Aij:

4.2 Features of topic graph

We assume that the temporal profiles of the topic graphs

(shown in Fig. 4) associated with persistent and non-persis-

tent topics are different. To track the temporal profile of topic

graph,we extract the various features from the topic graph on

each time and compose a vector to represent temporal pro-

files of one sequence of topic graphs made of one topic.

In this subsection, we describe five feature values we

use to characterize the topic graph, namely, the number of

times the topic is shared, the number of communities in the

topic graph, the maximum distance from the initial user,

and the two eigenvalues (second smallest and the largest)

of the graph Laplacian. These features include both local

characters and global characters of the topic graph.

Concatenating the five feature values for m time points,

a topic is represented by the 5m dimensional feature vector

yðsÞ ¼ n
ðsÞ
t1 ; . . .; n

ðsÞ
tm ;N

ðs;t1Þ
com ; . . .;Nðs;tmÞ

com

�
;

lðs;t1Þ; . . .; lðs;tmÞ; kðs;t1Þ2 ; . . .; kðs;tmÞ2 ;

kðs;t1Þmax ; . . .; k
ðs;tmÞ
max

	>
;

ð5Þ

(a) a relationship net- (b) a topic graph, we
works on SNS propose in this paper

Fig. 3 Previous work focuses on the networks composed of

friendships; see panel (a). To study the time evolution of networks

associated with a certain topic, we focus on the notion of topic graph.

A topic graph is a subgraph of the ordinary social network graph that

consists of the users who shared a certain topic; see panel (b). Details
are described in Sect. 4.1
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where t1; . . .; tm are regularly sampled time points. When

the length of the observed period is 10 days and the interval

is 30 minutes, m is 240. See below for the precise definition

of the feature values. We also denote by the NS � 5m

matrix Y the matrix obtained by concatenating the feature

vectors for all topics S along rows, where NS ¼ jSj is the

number of topics we use for training.

4.2.1 Number of nodes n
ðsÞ
t

As in the previous section, n
ðsÞ
t denotes the number of

people who shared a topic s 2 S by time t 2 T . In other

words, n
ðsÞ
t is the number of nodes in topic graph Gðs;tÞ.

4.2.2 Number of communities N
ðs;tÞ
com

The distribution of edges of a naturally occurring network

is not only globally, but also locally inhomogeneous, with

high concentrations of edges within special groups of

vertices, and low concentrations between these

groups (Fortunato 2010). This feature of real networks is

called community structure. We compute the number of

communities N
ðs;tÞ
com using Fast Modularity algo-

rithm (Newman 2004), which costs OððjEj þ jVjÞjV jÞ for

each graph.

4.2.3 Maximum distance from the topic origin lðs;tÞ

The maximum distance lðs;tÞ from the topic origin v
ðs;tÞ
0 is

defined as

lðs;tÞ ¼ max
v
ðs;tÞ
j

dGðs;tÞ v
ðs;tÞ
j ; v

ðs;tÞ
0

� 	
;

where dGðs;tÞ ðu; vÞ is the distance along the shortest path be-

tween node u and node v on topic graph Gðs;tÞ. The maximum

distance tells how far at most a certain topic is distributed.

The maximum distance can be calculated by solving the well-

known single-source shortest path problem, which we solve

using the Dijkstra method (Cormen 2001; Dijkstra 1959),

which requires OðjEj þ jV j log jVjÞ for each graph.

4.2.4 Eigenvalues of graph Laplacian

Let a graph Laplacian Lðs;tÞ be

Lðs;tÞ ¼ Dðs;tÞ � Aðs;tÞ; ð6Þ

where Aðs;tÞ is the adjacency matrix (3) and Dðs;tÞ is the

degree matrix (4) of topic graph Gðs;tÞ. Note that the

smallest eigenvalue of graph laplacian is always 0. To

compute eigenvalues, the QR method, which is classical,

costs OðjVj3Þ for each graph.

Since we want same dimension vector for all topics, we

use only the second smallest eigenvalue kðs;tÞ2 and the lar-

gest eigenvalue kðs;tÞmax rather than use all eigenvalues. The

second smallest eigenvalue kðs;tÞ2 represents a density of

graph, and the largest eigenvalue kðs;tÞmax is used in calculating

the number of communities (Kim and Motter 2007; New-

man 2006). We refer to the literature by Von Luxburg

(2007) for more details of graph Laplacian.

4.3 Anomaly detection via principle component

analysis

This section presents an anomaly detection method based

on the principle component analysis (PCA) (Pearson 1901;

Bishop 2007) proposed by Lakhina et al. (2004). The basic

Fig. 4 The illustration of time evolution of topic graph. For the topic graph shown in Fig. 3b, we hypothesize that the temporal profiles of the

topic graphs associated with persistent and non-persistent topics are different
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idea of this method is to use PCA to define normal sub-

space and abnormal subspace; the anomaly score is given

by the projected variance on the anomaly subspace.

Figure 5 provides intuitive illustration how anomaly

detection via PCA works. As shown in Fig. 5a, PCA

converts possibly correlated basis, axis 1 and axis 2, to

uncorrelated one, PC1 and PC2. As PC1 extracts variance

of the data more than PC2, it is reasonable to assume that

PC1 is a normal subspace and PC2 is an anomalous sub-

space. In this setting, if we observe two more data shown in

Fig. 5a, data drawn in green seem to be normal input as the

projection of the data onto the anomalous subspace PC2 is

small, whereas data drown in red can be recognized as an

anomalous input from the observation that projection of

these data onto the anomalous subspace PC2 is large.

Based on this intuitive idea, anomaly detection via PCA

is formalized as follows. Define Y as Ncom � 5m matrix of

non-persistent topics, and is given by

Y ¼ yðs1Þ; yðs2Þ; � � � ; yðsNnon Þ
� 	>

; ð7Þ

where Nnon is a number of non-persistent topics. A first

principal component v1 2 R
5m is taken to maximize the

variance of Y’s projection onto the component. Hence, Y is

given by

v1 ¼ argman
kvk¼1

kYvk: ð8Þ

Let vj 2 R
5m be further principal components. The kth

component is taken to extract the maximum variance of the

space, that is the original space Y subtracted by the first

k � 1 principal components:

vk ¼ arg max
kvk¼1

k Y �
Xk�1

i¼1

Yviv
>
i

 !

vk ð9Þ

Let Ck be the fraction of variance explained up to the kth

principal component as follows:

Ck ¼
Pk

j¼1 r
2
j

Pn
j¼1 r

2
j

: ð10Þ

Let

P ¼ ðv1; v2; � � � ; vkÞ;

where the number of components k is chosen such that

Ck [ d.
We define the decomposition of a feature vector y into

the normal part ŷ and the abnormal part ~y as follows:

y ¼ ŷþ ~y ; ð11Þ

where

ŷ ¼ PP>y; ~y ¼ ðI � PP>Þy

A useful statistic for detecting the abnormal part ~y is the

squared prediction error (SPE):

SPE � k~yk2 ¼ kðI� PP>Þyk2;

and we consider a topic to be anomalous, or persistent, if

SPE[ dPCA: ð12Þ

5 Experiments

In this section, we present the result of applying our

proposed method to Twitter dataset we described in

Sect. 3, and compare our method to a baseline method

based on the power-law curve fitting, and the linear in-

fluence model (Yang and Leskovec 2010), and two su-

pervised methods, that are ridge regression and Support

(a) The illustration of PCA (b) The illustration of anomaly detection via PCA

Fig. 5 The illustration of PCA and anomaly detection via PCA. PCA

converts possibly correlated basis to uncorrelated basis. Basis is

chosen to maximize the variance, see (a, b) illustrates how anomaly

detection via PCA works. If the data shown in green are given, these

should be the normal data, as the projection onto PC2, which takes

less variance of the original data, is small. On the other hand, data

shown in red can be regarded as an anomalous input since the

projection onto PC2 is large. More detail is given in Sect. 4.3
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Vector Machine. In addition, we discuss the effect of

feature combination, qualitative difference between per-

sistent and non-persistent topics, sensitivity to the

definition of the threshold hamp, contribution of axes taken

by PCA to persistent and non-persistent topics, and

overfitting of supervised methods.

5.1 Experimental setup

5.1.1 Objective

The goal in this experiment is to predict whether a topic is

persistent or not (defined by the amplification factor

n50=n10 being greater or less than 1.1), only looking at the

data up to T ¼ 1, 3, 5, or 10 days. Since we have 589 non-

persistent topics and 109 persistent topics (see Figs. 1 and

2), we randomly left out 109 non-persistent topics for

testing and used the remaining NS ¼ 480 non-persistent

topics for training. For two supervised methods, we ran-

domly left out 55 persistent topics and 294 non-persistent

topics for the test data, and the remaining 54 persistent

topics and 295 non-persistent topics are used for the

training data. We used the area under the receiver operator

curve (AUC) as the performance criterion. To compute

AUC, we compute the area under the receiver operating

characteristic curve, which is drawn by plotting true-posi-

tive rate against the false-positive rate at various thresh-

olds. We remark that when the AUC of a classifier is 1.0, it

performs the best, and AUC is 0.5 with the random guess

setting. Note that we make sure that the number of per-

sistent topics and non-persistent topics for testing is the

same for proposed method, power-law fitting, and LIM.

The random split was repeated 200 times and the AUC

scores were averaged. The performance of all methods we

compare depends on the sampling interval ss; we report

their performance for ss ¼ 1, 3, 6, and 12 h for the pro-

posed approach and power-law curve fitting, and ss ¼ 12

and 24 h for the linear influence model; note that the

number of time points m ¼ 24T=ss in Eq. (5).

5.1.2 Proposed approach.

We used d ¼ 0:9999 for determining the number of PCA

components in Eq. (10). AUC was computed by changing

the threshold parameter dPCA in Eq. (12).

5.1.3 Power-law curve fitting.

For comparison, we employed power-law curve fitting

to the difference sequence DðsÞ
t of the number of users who

shared a certain topic.

We assume that the number of retweets DðsÞ
t that a post

receives in the tth time interval follows the power-law

model (1). In order to estimate the coefficients a and b, we
used the linear least squares method

âðsÞ; b̂ðsÞ
� 	

¼ argmin
a;b

Xm

t¼1

logDðsÞ
t þ a log t � log b

� 	2
:

ð13Þ

See Fig. 6 for an illustration. We replaced zero entries in

DðsÞ
t by DðsÞ

t ¼ 10�2 to avoid the log diverging to infinity.

Since low value of the exponent a indicates high per-

sistency, we used the value �âðsÞ as the anomaly score and

computed the AUC.

Note again that the notion of power law is behind the

criterion for persistent topics (see Sect. 3.3). We also re-

mark that power-law method can be considered as an un-

supervised method.

5.1.4 Linear influence model (LIM)

The linear influence model (LIM) proposed by Yang and

Leskovec (2010) can be used to predict the number of

future retweets as a superposition of positive influence

functions that corresponds to the users who retweeted the

original post in the past.

More specifically, we learn the influence functions for

Klim key users from NS training topics. This is a non-

negative least squares problem and can be minimized by

the MATLAB function lsqnonneg. Once we have the

influence functions, we can make a prediction into the

future. Let IuðtÞ be the influence function of user u. Then

the cumulative number n̂
ðsÞ
t of retweets at time t can be

predicted as follows:

1 2 3 4 5 6 7 8 9 10
10
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Real Data
Power−law Fit

Fig. 6 An illustration of the power-law curve fitting. See Sect. 3.3 for

the model and Sect. 5.1 for the estimation procedure
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n̂
ðsÞ
t ¼

X

u:tu �T

Iuðt � tuÞ;

where tu is the time that user u retweeted topic s (tu ¼ 1 if

she/he did not retweet).

We use the predicted amplification factor n̂
ðsÞ
50 =n̂

ðsÞ
10 as the

anomaly score and computed the AUC.

We used the following parameters for LIM: the number

of key users Klim ¼ 22, which was the number of users who

retweeted at least 100 posts out of the 698 topics we ana-

lyzed, the length of the influence function Llim ¼ 24 � 50=ss
(i.e., 50 days), the length of training data Tlim ¼ 24 � 100=ss
(i.e., 100 days). The training data and test data are split in

the same way as other two methods. The numbers Llim and

Tlim depend on the sampling interval ss, and, in this case,

we used ss ¼ 12 and 24 h. We did not compute LIM for ss
smaller than 12 h, because it was extremely time con-

suming and we did not expect the performance for smaller

ss to be better than the larger two settings. Note that the

LIM always observes training data up to 100 days, whereas

the proposed method only uses the training data up to

T(B10) days.

5.1.5 Ridge Regression

Ridge regression is like least squares method, but favors

more sparseness in coefficients. Given a training example

ðxi; yiÞ, where xi 2 R
p, ridge regression learns a linear

function

f ðx	Þ ¼ w>x

that predicts the output y	, and favors w to be shrunk to-

wards zero at the same time. This problem can be formu-

lated as

w ¼ argmin
w

ky� Xwk þ kkwk; ð14Þ

where y ¼ ðy1; y2; . . .; ynÞ> and X ¼ ðx>1 ; x>2 ; . . .; x>n Þ. The
first term of the right-hand side of Eq. (14) corresponds to

training error, and the second term is called sparseness

term, gaining sparseness of w. Taking gradient of Eq. (14)

yields a solution

w ¼ ðX>X þ kEpÞ�1
X>y; ð15Þ

where Ep is a p� p identity matrix. Note that when k ¼ 0,

Eq. (14) is the same as the optimization formulation of

least square.

In the experiment, we compose X with both non-per-

sistent and persistent topics, and y is either 1 or -1, the label

on either non-persistent or persistent topic, respectively. In

order to track the sensitivity to the coefficient of sparseness

term k ¼ 10l, we applied our method for l ¼ �3;�2; . . .; 3,

and use the best one.

5.1.6 Support vector machine

Support vector machine (SVM) chooses the decision hy-

perplane to be the one maximizing the margin, and also

allows some of the training points to be misclassified with

penalty (Boser et al. 1992; Vapnik 1998). In the following

section, we restrict SVM to binary classification, since our

problem has only two labels, non-persistent or persistent.

With a sparsity term, this problem can be written as

f ¼ argmin
f2H

1

n

X
ð1� yif ðxiÞÞþ þ kkfkH; ð16Þ

where H is a hypothesis space of functions, and

ðaÞþ ¼ maxða; 0Þ. Given the fact that f can be written

down as

f ð�Þ ¼
Xn

i

ciKð�; xiÞ;

where K is a kernel function, by introducing slackness

variables ni; we can rewrite Eq. (16) to

argmin
c2Rnn2Rn

1

n

X
ð1� yif ðxiÞÞþ þ kc>Kc;

s:t: ni � 1�
Xn

j¼1

cjKðxi; xjÞ

ni � 0:

ð17Þ

This problem can be readily solved if we solve the dual

problem of Eq. (17).

We used two kernel function, one is linear kernel,

Kðxi; xjÞ ¼ xi � xj ð18Þ

and the other is Gaussian kernel,

Kðxi; xjÞ ¼ expð�rkxi � xjk2Þ; ð19Þ

with r ¼ 0:25; 0:5; and 0:75. Like the setting in ridge re-

gression, we compose X with both non-persistent and

persistent topics, and y is either 1 or -1, labeling the topic.

We move the coefficient of sparseness term k ¼ 10l as

l ¼ �3;�2; . . .; 3, and use the best one.

5.2 Results

The results are summarized in Table 1 and Fig. 7. We

can see that the proposed method can indeed detect per-

sistent topics in less than 10 days with high AUC, and it

clearly outperforms the other two methods that do not take

the graph structure into account and the two supervised

methods that assume a form of decision hyperplane, for

observation time T � 3 days.
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Fig. 7 The performances for the detection of persistent topics

measured in AUC of the proposed method (square), power-law

(diamond), LIM (upward-triangle), ridge regression (circle), SVM

with linear kernel (right-pointing triangle), and SVM with Gaussian

kernel are (downward-triangle) shown. For SVM with Gaussian

kernel, we chose r with the best performance. The error bars show

the standard deviation of 200 random splitting around the mean

Table 1 The average AUC for

the proposed topic graph-based

anomaly detection, power-law

curve fitting, and linear

influence model (Yang and

Leskovec 2010)

1 day 3 days 5 days 10 days

Proposed (interval: 1 h) 0.6302 0.9536 0.9919 0.9998

Proposed (interval: 3 h) 0.5538 0.7587 0.9257 0.9922

Proposed(interval: 6 h) 0.5169 0.6730 0.8655 0.9703

Proposed(interval: 12 h) 0.5119 0.5830 0.8374 0.9533

Power-law (interval: 1 h) 0.4801 0.7320 0.7504 0.6622

Power-law (interval: 3 h) 0.6449 0.7570 0.8477 0.8348

Power-law (interval: 6 h) 0.7345 0.8553 0.8561 0.8966

Power-law (interval: 12 h) 0.7523 0.9493 0.9307 0.9043

LIM (interval: 12 h) 0.4979 0.4942 0.4998 0.4945

LIM (interval: 24 h) 0.5333 0.5339 0.5556 0.5600

Ridge regression (interval: 1 h) 0.51903 0.53661 0.58631 0.71641

Ridge regression (interval: 3 h 0.50571 0.54014 0.58859 0.67954

Ridge regression (interval: 6 h) 0.51769 0.54364 0.59133 0.6849

Ridge regression (interval: 12 h) 0.52217 0.57263 0.60222 0.72208

SVM with linear kernel (interval: 1 h) 0.51575 0.53477 0.52748 0.6662

SVM with linear kernel (interval: 3 h) 0.50274 0.53701 0.56991 0.67345

SVM with linear kernel (interval: 6 h) 0.51538 0.58931 0.62697 0.70667

SVM with linear kernel (interval: 12 h) 0.51841 0.58545 0.65189 0.72812

SVM with Gaussian kernel r ¼ 0:25 (interval: 1 h) 0.5127 0.47374 0.50294 0.62227

SVM with Gaussian kernel r ¼ 0:25 (interval: 3 h) 0.53104 0.51862 0.5426 0.63474

SVM with Gaussian kernel r ¼ 0:25 (interval: 6 h) 0.54815 0.54797 0.5429 0.62953

SVM with Gaussian kernel r ¼ 0:25 (interval: 12 h) 0.5038 0.52217 0.55919 0.6623

SVM with Gaussian kernel r ¼ 0:5 (interval: 1 h) 0.51116 0.48368 0.51544 0.65601

SVM with Gaussian kernel r ¼ 0:5 (interval: 3 h) 0.51384 0.50961 0.53642 0.6562

SVM with Gaussian kernel r ¼ 0:5 (interval: 6 h) 0.5288 0.5289 0.53622 0.65982

SVM with Gaussian kernel r ¼ 0:5 (interval: 12 h) 0.50917 0.52145 0.56665 0.7029

SVM with Gaussian kernel r ¼ 0:75 (interval: 1 h) 0.50997 0.49501 0.52125 0.66494

SVM with Gaussian kernel r ¼ 0:75 (interval: 3 h) 0.5086 0.50297 0.53689 0.65379

SVM with Gaussian kernel r ¼ 0:75 (interval: 6 h) 0.53328 0.51829 0.55637 0.67225

SVM with Gaussian kernel r ¼ 0:75 (interval: 12 h) 0.48013 0.53493 0.5706 0.71281

See Sect. 5.1 for the details
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Power-law curve fitting performed well in some case

(e.g., T ¼ 3) but it was more sensitive to the choice of the

sampling interval ss than the proposed method. In fact,

when the sampling interval is too short, the power-law

model does not fit well to the sequence DðsÞ
t , because DðsÞ

t ¼
0 for many ts in such case.

LIM takes the influence of key users into account. How-

ever, it did not perform even as good as the simple power-law

method. Note that in the original paper, the maximum length

of an influence function was a day, whereas we are using the

length of 50 days. Thus it might be fair to say that this is not

the best setting to use the method.

We can observe that the result of the proposed method is

better than that of the two supervised methods. Note that

these supervised methods are based upon the same as-

sumption that the temporal profiles of the topic graphs as-

sociated with persistent and non-persistent topics are

different. The reason of this performance is supposedly be-

cause our proposed method does not assume any forms of a

decision hyperplane whereas two supervised methods as-

sume kernel functions or linear decision hyperplane. From

the perspective of boundary, the PCA model implies that it

forms a decision boundary as a surface of the normal sub-

space composed by principal components and their variance.

Moreover, the result of the proposed method shows that the

hyperplane as a surface of the normal subspace PCA learns

works as a decision boundary. This suggests that there may

be a boundary, which classifies well-persistent and non-

persistent ones, and therefore we may be able to improve the

performance of supervised methods, namely for the selec-

tion of proper kernel functions for SVM.

In terms of the run time, the power-law curve fitting was

the fastest; it also requires no training. The proposed

method was faster than the LIM, ridge regression, and

SVM. Note that the proposed method mainly consumes run

time in computing the topic graph-based features, whereas

the LIM spends time in solving the non-negative least

squares problem, ridge regression and SVM computes

various sparseness coefficients k, and SVM has to solve the

more costly optimization problem, that is the dual problem

of Eq. (17). Therefore, there is room for improving the

efficiency of the proposed method by only computing the

features that contribute sufficiently to the performance.

5.3 Discussion

5.3.1 Effect of feature combination

We study the effect of feature combination in this sub-

section. We ask if one of the five features in Eq. (5) could

do the job of all of them. The results are presented in Fig. 8

The blue curve in Fig. 8 shows the performance of the

proposed method using all the features. The other five

curves show the performance of the proposed method using

only one of the features.

We can see that while there are clearly some features,

like the number of communities, that come close to the

feature combination in Eq. (5), other features, like the

maximum distance, that performs poorly on its own. Using

all the features seems to boost and stabilize the

performance.

The above results support our strategy to incorporate as

many features of the topic graph as possible. In addition, it

seems that we need not worry having redundant features,

because PCA can detect correlation in the features.

5.3.2 Difference between persistent and non-persistent

posts

Fig. 9 compares the dynamics of topic graphs of a typical

persistent post and a non-persistent post. We can see that

the topic graph of a persistent topic is more tightly con-

nected and grows denser and denser as time progresses,

which means that the number of communities does not

grow too big. On the other hand, the topic graph of a non-

persistent topic is relatively loosely connected and consists

of several communities. In addition, it relies more on hub

users who are connecting different communities.

5.3.3 Sensitivity to the Definition of the Ground Truth

Fig. 10 shows the same plot as in Fig. 7a but a different

definition of the amplification factor based on the threshold

hamp ¼ 1:25 for the proposed method, power law, and LIM.

From the plot, we can see that the general trend is
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Fig. 8 Average AUC using only one of the features. Sampling

interval ss ¼ 1 h
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unchanged. Therefore, the proposed method does not rely

on a particular choice of threshold parameter hamp. It would

be an interesting work in the future to extend the current

approach to predict the amplification factor in a regression

setting.

5.3.4 Anomalous subspace

We also study the contribution of axes converted by PCA

to the persistent and non-persistent topics. The contribution

of principal component k to the topic s can be written as

c
ðsÞ
k ¼ kuk 	 yðsÞk

kyðsÞk : ð20Þ

Figure 11 compares the contribution of principal compo-

nents to a non-persistent topic with the ones to a persistent

topic. The red dashed line shows where Ck [ d ¼ 0:9999,

meaning that left-hand side of the red line is normal

(a) Persistent post.

(b) Non-persistent post.

Fig. 9 Comparison of topic graph dynamics of a persistent post and a non-persistent post found by the proposed method
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Fig. 10 The AUC for sampling interval ss ¼ 1 h when hamp ¼ 1:25 is
used as the definition of the ground truth; see also Fig. 1 and Sect. 3.3
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subspace and right-hand side of the red line is anomalous

subspace. We can recognize that the persistent topic has

large values of contribution to the anomalous subspace,

while non-persistent does not. This result supports our as-

sumption that persistent topics have large projection onto

the anomalous subspace composed by subtracting principal

components of non-persistent ones from the original space.

5.3.5 Overfitting for supervised methods

Figure 12a shows the result of ridge regression with ob-

servation T ¼ 10 days and sampling interval s ¼ 1 h. We

can recognize that AUC for test data improves as the co-

efficient of the sparseness term k gains, while AUC for

training data falls from 1. This result implies that in ridge

regression learning of the labels of the dynamics of topic

graph occurs as the overfitting of the classifier is sup-

pressed by gaining k. Moreover, we can say that this result

supports the assumption on the proposed method that dy-

namics of a topic graph of a non-persistent post is different

from that of the persistent one, since these supervised

methods are based on the assumption similar to that of our

method. However, we should point out that for Gaussian

kernel with observing T ¼ 3 days and sampling interval

s ¼ 1 h shown in Fig. 12b, AUC for test data keeps around

0.5 although AUC for training data decreases from 1 as k
gains. Furthermore, for ridge regression with observing

T ¼ 3 days and sampling interval s ¼ 12 shown in Fig.

12c, AUC with all k is around 0.5 even for training data,

meaning that the hyperplane learnt by these methods fails

to classify even for training data as same accuracy as

random guess. These results suggest that some of super-

vised methods may work poorly if we have few data. One

reason may be the number of persistent topics is so small

compared to the number of non-persistent topics, we could

easily overfit to the type of persistent topics we have in our
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Fig. 11 The comparison of the principal components’ contribution to

non-persistent and persistent topics. Contribution of kth principal

component is defined as kuk 	 yðsÞk=kyðsÞk. The red dashed line shows
where Ck [ d ¼ 0:9999, meaning that left-hand side of the line is

normal and right-hand side is anomalous. We can see that there are

large contribution of principal components in anomalous subspace

(right-hand side) for a persistent topic, while there is little contribu-

tion in anomalous subspace for non-persistent one. This result implies

that PCA composes normal subspace by non-persistent topics, which

can distinguish non-persistent and persistent
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(a) Ridge regression with observing 10
days and sampling interval 1 hour.

(b) Support Vector Machine with
Gaussian kernel sigma = 0.25

(c) Ridge regression with observing 3
days and sampling interval 12 hour.

Fig. 12 The Averac and training data. a We observe that AUC for

test data improves as the coefficient of the sparseness term k gains and
the AUC for training data decrease. This result implies that learning

occurs as the overfitting of the classifier is suppressed by gaining k. b
Although hyperplane learnt by SVM suppresses overfitting given

AUC for SVM with Gaussian kernel with r ¼ 0:25 to training data

decreases from 1 as we gain the sparseness coefficient k, the AUC to

test data does not gain. c The AUC for ridge regression with

observing 3 days 12 h is around 0.5 for test data and training data,

meaning that hyperplane learnt by ridge regression does not classify

well. The results b and c imply that a supervised method may poorly

work if we have few data
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training set and would not be suitable to detect unseen type

of persistent topics.

6 Conclusion

In this paper, we have proposed a method for early de-

tection of persistent topics, which are topics that keep re-

ceiving people’s attention for a long period of time. The

proposed method is based on the notion of topic graph. A

topic graph is a dynamically growing subgraph of the so-

cial network and consists of nodes that correspond to users

who participated in the topic by sharing it with their friends

or followers. We have proposed to extract the time series of

five network theoretic features from the topic graph. The

feature space is further expanded by considering the whole

(non-stationary) sequence of the feature values. An

anomaly detection method based on PCA is applied to

these expanded features to detect persistent topics.

We have applied the proposed method to Twitter data

we collected and have shown that the proposed method can

reliably detect persistent topics that goes on for 50 days

within the first 5 days from posted. We have also compared

our algorithm to a simple baseline method based on the

power-law curve fitting, the linear influence model (Yang

and Leskovec , 2010), ridge regression, and SVM, and have

shown that the proposed method performs consistently

better than the other four methods.

There are several future directions. Although we have

shown that the five graph-based features of topological

structure of topic graph were useful in characterizing a

growth pattern of the non-persistent topics, they are by no

means exhaustively nor systematically chosen. It would be

fruitful to combine our framework with the existing graph

mining (Inokuchi and Kashima 2003) and spectral meth-

ods (Ide and Kashima 2004; Hirose et al. 2009). It would

also be highly valuable to consider the trade-off between

the computational cost of including some feature and the

performance gain that we obtain by incorporating that

feature. In addition, it is worth to try to reveal what real-

world phenomena are the keys to make topics persistent or

non-persistent. Our method has found the difference in

time-sequential change of topological structure of topic

graph. In particular, as shown in Sect. 5.3.2 and Fig. 9, we

have found that topic graphs of persistent topics are tightly

connected than those of the non-persistent topics. Thus, we

can say that in this paper, we have shown that these

topological phenomena in topic graph make topics persis-

tent. However, we should say that we still do not know

what real-world phenomena make time sequence of topic

graphs have these topological features of persistent topic.

Another future direction would be to try to predict not only

using topological information but also using external

sources such as other features in Twitter like favorite and

other websites than Twitter. Finally, as we mentioned in

Sect. 5.3.5, with more data it would also be interesting to

try a supervised method.
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